mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
added minMaxLoc function into gpu module
This commit is contained in:
parent
d366c0b2fa
commit
27690e3b6e
@ -422,7 +422,10 @@ namespace cv
|
||||
CV_EXPORTS Scalar sum(const GpuMat& m);
|
||||
|
||||
//! finds global minimum and maximum array elements and returns their values
|
||||
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal = 0);
|
||||
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal=0);
|
||||
|
||||
//! finds global minimum and maximum array elements and returns their values with locations
|
||||
CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0);
|
||||
|
||||
//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
|
||||
//! destination array will have the depth type as lut and the same channels number as source
|
||||
|
@ -66,6 +66,7 @@ double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return
|
||||
void cv::gpu::flip(const GpuMat&, GpuMat&, int) { throw_nogpu(); }
|
||||
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); }
|
||||
void cv::gpu::minMax(const GpuMat&, double*, double*) { throw_nogpu(); }
|
||||
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*) { throw_nogpu(); }
|
||||
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::exp(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::log(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
@ -530,6 +531,57 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// minMaxLoc
|
||||
|
||||
namespace cv { namespace gpu { namespace mathfunc {
|
||||
template <typename T>
|
||||
void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval, int* minlocx, int* minlocy,
|
||||
int* maxlocx, int* maxlocy);
|
||||
}}}
|
||||
|
||||
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc)
|
||||
{
|
||||
CV_Assert(src.channels() == 1);
|
||||
|
||||
double maxVal_;
|
||||
if (!maxVal) maxVal = &maxVal_;
|
||||
|
||||
cv::Point minLoc_;
|
||||
if (!minLoc) minLoc = &minLoc_;
|
||||
|
||||
cv::Point maxLoc_;
|
||||
if (!maxLoc) maxLoc = &maxLoc_;
|
||||
|
||||
switch (src.type())
|
||||
{
|
||||
case CV_8U:
|
||||
mathfunc::min_max_loc_caller<unsigned char>(src, minVal, maxVal, &minLoc->x, &minLoc->y, &maxLoc->x, &maxLoc->y);
|
||||
break;
|
||||
case CV_8S:
|
||||
mathfunc::min_max_loc_caller<signed char>(src, minVal, maxVal, &minLoc->x, &minLoc->y, &maxLoc->x, &maxLoc->y);
|
||||
break;
|
||||
case CV_16U:
|
||||
mathfunc::min_max_loc_caller<unsigned short>(src, minVal, maxVal, &minLoc->x, &minLoc->y, &maxLoc->x, &maxLoc->y);
|
||||
break;
|
||||
case CV_16S:
|
||||
mathfunc::min_max_loc_caller<signed short>(src, minVal, maxVal, &minLoc->x, &minLoc->y, &maxLoc->x, &maxLoc->y);
|
||||
break;
|
||||
case CV_32S:
|
||||
mathfunc::min_max_loc_caller<int>(src, minVal, maxVal, &minLoc->x, &minLoc->y, &maxLoc->x, &maxLoc->y);
|
||||
break;
|
||||
case CV_32F:
|
||||
mathfunc::min_max_loc_caller<float>(src, minVal, maxVal, &minLoc->x, &minLoc->y, &maxLoc->x, &maxLoc->y);
|
||||
break;
|
||||
case CV_64F:
|
||||
mathfunc::min_max_loc_caller<double>(src, minVal, maxVal, &minLoc->x, &minLoc->y, &maxLoc->x, &maxLoc->y);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unsupported type");
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// LUT
|
||||
|
||||
|
@ -410,10 +410,10 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
|
||||
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
|
||||
|
||||
template <typename T, int op> struct Cmp {};
|
||||
template <typename T, int op> struct Opt {};
|
||||
|
||||
template <typename T>
|
||||
struct Cmp<T, MIN>
|
||||
struct Opt<T, MIN>
|
||||
{
|
||||
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval)
|
||||
{
|
||||
@ -422,7 +422,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct Cmp<T, MAX>
|
||||
struct Opt<T, MAX>
|
||||
{
|
||||
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval)
|
||||
{
|
||||
@ -448,23 +448,22 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (nthreads >= 512) if (tid < 256) { Cmp<best_type, op>::call(tid, 256, soptval); __syncthreads(); }
|
||||
if (nthreads >= 256) if (tid < 128) { Cmp<best_type, op>::call(tid, 128, soptval); __syncthreads(); }
|
||||
if (nthreads >= 128) if (tid < 64) { Cmp<best_type, op>::call(tid, 64, soptval); __syncthreads(); }
|
||||
if (nthreads >= 512) if (tid < 256) { Opt<best_type, op>::call(tid, 256, soptval); __syncthreads(); }
|
||||
if (nthreads >= 256) if (tid < 128) { Opt<best_type, op>::call(tid, 128, soptval); __syncthreads(); }
|
||||
if (nthreads >= 128) if (tid < 64) { Opt<best_type, op>::call(tid, 64, soptval); __syncthreads(); }
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
if (nthreads >= 64) Cmp<best_type, op>::call(tid, 32, soptval);
|
||||
if (nthreads >= 32) Cmp<best_type, op>::call(tid, 16, soptval);
|
||||
if (nthreads >= 16) Cmp<best_type, op>::call(tid, 8, soptval);
|
||||
if (nthreads >= 8) Cmp<best_type, op>::call(tid, 4, soptval);
|
||||
if (nthreads >= 4) Cmp<best_type, op>::call(tid, 2, soptval);
|
||||
if (nthreads >= 2) Cmp<best_type, op>::call(tid, 1, soptval);
|
||||
if (nthreads >= 64) Opt<best_type, op>::call(tid, 32, soptval);
|
||||
if (nthreads >= 32) Opt<best_type, op>::call(tid, 16, soptval);
|
||||
if (nthreads >= 16) Opt<best_type, op>::call(tid, 8, soptval);
|
||||
if (nthreads >= 8) Opt<best_type, op>::call(tid, 4, soptval);
|
||||
if (nthreads >= 4) Opt<best_type, op>::call(tid, 2, soptval);
|
||||
if (nthreads >= 2) Opt<best_type, op>::call(tid, 1, soptval);
|
||||
}
|
||||
|
||||
if (tid == 0) ((T*)optval.ptr(blockIdx.y))[blockIdx.x] = (T)soptval[0];
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void min_max_caller(const DevMem2D src, double* minval, double* maxval)
|
||||
@ -472,17 +471,19 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
dim3 threads(32, 8);
|
||||
|
||||
// Allocate memory for aux. buffers
|
||||
DevMem2D minval_buf[2]; DevMem2D maxval_buf[2];
|
||||
DevMem2D minval_buf[2];
|
||||
minval_buf[0].cols = divUp(src.cols, threads.x);
|
||||
minval_buf[0].rows = divUp(src.rows, threads.y);
|
||||
minval_buf[1].cols = divUp(minval_buf[0].cols, threads.x);
|
||||
minval_buf[1].rows = divUp(minval_buf[0].rows, threads.y);
|
||||
cudaSafeCall(cudaMallocPitch(&minval_buf[0].data, &minval_buf[0].step, minval_buf[0].cols * sizeof(T), minval_buf[0].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&minval_buf[1].data, &minval_buf[1].step, minval_buf[1].cols * sizeof(T), minval_buf[1].rows));
|
||||
|
||||
DevMem2D maxval_buf[2];
|
||||
maxval_buf[0].cols = divUp(src.cols, threads.x);
|
||||
maxval_buf[0].rows = divUp(src.rows, threads.y);
|
||||
maxval_buf[1].cols = divUp(maxval_buf[0].cols, threads.x);
|
||||
maxval_buf[1].rows = divUp(maxval_buf[0].rows, threads.y);
|
||||
cudaSafeCall(cudaMallocPitch(&minval_buf[0].data, &minval_buf[0].step, minval_buf[0].cols * sizeof(T), minval_buf[0].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&minval_buf[1].data, &minval_buf[1].step, minval_buf[1].cols * sizeof(T), minval_buf[1].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&maxval_buf[0].data, &maxval_buf[0].step, maxval_buf[0].cols * sizeof(T), maxval_buf[0].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&maxval_buf[1].data, &maxval_buf[1].step, maxval_buf[1].cols * sizeof(T), maxval_buf[1].rows));
|
||||
|
||||
@ -528,4 +529,219 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template void min_max_caller<float>(const DevMem2D, double*, double*);
|
||||
template void min_max_caller<double>(const DevMem2D, double*, double*);
|
||||
|
||||
template <typename T, int op> struct OptLoc {};
|
||||
|
||||
template <typename T>
|
||||
struct OptLoc<T, MIN>
|
||||
{
|
||||
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval, volatile unsigned int* optloc)
|
||||
{
|
||||
T val = optval[tid + offset];
|
||||
if (val < optval[tid])
|
||||
{
|
||||
optval[tid] = val;
|
||||
optloc[tid] = optloc[tid + offset];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct OptLoc<T, MAX>
|
||||
{
|
||||
static __device__ void call(unsigned int tid, unsigned int offset, volatile T* optval, volatile unsigned int* optloc)
|
||||
{
|
||||
T val = optval[tid + offset];
|
||||
if (val > optval[tid])
|
||||
{
|
||||
optval[tid] = val;
|
||||
optloc[tid] = optloc[tid + offset];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int nthreads, int op, typename T>
|
||||
__global__ void opt_loc_init_kernel(int cols, int rows, const PtrStep src, PtrStep optval, PtrStep optloc)
|
||||
{
|
||||
typedef typename MinMaxTypeTraits<T>::best_type best_type;
|
||||
__shared__ best_type soptval[nthreads];
|
||||
__shared__ unsigned int soptloc[nthreads];
|
||||
|
||||
unsigned int x0 = blockIdx.x * blockDim.x;
|
||||
unsigned int y0 = blockIdx.y * blockDim.y;
|
||||
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
if (x0 + threadIdx.x < cols && y0 + threadIdx.y < rows)
|
||||
{
|
||||
soptval[tid] = ((const T*)src.ptr(y0 + threadIdx.y))[x0 + threadIdx.x];
|
||||
soptloc[tid] = (y0 + threadIdx.y) * cols + x0 + threadIdx.x;
|
||||
}
|
||||
else
|
||||
{
|
||||
soptval[tid] = ((const T*)src.ptr(y0))[x0];
|
||||
soptloc[tid] = y0 * cols + x0;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (nthreads >= 512) if (tid < 256) { OptLoc<best_type, op>::call(tid, 256, soptval, soptloc); __syncthreads(); }
|
||||
if (nthreads >= 256) if (tid < 128) { OptLoc<best_type, op>::call(tid, 128, soptval, soptloc); __syncthreads(); }
|
||||
if (nthreads >= 128) if (tid < 64) { OptLoc<best_type, op>::call(tid, 64, soptval, soptloc); __syncthreads(); }
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
if (nthreads >= 64) OptLoc<best_type, op>::call(tid, 32, soptval, soptloc);
|
||||
if (nthreads >= 32) OptLoc<best_type, op>::call(tid, 16, soptval, soptloc);
|
||||
if (nthreads >= 16) OptLoc<best_type, op>::call(tid, 8, soptval, soptloc);
|
||||
if (nthreads >= 8) OptLoc<best_type, op>::call(tid, 4, soptval, soptloc);
|
||||
if (nthreads >= 4) OptLoc<best_type, op>::call(tid, 2, soptval, soptloc);
|
||||
if (nthreads >= 2) OptLoc<best_type, op>::call(tid, 1, soptval, soptloc);
|
||||
}
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
((T*)optval.ptr(blockIdx.y))[blockIdx.x] = (T)soptval[0];
|
||||
((unsigned int*)optloc.ptr(blockIdx.y))[blockIdx.x] = soptloc[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <int nthreads, int op, typename T>
|
||||
__global__ void opt_loc_kernel(int cols, int rows, const PtrStep src, const PtrStep loc, PtrStep optval, PtrStep optloc)
|
||||
{
|
||||
typedef typename MinMaxTypeTraits<T>::best_type best_type;
|
||||
__shared__ best_type soptval[nthreads];
|
||||
__shared__ unsigned int soptloc[nthreads];
|
||||
|
||||
unsigned int x0 = blockIdx.x * blockDim.x;
|
||||
unsigned int y0 = blockIdx.y * blockDim.y;
|
||||
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
if (x0 + threadIdx.x < cols && y0 + threadIdx.y < rows)
|
||||
{
|
||||
soptval[tid] = ((const T*)src.ptr(y0 + threadIdx.y))[x0 + threadIdx.x];
|
||||
soptloc[tid] = ((const unsigned int*)loc.ptr(y0 + threadIdx.y))[x0 + threadIdx.x];
|
||||
}
|
||||
else
|
||||
{
|
||||
soptval[tid] = ((const T*)src.ptr(y0))[x0];
|
||||
soptloc[tid] = ((const unsigned int*)loc.ptr(y0))[x0];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (nthreads >= 512) if (tid < 256) { OptLoc<best_type, op>::call(tid, 256, soptval, soptloc); __syncthreads(); }
|
||||
if (nthreads >= 256) if (tid < 128) { OptLoc<best_type, op>::call(tid, 128, soptval, soptloc); __syncthreads(); }
|
||||
if (nthreads >= 128) if (tid < 64) { OptLoc<best_type, op>::call(tid, 64, soptval, soptloc); __syncthreads(); }
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
if (nthreads >= 64) OptLoc<best_type, op>::call(tid, 32, soptval, soptloc);
|
||||
if (nthreads >= 32) OptLoc<best_type, op>::call(tid, 16, soptval, soptloc);
|
||||
if (nthreads >= 16) OptLoc<best_type, op>::call(tid, 8, soptval, soptloc);
|
||||
if (nthreads >= 8) OptLoc<best_type, op>::call(tid, 4, soptval, soptloc);
|
||||
if (nthreads >= 4) OptLoc<best_type, op>::call(tid, 2, soptval, soptloc);
|
||||
if (nthreads >= 2) OptLoc<best_type, op>::call(tid, 1, soptval, soptloc);
|
||||
}
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
((T*)optval.ptr(blockIdx.y))[blockIdx.x] = (T)soptval[0];
|
||||
((unsigned int*)optloc.ptr(blockIdx.y))[blockIdx.x] = soptloc[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval, int* minlocx, int* minlocy,
|
||||
int* maxlocx, int* maxlocy)
|
||||
{
|
||||
dim3 threads(32, 8);
|
||||
|
||||
// Allocate memory for aux. buffers
|
||||
|
||||
DevMem2D minval_buf[2];
|
||||
minval_buf[0].cols = divUp(src.cols, threads.x);
|
||||
minval_buf[0].rows = divUp(src.rows, threads.y);
|
||||
minval_buf[1].cols = divUp(minval_buf[0].cols, threads.x);
|
||||
minval_buf[1].rows = divUp(minval_buf[0].rows, threads.y);
|
||||
cudaSafeCall(cudaMallocPitch(&minval_buf[0].data, &minval_buf[0].step, minval_buf[0].cols * sizeof(T), minval_buf[0].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&minval_buf[1].data, &minval_buf[1].step, minval_buf[1].cols * sizeof(T), minval_buf[1].rows));
|
||||
|
||||
DevMem2D maxval_buf[2];
|
||||
maxval_buf[0].cols = divUp(src.cols, threads.x);
|
||||
maxval_buf[0].rows = divUp(src.rows, threads.y);
|
||||
maxval_buf[1].cols = divUp(maxval_buf[0].cols, threads.x);
|
||||
maxval_buf[1].rows = divUp(maxval_buf[0].rows, threads.y);
|
||||
cudaSafeCall(cudaMallocPitch(&maxval_buf[0].data, &maxval_buf[0].step, maxval_buf[0].cols * sizeof(T), maxval_buf[0].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&maxval_buf[1].data, &maxval_buf[1].step, maxval_buf[1].cols * sizeof(T), maxval_buf[1].rows));
|
||||
|
||||
DevMem2D minloc_buf[2];
|
||||
minloc_buf[0].cols = divUp(src.cols, threads.x);
|
||||
minloc_buf[0].rows = divUp(src.rows, threads.y);
|
||||
minloc_buf[1].cols = divUp(minloc_buf[0].cols, threads.x);
|
||||
minloc_buf[1].rows = divUp(minloc_buf[0].rows, threads.y);
|
||||
cudaSafeCall(cudaMallocPitch(&minloc_buf[0].data, &minloc_buf[0].step, minloc_buf[0].cols * sizeof(int), minloc_buf[0].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&minloc_buf[1].data, &minloc_buf[1].step, minloc_buf[1].cols * sizeof(int), minloc_buf[1].rows));
|
||||
|
||||
DevMem2D maxloc_buf[2];
|
||||
maxloc_buf[0].cols = divUp(src.cols, threads.x);
|
||||
maxloc_buf[0].rows = divUp(src.rows, threads.y);
|
||||
maxloc_buf[1].cols = divUp(maxloc_buf[0].cols, threads.x);
|
||||
maxloc_buf[1].rows = divUp(maxloc_buf[0].rows, threads.y);
|
||||
cudaSafeCall(cudaMallocPitch(&maxloc_buf[0].data, &maxloc_buf[0].step, maxloc_buf[0].cols * sizeof(int), maxloc_buf[0].rows));
|
||||
cudaSafeCall(cudaMallocPitch(&maxloc_buf[1].data, &maxloc_buf[1].step, maxloc_buf[1].cols * sizeof(int), maxloc_buf[1].rows));
|
||||
|
||||
int curbuf = 0;
|
||||
dim3 cursize(src.cols, src.rows);
|
||||
dim3 grid(divUp(cursize.x, threads.x), divUp(cursize.y, threads.y));
|
||||
|
||||
opt_loc_init_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, src, minval_buf[curbuf], minloc_buf[curbuf]);
|
||||
opt_loc_init_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, src, maxval_buf[curbuf], maxloc_buf[curbuf]);
|
||||
cursize = grid;
|
||||
|
||||
while (cursize.x > 1 || cursize.y > 1)
|
||||
{
|
||||
grid.x = divUp(cursize.x, threads.x);
|
||||
grid.y = divUp(cursize.y, threads.y);
|
||||
opt_loc_kernel<256, MIN, T><<<grid, threads>>>(cursize.x, cursize.y, minval_buf[curbuf], minloc_buf[curbuf],
|
||||
minval_buf[1 - curbuf], minloc_buf[1 - curbuf]);
|
||||
opt_loc_kernel<256, MAX, T><<<grid, threads>>>(cursize.x, cursize.y, maxval_buf[curbuf], maxloc_buf[curbuf],
|
||||
maxval_buf[1 - curbuf], maxloc_buf[1 - curbuf]);
|
||||
curbuf = 1 - curbuf;
|
||||
cursize = grid;
|
||||
}
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
|
||||
// Copy results from device to host
|
||||
|
||||
T minval_, maxval_;
|
||||
cudaSafeCall(cudaMemcpy(&minval_, minval_buf[curbuf].ptr(0), sizeof(T), cudaMemcpyDeviceToHost));
|
||||
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf[curbuf].ptr(0), sizeof(T), cudaMemcpyDeviceToHost));
|
||||
*minval = minval_;
|
||||
*maxval = maxval_;
|
||||
|
||||
unsigned int minloc, maxloc;
|
||||
cudaSafeCall(cudaMemcpy(&minloc, minloc_buf[curbuf].ptr(0), sizeof(int), cudaMemcpyDeviceToHost));
|
||||
cudaSafeCall(cudaMemcpy(&maxloc, maxloc_buf[curbuf].ptr(0), sizeof(int), cudaMemcpyDeviceToHost));
|
||||
*minlocy = minloc / src.cols; *minlocx = minloc - *minlocy * src.cols;
|
||||
*maxlocy = maxloc / src.cols; *maxlocx = maxloc - *maxlocy * src.cols;
|
||||
|
||||
// Release aux. buffers
|
||||
cudaSafeCall(cudaFree(minval_buf[0].data));
|
||||
cudaSafeCall(cudaFree(minval_buf[1].data));
|
||||
cudaSafeCall(cudaFree(maxval_buf[0].data));
|
||||
cudaSafeCall(cudaFree(maxval_buf[1].data));
|
||||
cudaSafeCall(cudaFree(minloc_buf[0].data));
|
||||
cudaSafeCall(cudaFree(minloc_buf[1].data));
|
||||
cudaSafeCall(cudaFree(maxloc_buf[0].data));
|
||||
cudaSafeCall(cudaFree(maxloc_buf[1].data));
|
||||
}
|
||||
|
||||
template void min_max_loc_caller<unsigned char>(const DevMem2D, double*, double*, int*, int*, int*, int*);
|
||||
template void min_max_loc_caller<signed char>(const DevMem2D, double*, double*, int*, int*, int*, int*);
|
||||
template void min_max_loc_caller<unsigned short>(const DevMem2D, double*, double*, int*, int*, int*, int*);
|
||||
template void min_max_loc_caller<signed short>(const DevMem2D, double*, double*, int*, int*, int*, int*);
|
||||
template void min_max_loc_caller<int>(const DevMem2D, double*, double*, int*, int*, int*, int*);
|
||||
template void min_max_loc_caller<float>(const DevMem2D, double*, double*, int*, int*, int*, int*);
|
||||
template void min_max_loc_caller<double>(const DevMem2D, double*, double*, int*, int*, int*, int*);
|
||||
|
||||
}}}
|
||||
|
@ -733,6 +733,71 @@ struct CV_GpuMinMaxTest: public CvTest
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Min max loc
|
||||
|
||||
struct CV_GpuMinMaxLocTest: public CvTest
|
||||
{
|
||||
CV_GpuMinMaxLocTest(): CvTest("GPU-MinMaxLocTest", "minMaxLoc") {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
for (int depth = CV_8U; depth <= CV_64F; ++depth)
|
||||
{
|
||||
int rows = 1, cols = 3;
|
||||
test(rows, cols, depth);
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
int rows = 1 + rand() % 1000;
|
||||
int cols = 1 + rand() % 1000;
|
||||
test(rows, cols, depth);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test(int rows, int cols, int depth)
|
||||
{
|
||||
cv::Mat src(rows, cols, depth);
|
||||
cv::RNG rng;
|
||||
for (int i = 0; i < src.rows; ++i)
|
||||
{
|
||||
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i));
|
||||
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||||
}
|
||||
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
|
||||
if (depth != CV_8S)
|
||||
cv::minMaxLoc(src, &minVal, &maxVal, &minLoc, &maxLoc);
|
||||
else
|
||||
{
|
||||
// OpenCV's minMaxLoc doesn't support CV_8S type
|
||||
minVal = std::numeric_limits<double>::max();
|
||||
maxVal = std::numeric_limits<double>::min();
|
||||
for (int i = 0; i < src.rows; ++i)
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
char val = src.at<char>(i, j);
|
||||
if (val < minVal) { minVal = val; minLoc = cv::Point(j, i); }
|
||||
if (val > maxVal) { maxVal = val; maxLoc = cv::Point(j, i); }
|
||||
}
|
||||
}
|
||||
|
||||
double minVal_, maxVal_;
|
||||
cv::Point minLoc_, maxLoc_;
|
||||
cv::gpu::minMaxLoc(cv::gpu::GpuMat(src), &minVal_, &maxVal_, &minLoc_, &maxLoc_);
|
||||
|
||||
CHECK(minVal == minVal_, CvTS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(maxVal == maxVal_, CvTS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(0 == memcmp(src.ptr(minLoc.y) + minLoc.x * src.elemSize(), src.ptr(minLoc_.y) + minLoc_.x * src.elemSize(), src.elemSize()),
|
||||
CvTS::FAIL_INVALID_OUTPUT);
|
||||
CHECK(0 == memcmp(src.ptr(maxLoc.y) + maxLoc.x * src.elemSize(), src.ptr(maxLoc_.y) + maxLoc_.x * src.elemSize(), src.elemSize()),
|
||||
CvTS::FAIL_INVALID_OUTPUT);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////// tests registration /////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
@ -760,3 +825,4 @@ CV_GpuNppImagePhaseTest CV_GpuNppImagePhase_test;
|
||||
CV_GpuNppImageCartToPolarTest CV_GpuNppImageCartToPolar_test;
|
||||
CV_GpuNppImagePolarToCartTest CV_GpuNppImagePolarToCart_test;
|
||||
CV_GpuMinMaxTest CV_GpuMinMaxTest_test;
|
||||
CV_GpuMinMaxLocTest CV_GpuMinMaxLocTest_test;
|
||||
|
Loading…
Reference in New Issue
Block a user