mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Merge pull request #24773 from tailsu:sd/pathlike
python: accept path-like objects wherever file names are expected #24773 Merry Christmas, all 🎄 Implements #15731 Support is enabled for all arguments named `filename` or `filepath` (case-insensitive), or annotated with `CV_WRAP_FILE_PATH`. Support is based on `PyOS_FSPath`, which is available in Python 3.6+. When running on older Python versions the arguments must have a `str` value as before. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
a7fa1e6f4b
commit
2791bb7062
@ -475,6 +475,8 @@ Cv64suf;
|
||||
#define CV_WRAP_MAPPABLE(mappable)
|
||||
#define CV_WRAP_PHANTOM(phantom_header)
|
||||
#define CV_WRAP_DEFAULT(val)
|
||||
/* Indicates that the function parameter has filesystem path semantic */
|
||||
#define CV_WRAP_FILE_PATH
|
||||
|
||||
/****************************************************************************************\
|
||||
* Matrix type (Mat) *
|
||||
|
@ -484,7 +484,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
|
||||
* backend.
|
||||
*/
|
||||
CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);
|
||||
CV_WRAP static Net readFromModelOptimizer(CV_WRAP_FILE_PATH const String& xml, CV_WRAP_FILE_PATH const String& bin);
|
||||
|
||||
/** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
|
||||
* @param[in] bufferModelConfig buffer with model's configuration.
|
||||
@ -517,7 +517,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param path path to output file with .dot extension
|
||||
* @see dump()
|
||||
*/
|
||||
CV_WRAP void dumpToFile(const String& path);
|
||||
CV_WRAP void dumpToFile(CV_WRAP_FILE_PATH const String& path);
|
||||
/** @brief Adds new layer to the net.
|
||||
* @param name unique name of the adding layer.
|
||||
* @param type typename of the adding layer (type must be registered in LayerRegister).
|
||||
@ -890,7 +890,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param darknetModel path to the .weights file with learned network.
|
||||
* @returns Network object that ready to do forward, throw an exception in failure cases.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
|
||||
CV_EXPORTS_W Net readNetFromDarknet(CV_WRAP_FILE_PATH const String &cfgFile, CV_WRAP_FILE_PATH const String &darknetModel = String());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
|
||||
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
|
||||
@ -915,7 +915,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param caffeModel path to the .caffemodel file with learned network.
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
|
||||
CV_EXPORTS_W Net readNetFromCaffe(CV_WRAP_FILE_PATH const String &prototxt, CV_WRAP_FILE_PATH const String &caffeModel = String());
|
||||
|
||||
/** @brief Reads a network model stored in Caffe model in memory.
|
||||
* @param bufferProto buffer containing the content of the .prototxt file
|
||||
@ -944,7 +944,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* let us make it more flexible.
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
|
||||
CV_EXPORTS_W Net readNetFromTensorflow(CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config = String());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
|
||||
* @param bufferModel buffer containing the content of the pb file
|
||||
@ -969,7 +969,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param model path to the .tflite file with binary flatbuffers description of the network architecture
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTFLite(const String &model);
|
||||
CV_EXPORTS_W Net readNetFromTFLite(CV_WRAP_FILE_PATH const String &model);
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
|
||||
* @param bufferModel buffer containing the content of the tflite file
|
||||
@ -1011,7 +1011,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
*
|
||||
* Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true);
|
||||
CV_EXPORTS_W Net readNetFromTorch(CV_WRAP_FILE_PATH const String &model, bool isBinary = true, bool evaluate = true);
|
||||
|
||||
/**
|
||||
* @brief Read deep learning network represented in one of the supported formats.
|
||||
@ -1037,7 +1037,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
|
||||
* arguments does not matter.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
|
||||
CV_EXPORTS_W Net readNet(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "", const String& framework = "");
|
||||
|
||||
/**
|
||||
* @brief Read deep learning network represented in one of the supported formats.
|
||||
@ -1064,7 +1064,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* backend.
|
||||
*/
|
||||
CV_EXPORTS_W
|
||||
Net readNetFromModelOptimizer(const String &xml, const String &bin = "");
|
||||
Net readNetFromModelOptimizer(CV_WRAP_FILE_PATH const String &xml, CV_WRAP_FILE_PATH const String &bin = "");
|
||||
|
||||
/** @brief Load a network from Intel's Model Optimizer intermediate representation.
|
||||
* @param[in] bufferModelConfig Buffer contains XML configuration with network's topology.
|
||||
@ -1093,7 +1093,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param onnxFile path to the .onnx file with text description of the network architecture.
|
||||
* @returns Network object that ready to do forward, throw an exception in failure cases.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);
|
||||
CV_EXPORTS_W Net readNetFromONNX(CV_WRAP_FILE_PATH const String &onnxFile);
|
||||
|
||||
/** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
|
||||
* in-memory buffer.
|
||||
@ -1116,7 +1116,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param path to the .pb file with input tensor.
|
||||
* @returns Mat.
|
||||
*/
|
||||
CV_EXPORTS_W Mat readTensorFromONNX(const String& path);
|
||||
CV_EXPORTS_W Mat readTensorFromONNX(CV_WRAP_FILE_PATH const String& path);
|
||||
|
||||
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
|
||||
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
|
||||
@ -1289,7 +1289,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
|
||||
* So the resulting model may be used there.
|
||||
*/
|
||||
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
|
||||
CV_EXPORTS_W void shrinkCaffeModel(CV_WRAP_FILE_PATH const String& src, CV_WRAP_FILE_PATH const String& dst,
|
||||
const std::vector<String>& layersTypes = std::vector<String>());
|
||||
|
||||
/** @brief Create a text representation for a binary network stored in protocol buffer format.
|
||||
@ -1298,7 +1298,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
*
|
||||
* @note To reduce output file size, trained weights are not included.
|
||||
*/
|
||||
CV_EXPORTS_W void writeTextGraph(const String& model, const String& output);
|
||||
CV_EXPORTS_W void writeTextGraph(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& output);
|
||||
|
||||
/** @brief Performs non maximum suppression given boxes and corresponding scores.
|
||||
|
||||
@ -1403,7 +1403,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param[in] model Binary file contains trained weights.
|
||||
* @param[in] config Text file contains network configuration.
|
||||
*/
|
||||
CV_WRAP Model(const String& model, const String& config = "");
|
||||
CV_WRAP Model(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
|
||||
|
||||
/**
|
||||
* @brief Create model from deep learning network.
|
||||
@ -1508,7 +1508,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param[in] model Binary file contains trained weights.
|
||||
* @param[in] config Text file contains network configuration.
|
||||
*/
|
||||
CV_WRAP ClassificationModel(const String& model, const String& config = "");
|
||||
CV_WRAP ClassificationModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
|
||||
|
||||
/**
|
||||
* @brief Create model from deep learning network.
|
||||
@ -1558,7 +1558,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param[in] model Binary file contains trained weights.
|
||||
* @param[in] config Text file contains network configuration.
|
||||
*/
|
||||
CV_WRAP KeypointsModel(const String& model, const String& config = "");
|
||||
CV_WRAP KeypointsModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
|
||||
|
||||
/**
|
||||
* @brief Create model from deep learning network.
|
||||
@ -1590,7 +1590,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param[in] model Binary file contains trained weights.
|
||||
* @param[in] config Text file contains network configuration.
|
||||
*/
|
||||
CV_WRAP SegmentationModel(const String& model, const String& config = "");
|
||||
CV_WRAP SegmentationModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
|
||||
|
||||
/**
|
||||
* @brief Create model from deep learning network.
|
||||
@ -1621,7 +1621,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param[in] model Binary file contains trained weights.
|
||||
* @param[in] config Text file contains network configuration.
|
||||
*/
|
||||
CV_WRAP DetectionModel(const String& model, const String& config = "");
|
||||
CV_WRAP DetectionModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
|
||||
|
||||
/**
|
||||
* @brief Create model from deep learning network.
|
||||
@ -1687,7 +1687,7 @@ public:
|
||||
* @param[in] config Text file contains network configuration
|
||||
*/
|
||||
CV_WRAP inline
|
||||
TextRecognitionModel(const std::string& model, const std::string& config = "")
|
||||
TextRecognitionModel(CV_WRAP_FILE_PATH const std::string& model, CV_WRAP_FILE_PATH const std::string& config = "")
|
||||
: TextRecognitionModel(readNet(model, config)) { /* nothing */ }
|
||||
|
||||
/**
|
||||
@ -1842,7 +1842,7 @@ public:
|
||||
* @param[in] config Text file contains network configuration.
|
||||
*/
|
||||
CV_WRAP inline
|
||||
TextDetectionModel_EAST(const std::string& model, const std::string& config = "")
|
||||
TextDetectionModel_EAST(CV_WRAP_FILE_PATH const std::string& model, CV_WRAP_FILE_PATH const std::string& config = "")
|
||||
: TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ }
|
||||
|
||||
/**
|
||||
@ -1903,7 +1903,7 @@ public:
|
||||
* @param[in] config Text file contains network configuration.
|
||||
*/
|
||||
CV_WRAP inline
|
||||
TextDetectionModel_DB(const std::string& model, const std::string& config = "")
|
||||
TextDetectionModel_DB(CV_WRAP_FILE_PATH const std::string& model, CV_WRAP_FILE_PATH const std::string& config = "")
|
||||
: TextDetectionModel_DB(readNet(model, config)) { /* nothing */ }
|
||||
|
||||
CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold);
|
||||
|
@ -27,7 +27,7 @@ public:
|
||||
* @param prototxt_path prototxt file path for the super resolution model
|
||||
* @param model_path model file path for the super resolution model
|
||||
*/
|
||||
CV_WRAP BarcodeDetector(const std::string &prototxt_path, const std::string &model_path);
|
||||
CV_WRAP BarcodeDetector(CV_WRAP_FILE_PATH const std::string &prototxt_path, CV_WRAP_FILE_PATH const std::string &model_path);
|
||||
~BarcodeDetector();
|
||||
|
||||
/** @brief Decodes barcode in image once it's found by the detect() method.
|
||||
|
@ -82,8 +82,8 @@ public:
|
||||
* @param backend_id the id of backend
|
||||
* @param target_id the id of target device
|
||||
*/
|
||||
CV_WRAP static Ptr<FaceDetectorYN> create(const String& model,
|
||||
const String& config,
|
||||
CV_WRAP static Ptr<FaceDetectorYN> create(CV_WRAP_FILE_PATH const String& model,
|
||||
CV_WRAP_FILE_PATH const String& config,
|
||||
const Size& input_size,
|
||||
float score_threshold = 0.9f,
|
||||
float nms_threshold = 0.3f,
|
||||
@ -154,7 +154,7 @@ public:
|
||||
* @param backend_id the id of backend
|
||||
* @param target_id the id of target device
|
||||
*/
|
||||
CV_WRAP static Ptr<FaceRecognizerSF> create(const String& model, const String& config, int backend_id = 0, int target_id = 0);
|
||||
CV_WRAP static Ptr<FaceRecognizerSF> create(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config, int backend_id = 0, int target_id = 0);
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
@ -45,17 +45,20 @@ class ArgInfo
|
||||
private:
|
||||
static const uint32_t arg_outputarg_flag = 0x1;
|
||||
static const uint32_t arg_arithm_op_src_flag = 0x2;
|
||||
static const uint32_t arg_pathlike_flag = 0x4;
|
||||
|
||||
public:
|
||||
const char* name;
|
||||
bool outputarg;
|
||||
bool arithm_op_src;
|
||||
bool pathlike;
|
||||
// more fields may be added if necessary
|
||||
|
||||
ArgInfo(const char* name_, uint32_t arg_) :
|
||||
name(name_),
|
||||
outputarg((arg_ & arg_outputarg_flag) != 0),
|
||||
arithm_op_src((arg_ & arg_arithm_op_src_flag) != 0) {}
|
||||
arithm_op_src((arg_ & arg_arithm_op_src_flag) != 0),
|
||||
pathlike((arg_ & arg_pathlike_flag) != 0) {}
|
||||
|
||||
private:
|
||||
ArgInfo(const ArgInfo&) = delete;
|
||||
|
@ -701,6 +701,18 @@ bool pyopencv_to(PyObject* obj, String &value, const ArgInfo& info)
|
||||
return true;
|
||||
}
|
||||
std::string str;
|
||||
|
||||
#if ((PY_VERSION_HEX >= 0x03060000) && !defined(Py_LIMITED_API)) || (Py_LIMITED_API >= 0x03060000)
|
||||
if (info.pathlike)
|
||||
{
|
||||
obj = PyOS_FSPath(obj);
|
||||
if (PyErr_Occurred())
|
||||
{
|
||||
failmsg("Expected '%s' to be a str or path-like object", info.name);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (getUnicodeString(obj, str))
|
||||
{
|
||||
value = str;
|
||||
|
@ -500,6 +500,10 @@ class ArgInfo(object):
|
||||
def outputarg(self):
|
||||
return '/O' in self._modifiers or '/IO' in self._modifiers
|
||||
|
||||
@property
|
||||
def pathlike(self):
|
||||
return '/PATH' in self._modifiers
|
||||
|
||||
@property
|
||||
def returnarg(self):
|
||||
return self.outputarg
|
||||
@ -523,6 +527,7 @@ class ArgInfo(object):
|
||||
def crepr(self):
|
||||
arg = 0x01 if self.outputarg else 0x0
|
||||
arg += 0x02 if self.arithm_op_src_arg else 0x0
|
||||
arg += 0x04 if self.pathlike else 0x0
|
||||
return "ArgInfo(\"%s\", %d)" % (self.name, arg)
|
||||
|
||||
|
||||
|
@ -90,6 +90,10 @@ class CppHeaderParser(object):
|
||||
modlist.append("/IO")
|
||||
arg_str = arg_str.replace("CV_IN_OUT", "")
|
||||
|
||||
if "CV_WRAP_FILE_PATH" in arg_str:
|
||||
modlist.append("/PATH")
|
||||
arg_str = arg_str.replace("CV_WRAP_FILE_PATH", "")
|
||||
|
||||
isarray = False
|
||||
npos = arg_str.find("CV_CARRAY")
|
||||
if npos >= 0:
|
||||
@ -627,6 +631,8 @@ class CppHeaderParser(object):
|
||||
("noArray", arg_type)]).strip()
|
||||
if '/IO' in modlist and '/O' in modlist:
|
||||
modlist.remove('/O')
|
||||
if (arg_name.lower() == 'filename' or arg_name.lower() == 'filepath') and '/PATH' not in modlist:
|
||||
modlist.append('/PATH')
|
||||
args.append([arg_type, arg_name, defval, modlist])
|
||||
npos = arg_start-1
|
||||
|
||||
|
38
modules/python/test/test_pathlike.py
Normal file
38
modules/python/test/test_pathlike.py
Normal file
@ -0,0 +1,38 @@
|
||||
from tests_common import NewOpenCVTests, unittest
|
||||
import cv2 as cv
|
||||
import os
|
||||
|
||||
|
||||
def import_path():
|
||||
import sys
|
||||
if sys.version_info[0] < 3 or sys.version_info[1] < 6:
|
||||
raise unittest.SkipTest('Python 3.6+ required')
|
||||
|
||||
from pathlib import Path
|
||||
return Path
|
||||
|
||||
|
||||
class CanPassPathLike(NewOpenCVTests):
|
||||
def test_pathlib_path(self):
|
||||
Path = import_path()
|
||||
|
||||
img_path = self.find_file('cv/imgproc/stuff.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
|
||||
image_from_str = cv.imread(img_path)
|
||||
self.assertIsNotNone(image_from_str)
|
||||
|
||||
image_from_path = cv.imread(Path(img_path))
|
||||
self.assertIsNotNone(image_from_path)
|
||||
|
||||
|
||||
def test_type_mismatch(self):
|
||||
import_path() # checks python version
|
||||
|
||||
with self.assertRaises(TypeError) as context:
|
||||
cv.imread(123)
|
||||
|
||||
self.assertTrue('str or path-like' in str(context.exception))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
Loading…
Reference in New Issue
Block a user