mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Fix stitching Python bindings PR #22329
This commit is contained in:
parent
fc3e393516
commit
26a7647e0e
@ -138,7 +138,7 @@ public:
|
||||
@sa detail::MatchesInfo
|
||||
*/
|
||||
CV_WRAP_AS(apply2) void operator ()(const std::vector<ImageFeatures> &features, CV_OUT std::vector<MatchesInfo> &pairwise_matches,
|
||||
const cv::UMat &mask = cv::UMat());
|
||||
const cv::UMat &mask = cv::UMat()) { match(features, pairwise_matches, mask); };
|
||||
|
||||
/** @return True, if it's possible to use the same matcher instance in parallel, false otherwise
|
||||
*/
|
||||
@ -161,6 +161,16 @@ protected:
|
||||
virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
|
||||
MatchesInfo& matches_info) = 0;
|
||||
|
||||
/** @brief This method implements logic to match features between arbitrary number of features.
|
||||
By default this checks every pair of inputs in the input, but the behaviour can be changed by subclasses.
|
||||
|
||||
@param features vector of image features
|
||||
@param pairwise_matches found matches
|
||||
@param mask (optional) mask indicating which image pairs should be matched
|
||||
*/
|
||||
virtual void match(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
|
||||
const cv::UMat &mask = cv::UMat());
|
||||
|
||||
bool is_thread_safe_;
|
||||
};
|
||||
|
||||
@ -202,11 +212,12 @@ public:
|
||||
CV_WRAP BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,
|
||||
int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);
|
||||
|
||||
void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
|
||||
const cv::UMat &mask = cv::UMat());
|
||||
|
||||
|
||||
protected:
|
||||
// indicate that we do not want to hide the base class match method with a different signature
|
||||
using BestOf2NearestMatcher::match;
|
||||
void match(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
|
||||
const cv::UMat &mask = cv::UMat()) CV_OVERRIDE;
|
||||
|
||||
int range_width_;
|
||||
};
|
||||
|
||||
|
@ -248,7 +248,7 @@ public:
|
||||
~GraphCutSeamFinder();
|
||||
|
||||
CV_WRAP void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
|
||||
std::vector<UMat> &masks) CV_OVERRIDE;
|
||||
CV_IN_OUT std::vector<UMat> &masks) CV_OVERRIDE;
|
||||
|
||||
private:
|
||||
// To avoid GCGraph dependency
|
||||
|
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -134,6 +135,47 @@ class stitching_matches_info_test(NewOpenCVTests):
|
||||
self.assertIsNotNone(matches_info.matches)
|
||||
self.assertIsNotNone(matches_info.inliers_mask)
|
||||
|
||||
class stitching_range_matcher_test(NewOpenCVTests):
|
||||
|
||||
def test_simple(self):
|
||||
images = [
|
||||
self.get_sample('stitching/a1.png'),
|
||||
self.get_sample('stitching/a2.png'),
|
||||
self.get_sample('stitching/a3.png')
|
||||
]
|
||||
|
||||
orb = cv.ORB_create()
|
||||
|
||||
features = [cv.detail.computeImageFeatures2(orb, img) for img in images]
|
||||
|
||||
matcher = cv.detail_BestOf2NearestRangeMatcher(range_width=1)
|
||||
matches = matcher.apply2(features)
|
||||
|
||||
# matches[1] is image 0 and image 1, should have non-zero confidence
|
||||
self.assertNotEqual(matches[1].confidence, 0)
|
||||
|
||||
# matches[2] is image 0 and image 2, should have zero confidence due to range_width=1
|
||||
self.assertEqual(matches[2].confidence, 0)
|
||||
|
||||
|
||||
class stitching_seam_finder_graph_cuts(NewOpenCVTests):
|
||||
|
||||
def test_simple(self):
|
||||
images = [
|
||||
self.get_sample('stitching/a1.png'),
|
||||
self.get_sample('stitching/a2.png'),
|
||||
self.get_sample('stitching/a3.png')
|
||||
]
|
||||
|
||||
images = [cv.resize(img, [100, 100]) for img in images]
|
||||
|
||||
finder = cv.detail_GraphCutSeamFinder('COST_COLOR_GRAD')
|
||||
masks = [cv.UMat(255 * np.ones((img.shape[0], img.shape[1]), np.uint8)) for img in images]
|
||||
images_f = [img.astype(np.float32) for img in images]
|
||||
masks_warped = finder.find(images_f, [(0, 0), (75, 0), (150, 0)], masks)
|
||||
|
||||
self.assertIsNotNone(masks_warped)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
|
@ -335,8 +335,8 @@ MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void FeaturesMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
|
||||
const UMat &mask)
|
||||
void FeaturesMatcher::match(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
|
||||
const UMat &mask)
|
||||
{
|
||||
const int num_images = static_cast<int>(features.size());
|
||||
|
||||
@ -484,8 +484,8 @@ BestOf2NearestRangeMatcher::BestOf2NearestRangeMatcher(int range_width, bool try
|
||||
}
|
||||
|
||||
|
||||
void BestOf2NearestRangeMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
|
||||
const UMat &mask)
|
||||
void BestOf2NearestRangeMatcher::match(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
|
||||
const UMat &mask)
|
||||
{
|
||||
const int num_images = static_cast<int>(features.size());
|
||||
|
||||
|
@ -114,4 +114,30 @@ TEST(ParallelFeaturesFinder, IsSameWithSerial)
|
||||
}
|
||||
}
|
||||
|
||||
TEST(RangeMatcher, MatchesRangeOnly)
|
||||
{
|
||||
Ptr<Feature2D> finder = ORB::create();
|
||||
|
||||
Mat img0 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a1.png", IMREAD_GRAYSCALE);
|
||||
Mat img1 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a2.png", IMREAD_GRAYSCALE);
|
||||
Mat img2 = imread(string(cvtest::TS::ptr()->get_data_path()) + "stitching/a3.png", IMREAD_GRAYSCALE);
|
||||
|
||||
vector<detail::ImageFeatures> features(3);
|
||||
|
||||
computeImageFeatures(finder, img0, features[0]);
|
||||
computeImageFeatures(finder, img1, features[1]);
|
||||
computeImageFeatures(finder, img2, features[2]);
|
||||
|
||||
vector<detail::MatchesInfo> pairwise_matches;
|
||||
Ptr<detail::FeaturesMatcher> matcher = makePtr<detail::BestOf2NearestRangeMatcher>(1);
|
||||
|
||||
(*matcher)(features, pairwise_matches);
|
||||
|
||||
// matches[1] will be image 0 and image 1, should have non-zero confidence
|
||||
EXPECT_NE(pairwise_matches[1].confidence, .0);
|
||||
|
||||
// matches[2] will be image 0 and image 2, should have zero confidence due to range_width=1
|
||||
EXPECT_DOUBLE_EQ(pairwise_matches[2].confidence, .0);
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user