gpu::StereoConstantSpaceBP:

fixed some bugs in init_data_cost on first level (added non-reduction version for first level)
  optimized compute_data_cost like init_data_cost (used reduction scheme)
  avoid temp matrix
This commit is contained in:
Vladislav Vinogradov 2010-08-13 08:30:06 +00:00
parent bcfec60024
commit 26712fad72
3 changed files with 216 additions and 71 deletions

View File

@ -473,7 +473,7 @@ namespace cv
GpuMat data_cost;
GpuMat data_cost_selected;
GpuMat temp1, temp2;
GpuMat temp;
GpuMat out;
};

View File

@ -59,14 +59,14 @@ void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, Gp
namespace cv { namespace gpu { namespace csbp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2);
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp/*, const DevMem2D& temp2*/);
void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected,
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels,
const cudaStream_t& stream);
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream);
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream);
void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
@ -116,7 +116,7 @@ static void stereo_csbp_gpu_operator(int& ndisp, int& iters, int& levels, int& n
int& msg_type,
GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
GpuMat& temp1, GpuMat& temp2, GpuMat& out,
GpuMat& temp, GpuMat& out,
const GpuMat& left, const GpuMat& right, GpuMat& disp,
const cudaStream_t& stream)
{
@ -190,14 +190,13 @@ static void stereo_csbp_gpu_operator(int& ndisp, int& iters, int& levels, int& n
temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * ndisp);
}
temp1.create(temp_size, msg_type);
temp2.create(temp_size, msg_type);
temp.create(temp_size, msg_type);
////////////////////////////////////////////////////////////////////////////
// Compute
csbp::load_constants(ndisp, max_data_term, scale * data_weight, scale * max_disc_term, scale * disc_single_jump,
left, right, temp1, temp2);
left, right, temp);
l[0] = zero;
d[0] = zero;
@ -224,7 +223,7 @@ static void stereo_csbp_gpu_operator(int& ndisp, int& iters, int& levels, int& n
else
{
csbp::compute_data_cost(disp_selected_pyr[cur_idx], data_cost, step_pyr[i], step_pyr[i+1], msg_type,
rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream);
left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream);
int new_idx = (cur_idx + 1) & 1;
@ -259,13 +258,13 @@ static void stereo_csbp_gpu_operator(int& ndisp, int& iters, int& levels, int& n
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
{
::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type,
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp, 0);
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp/*, temp2*/, out, left, right, disp, 0);
}
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const Stream& stream)
{
::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type,
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp,
u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp/*, temp2*/, out, left, right, disp,
StreamAccessor::getStream(stream));
}

View File

@ -48,7 +48,7 @@ using namespace cv::gpu;
using namespace cv::gpu::impl;
#ifndef FLT_MAX
#define FLT_MAX 3.402823466e+38F
#define FLT_MAX 3.402823466e+30F
#endif
#ifndef SHRT_MAX
@ -77,6 +77,7 @@ struct TypeLimits<float>
namespace csbp_kernels
{
__constant__ int cndisp;
__constant__ int cth;
__constant__ float cmax_data_term;
__constant__ float cdata_weight;
@ -91,16 +92,18 @@ namespace csbp_kernels
__constant__ uchar* cleft;
__constant__ uchar* cright;
__constant__ uchar* ctemp1;
__constant__ uchar* ctemp2;
__constant__ uchar* ctemp;
}
namespace cv { namespace gpu { namespace csbp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2)
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp)
{
int th = (int)(ndisp * 0.2);
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cndisp, &ndisp, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cth, &th, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdata_weight, &data_weight, sizeof(float)) );
@ -111,8 +114,7 @@ namespace cv { namespace gpu { namespace csbp
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cleft, &left.ptr, sizeof(left.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cright, &right.ptr, sizeof(right.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp1, &temp1.ptr, sizeof(temp1.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp2, &temp2.ptr, sizeof(temp2.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp, &temp.ptr, sizeof(temp.ptr)) );
}
}}}
@ -154,7 +156,7 @@ namespace csbp_kernels
{
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x;
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x;
T* data_cost = (T*)ctemp1 + y * cmsg_step1 + x;
T* data_cost = (T*)ctemp + y * cmsg_step1 + x;
int nr_local_minimum = 0;
@ -200,8 +202,48 @@ namespace csbp_kernels
}
}
template <typename T, int channels>
__global__ void init_data_cost(int h, int w, int level)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < h && x < w)
{
int y0 = y << level;
int yt = (y + 1) << level;
int x0 = x << level;
int xt = (x + 1) << level;
T* data_cost = (T*)ctemp + y * cmsg_step1 + x;
for(int d = 0; d < cndisp; ++d)
{
float val = 0.0f;
for(int yi = y0; yi < yt; yi++)
{
for(int xi = x0; xi < xt; xi++)
{
int xr = xi - d;
if(d < cth || xr < 0)
val += cdata_weight * cmax_data_term;
else
{
const uchar* lle = cleft + yi * cimg_step + xi * channels;
const uchar* lri = cright + yi * cimg_step + xr * channels;
val += DataCostPerPixel<channels>::compute(lle, lri);
}
}
}
data_cost[cdisp_step1 * d] = saturate_cast<T>(val);
}
}
}
template <typename T, int winsz, int channels>
__global__ void data_init(int level, int rows, int cols, int h)
__global__ void init_data_cost_reduce(int level, int rows, int cols, int h)
{
int x_out = blockIdx.x;
int y_out = blockIdx.y % h;
@ -219,7 +261,7 @@ namespace csbp_kernels
float val = 0.0f;
if (x0 + tid < cols)
{
if (x0 + tid - d < 0)
if (x0 + tid - d < 0 || d < cth)
val = cdata_weight * cmax_data_term * len;
else
{
@ -253,7 +295,7 @@ namespace csbp_kernels
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1];
T* data_cost = (T*)ctemp1 + y_out * cmsg_step1 + x_out;
T* data_cost = (T*)ctemp + y_out * cmsg_step1 + x_out;
if (tid == 0)
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]);
@ -263,8 +305,25 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void init_data_cost_caller_(int /*rows*/, int /*cols*/, int h, int w, int level, int /*ndisp*/, int channels, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
switch (channels)
{
case 1: csbp_kernels::init_data_cost<T, 1><<<grid, threads, 0, stream>>>(h, w, level); break;
case 3: csbp_kernels::init_data_cost<T, 3><<<grid, threads, 0, stream>>>(h, w, level); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
template <typename T, int winsz>
void data_init_caller(int rows, int cols, int h, int w, int level, int ndisp, int channels, const cudaStream_t& stream)
void init_data_cost_reduce_caller_(int rows, int cols, int h, int w, int level, int ndisp, int channels, const cudaStream_t& stream)
{
const int threadsNum = 256;
const size_t smem_size = threadsNum * sizeof(float);
@ -275,16 +334,16 @@ namespace cv { namespace gpu { namespace csbp
switch (channels)
{
case 1: csbp_kernels::data_init<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 3: csbp_kernels::data_init<T, winsz, 3><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 1: csbp_kernels::init_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 3: csbp_kernels::init_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
typedef void (*DataInitCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, const cudaStream_t& stream);
typedef void (*InitDataCostCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, const cudaStream_t& stream);
template <typename T>
void get_first_k_initial_local_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream)
void get_first_k_initial_local_caller_(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@ -301,18 +360,18 @@ namespace cv { namespace gpu { namespace csbp
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels, const cudaStream_t& stream)
{
static const DataInitCaller data_init_callers[8][9] =
static const InitDataCostCaller init_data_cost_callers[8][9] =
{
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{data_init_caller<short, 1>, data_init_caller<short, 2>, data_init_caller<short, 4>, data_init_caller<short, 8>,
data_init_caller<short, 16>, data_init_caller<short, 32>, data_init_caller<short, 64>, data_init_caller<short, 128>,
data_init_caller<short, 256>},
{init_data_cost_caller_<short>, init_data_cost_caller_<short>, init_data_cost_reduce_caller_<short, 4>,
init_data_cost_reduce_caller_<short, 8>, init_data_cost_reduce_caller_<short, 16>, init_data_cost_reduce_caller_<short, 32>,
init_data_cost_reduce_caller_<short, 64>, init_data_cost_reduce_caller_<short, 128>, init_data_cost_reduce_caller_<short, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{data_init_caller<float, 1>, data_init_caller<float, 2>, data_init_caller<float, 4>, data_init_caller<float, 8>,
data_init_caller<float, 16>, data_init_caller<float, 32>, data_init_caller<float, 64>, data_init_caller<float, 128>,
data_init_caller<float, 256>},
{init_data_cost_caller_<float>, init_data_cost_caller_<float>, init_data_cost_reduce_caller_<float, 4>,
init_data_cost_reduce_caller_<float, 8>, init_data_cost_reduce_caller_<float, 16>, init_data_cost_reduce_caller_<float, 32>,
init_data_cost_reduce_caller_<float, 64>, init_data_cost_reduce_caller_<float, 128>, init_data_cost_reduce_caller_<float, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
@ -320,22 +379,22 @@ namespace cv { namespace gpu { namespace csbp
static const GetFirstKInitialLocalCaller get_first_k_initial_local_callers[8] =
{
0, 0, 0,
get_first_k_initial_local_caller<short>,
get_first_k_initial_local_caller_<short>,
0,
get_first_k_initial_local_caller<float>,
get_first_k_initial_local_caller_<float>,
0, 0
};
DataInitCaller data_init_caller = data_init_callers[msg_type][level];
InitDataCostCaller init_data_cost_caller = init_data_cost_callers[msg_type][level];
GetFirstKInitialLocalCaller get_first_k_initial_local_caller = get_first_k_initial_local_callers[msg_type];
if (!data_init_caller || !get_first_k_initial_local_caller)
if (!init_data_cost_caller || !get_first_k_initial_local_caller)
cv::gpu::error("Unsupported message type or levels count", __FILE__, __LINE__);
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
data_init_caller(rows, cols, h, w, level, ndisp, channels, stream);
init_data_cost_caller(rows, cols, h, w, level, ndisp, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
@ -354,7 +413,7 @@ namespace cv { namespace gpu { namespace csbp
namespace csbp_kernels
{
template <typename T, int channels>
__global__ void compute_data_cost(T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane)
__global__ void compute_data_cost(const T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
@ -367,7 +426,7 @@ namespace csbp_kernels
int x0 = x << level;
int xt = (x + 1) << level;
T* selected_disparity = selected_disp_pyr + y/2 * cmsg_step2 + x/2;
const T* selected_disparity = selected_disp_pyr + y/2 * cmsg_step2 + x/2;
T* data_cost = data_cost_ + y * cmsg_step1 + x;
for(int d = 0; d < nr_plane; d++)
@ -376,11 +435,11 @@ namespace csbp_kernels
for(int yi = y0; yi < yt; yi++)
{
for(int xi = x0; xi < xt; xi++)
{
{
int sel_disp = selected_disparity[d * cdisp_step2];
int xr = xi - sel_disp;
if (xr < 0)
if (xr < 0 || sel_disp < cth)
val += cdata_weight * cmax_data_term;
else
{
@ -395,12 +454,75 @@ namespace csbp_kernels
}
}
}
template <typename T, int winsz, int channels>
__global__ void compute_data_cost_reduce(const T* selected_disp_pyr, T* data_cost_, int level, int rows, int cols, int h, int nr_plane)
{
int x_out = blockIdx.x;
int y_out = blockIdx.y % h;
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z;
int tid = threadIdx.x;
const T* selected_disparity = selected_disp_pyr + y_out/2 * cmsg_step2 + x_out/2;
T* data_cost = data_cost_ + y_out * cmsg_step1 + x_out;
if (d < nr_plane)
{
int sel_disp = selected_disparity[d * cdisp_step2];
int x0 = x_out << level;
int y0 = y_out << level;
int len = min(y0 + winsz, rows) - y0;
float val = 0.0f;
if (x0 + tid < cols)
{
if (x0 + tid - sel_disp < 0 || sel_disp < cth)
val = cdata_weight * cmax_data_term * len;
else
{
const uchar* lle = cleft + y0 * cimg_step + channels * (x0 + tid );
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - sel_disp);
for(int y = 0; y < len; ++y)
{
val += DataCostPerPixel<channels>::compute(lle, lri);
lle += cimg_step;
lri += cimg_step;
}
}
}
extern __shared__ float smem[];
float* dline = smem + winsz * threadIdx.z;
dline[tid] = val;
__syncthreads();
if (winsz >= 256) { if (tid < 128) { dline[tid] += dline[tid + 128]; } __syncthreads(); }
if (winsz >= 128) { if (tid < 64) { dline[tid] += dline[tid + 64]; } __syncthreads(); }
if (winsz >= 64) if (tid < 32) dline[tid] += dline[tid + 32];
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16];
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8];
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4];
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1];
if (tid == 0)
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]);
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_data_cost_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost,
void compute_data_cost_caller_(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, int /*rows*/, int /*cols*/,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
@ -411,25 +533,51 @@ namespace cv { namespace gpu { namespace csbp
switch(channels)
{
case 1: csbp_kernels::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
case 3: csbp_kernels::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
case 1: csbp_kernels::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
case 3: csbp_kernels::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
template <typename T, int winsz>
void compute_data_cost_reduce_caller_(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream)
{
const int threadsNum = 256;
const size_t smem_size = threadsNum * sizeof(float);
dim3 threads(winsz, 1, threadsNum / winsz);
dim3 grid(w, h, 1);
grid.y *= divUp(nr_plane, threads.z);
switch (channels)
{
case 1: csbp_kernels::compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, level, rows, cols, h, nr_plane); break;
case 3: csbp_kernels::compute_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, level, rows, cols, h, nr_plane); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
typedef void (*ComputeDataCostCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost,
typedef void (*ComputeDataCostCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream);
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream)
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream)
{
static const ComputeDataCostCaller callers[8] =
static const ComputeDataCostCaller callers[8][9] =
{
0, 0, 0,
compute_data_cost_caller<short>,
0,
compute_data_cost_caller<float>,
0, 0
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{compute_data_cost_caller_<short>, compute_data_cost_caller_<short>, compute_data_cost_reduce_caller_<short, 4>,
compute_data_cost_reduce_caller_<short, 8>, compute_data_cost_reduce_caller_<short, 16>, compute_data_cost_reduce_caller_<short, 32>,
compute_data_cost_reduce_caller_<short, 64>, compute_data_cost_reduce_caller_<short, 128>, compute_data_cost_reduce_caller_<short, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{compute_data_cost_caller_<float>, compute_data_cost_caller_<float>, compute_data_cost_reduce_caller_<float, 4>,
compute_data_cost_reduce_caller_<float, 8>, compute_data_cost_reduce_caller_<float, 16>, compute_data_cost_reduce_caller_<float, 32>,
compute_data_cost_reduce_caller_<float, 64>, compute_data_cost_reduce_caller_<float, 128>, compute_data_cost_reduce_caller_<float, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
size_t disp_step1 = msg_step1 * h;
@ -439,11 +587,11 @@ namespace cv { namespace gpu { namespace csbp
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) );
ComputeDataCostCaller caller = callers[msg_type];
ComputeDataCostCaller caller = callers[msg_type][level];
if (!caller)
cv::gpu::error("Unsopported message type", __FILE__, __LINE__);
caller(disp_selected_pyr, data_cost, h, w, level, nr_plane, channels, stream);
caller(disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
@ -478,7 +626,7 @@ namespace csbp_kernels
}
data_cost_selected[i * cdisp_step1] = data_cost_cur[id * cdisp_step1];
disparity_selected_new[i * cdisp_step1] = disparity_selected_cur[id * cdisp_step1];
disparity_selected_new[i * cdisp_step1] = disparity_selected_cur[id * cdisp_step2];
u_new[i * cdisp_step1] = u_cur[id * cdisp_step2];
d_new[i * cdisp_step1] = d_cur[id * cdisp_step2];
@ -506,8 +654,7 @@ namespace csbp_kernels
const T* l_cur = l_cur_ + y/2 * cmsg_step2 + min(w2-1, x/2 + 1);
const T* r_cur = r_cur_ + y/2 * cmsg_step2 + max(0, x/2 - 1);
T* disparity_selected_cur_backup = (T*)ctemp2 + y * cmsg_step1 + x;
T* data_cost_new = (T*)ctemp1 + y * cmsg_step1 + x;
T* data_cost_new = (T*)ctemp + y * cmsg_step1 + x;
const T* disparity_selected_cur = selected_disp_pyr_cur + y/2 * cmsg_step2 + x/2;
T* data_cost = data_cost_ + y * cmsg_step1 + x;
@ -515,8 +662,7 @@ namespace csbp_kernels
for(int d = 0; d < nr_plane2; d++)
{
int idx2 = d * cdisp_step2;
disparity_selected_cur_backup[d * cdisp_step1] = disparity_selected_cur[idx2];
T val = data_cost[d * cdisp_step1] + u_cur[idx2] + d_cur[idx2] + l_cur[idx2] + r_cur[idx2];
data_cost_new[d * cdisp_step1] = val;
}
@ -536,7 +682,7 @@ namespace csbp_kernels
get_first_k_element_increase(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
data_cost_selected, disparity_selected_new, data_cost_new,
data_cost, disparity_selected_cur_backup, nr_plane, nr_plane2);
data_cost, disparity_selected_cur, nr_plane, nr_plane2);
}
}
}
@ -544,7 +690,7 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void init_message_caller(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
void init_message_caller_(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost,
@ -578,9 +724,9 @@ namespace cv { namespace gpu { namespace csbp
static const InitMessageCaller callers[8] =
{
0, 0, 0,
init_message_caller<short>,
init_message_caller_<short>,
0,
init_message_caller<float>,
init_message_caller_<float>,
0, 0
};
@ -663,7 +809,7 @@ namespace csbp_kernels
const T* disp = selected_disp_pyr_cur + y * cmsg_step1 + x;
T* temp = (T*)ctemp1 + y * cmsg_step1 + x;
T* temp = (T*)ctemp + y * cmsg_step1 + x;
message_per_pixel(data, u, r - 1, u + cmsg_step1, l + 1, disp, disp - cmsg_step1, nr_plane, temp);
message_per_pixel(data, d, d - cmsg_step1, r - 1, l + 1, disp, disp + cmsg_step1, nr_plane, temp);
@ -676,7 +822,7 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_message_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
void compute_message_caller_(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
@ -699,9 +845,9 @@ namespace cv { namespace gpu { namespace csbp
static const ComputeMessageCaller callers[8] =
{
0, 0, 0,
compute_message_caller<short>,
compute_message_caller_<short>,
0,
compute_message_caller<float>,
compute_message_caller_<float>,
0, 0
};
@ -769,7 +915,7 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_disp_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
void compute_disp_caller_(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
@ -792,9 +938,9 @@ namespace cv { namespace gpu { namespace csbp
static const ComputeDispCaller callers[8] =
{
0, 0, 0,
compute_disp_caller<short>,
compute_disp_caller_<short>,
0,
compute_disp_caller<float>,
compute_disp_caller_<float>,
0, 0
};