parallel version of bilateral filter was implemented using parallel_for_

This commit is contained in:
Ilya Lavrenov 2012-08-02 16:25:30 +04:00
parent 8d73bbb8b7
commit 27c2aa3a4e
7 changed files with 706 additions and 98 deletions

View File

@ -0,0 +1,108 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PARALLEL_TOOL_HPP__
#define __OPENCV_PARALLEL_TOOL_HPP__
#ifdef HAVE_CVCONFIG_H
# include <cvconfig.h>
#endif // HAVE_CVCONFIG_H
/*
HAVE_TBB - using TBB
HAVE_GCD - using GCD
HAVE_OPENMP - using OpenMP
HAVE_CONCURRENCY - using visual studio 2010 concurrency
*/
#ifdef HAVE_TBB
# include "tbb/tbb_stddef.h"
# if TBB_VERSION_MAJOR*100 + TBB_VERSION_MINOR >= 202
# include "tbb/tbb.h"
# include "tbb/task.h"
# undef min
# undef max
# else
# undef HAVE_TBB
# endif // end TBB version
#endif // HAVE_TBB
#ifdef __cplusplus
namespace cv
{
// a base body class
class CV_EXPORTS ParallelLoopBody
{
public:
virtual void operator() (const Range& range) const = 0;
virtual ~ParallelLoopBody();
};
CV_EXPORTS void parallel_for_(const Range& range, const ParallelLoopBody& body);
template <typename Iterator, typename Body> inline
CV_EXPORTS void parallel_do_(Iterator first, Iterator last, const Body& body)
{
#ifdef HAVE_TBB
tbb::parallel_do(first, last, body);
#else
for ( ; first != last; ++first)
body(*first);
#endif // HAVE_TBB
}
template <typename Body> inline
CV_EXPORTS void parallel_reduce_(const Range& range, Body& body)
{
#ifdef HAVE_TBB
tbb::parallel_reduce(tbb::blocked_range<int>(range.start, range.end), body);
#else
body(range);
#endif // end HAVE_TBB
}
} // namespace cv
#endif // __cplusplus
#endif // __OPENCV_PARALLEL_TOOL_HPP__

View File

@ -0,0 +1,112 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CONCURRENCY
# include <ppl.h>
#elif defined HAVE_OPENMP
# include <omp.h>
#elif defined HAVE_GCD
# include <dispatch/dispatch.h>
#endif // HAVE_CONCURRENCY
namespace cv
{
ParallelLoopBody::~ParallelLoopBody() { }
#ifdef HAVE_TBB
class TbbProxyLoopBody
{
public:
TbbProxyLoopBody(const ParallelLoopBody& _body) :
body(&_body)
{ }
void operator ()(const tbb::blocked_range<int>& range) const
{
body->operator()(Range(range.begin(), range.end()));
}
private:
const ParallelLoopBody* body;
};
#endif // end HAVE_TBB
#ifdef HAVE_GCD
static
void block_function(void* context, size_t index)
{
ParallelLoopBody* ptr_body = static_cast<ParallelLoopBody*>(context);
ptr_body->operator()(Range(index, index + 1));
}
#endif // HAVE_GCD
void parallel_for_(const Range& range, const ParallelLoopBody& body)
{
#ifdef HAVE_TBB
tbb::parallel_for(tbb::blocked_range<int>(range.start, range.end), TbbProxyLoopBody(body));
#elif defined HAVE_CONCURRENCY
Concurrency::parallel_for(range.start, range.end, body);
#elif defined HAVE_OPENMP
#pragma omp parallel for schedule(dynamic)
for (int i = range.start; i < range.end; ++i)
body(Range(i, i + 1));
#elif defined (HAVE_GCD)
dispatch_queue_t concurrent_queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_apply_f(range.end - range.start, concurrent_queue, &const_cast<ParallelLoopBody&>(body), block_function);
#else
body(range);
#endif // end HAVE_TBB
}
} // namespace cv

View File

@ -50,6 +50,7 @@
#include "opencv2/core/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/internal.hpp"
#include "opencv2/core/parallel_tool.hpp"
#include <assert.h>
#include <ctype.h>

View File

@ -0,0 +1,38 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using namespace testing;
using std::tr1::make_tuple;
using std::tr1::get;
CV_ENUM(Mat_Type, CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3)
typedef TestBaseWithParam< tr1::tuple<Size, int, Mat_Type> > TestBilateralFilter;
PERF_TEST_P( TestBilateralFilter, BilateralFilter,
Combine(
Values( szVGA, sz1080p ), // image size
Values( 3, 5 ), // d
ValuesIn( Mat_Type::all() ) // image type
)
)
{
Size sz;
int d, type;
const double sigmaColor = 1., sigmaSpace = 1.;
sz = get<0>(GetParam());
d = get<1>(GetParam());
type = get<2>(GetParam());
Mat src(sz, type);
Mat dst(sz, type);
declare.in(src, WARMUP_RNG).out(dst).time(20);
TEST_CYCLE() bilateralFilter(src, dst, d, sigmaColor, sigmaSpace, BORDER_DEFAULT);
SANITY_CHECK(dst);
}

View File

@ -50,6 +50,7 @@
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/core/internal.hpp"
#include "opencv2/core/parallel_tool.hpp"
#include <math.h>
#include <assert.h>
#include <string.h>

View File

@ -1288,48 +1288,119 @@ void cv::medianBlur( InputArray _src0, OutputArray _dst, int ksize )
namespace cv
{
class BilateralFilter_8u_Invoker :
public ParallelLoopBody
{
public:
BilateralFilter_8u_Invoker(const Mat &_src, Mat& _dst, Mat _temp, int _radius, int _maxk,
int* _space_ofs, float *_space_weight, float *_color_weight) :
ParallelLoopBody(), src(_src), dst(_dst), temp(_temp), radius(_radius),
maxk(_maxk), space_ofs(_space_ofs), space_weight(_space_weight), color_weight(_color_weight)
{
}
virtual void operator() (const Range& range) const
{
int i, j, cn = src.channels(), k;
Size size = src.size();
for( i = range.start; i < range.end; i++ )
{
const uchar* sptr = temp.data + (i+radius)*temp.step + radius*cn;
uchar* dptr = dst.data + i*dst.step;
if( cn == 1 )
{
for( j = 0; j < size.width; j++ )
{
float sum = 0, wsum = 0;
int val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
int val = sptr[j + space_ofs[k]];
float w = space_weight[k]*color_weight[std::abs(val - val0)];
sum += val*w;
wsum += w;
}
// overflow is not possible here => there is no need to use CV_CAST_8U
dptr[j] = (uchar)cvRound(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const uchar* sptr_k = sptr + j + space_ofs[k];
int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float w = space_weight[k]*color_weight[std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0)];
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = cvRound(sum_b*wsum);
g0 = cvRound(sum_g*wsum);
r0 = cvRound(sum_r*wsum);
dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0;
}
}
}
}
private:
const Mat& src;
Mat &dst, temp;
int radius, maxk, * space_ofs;
float *space_weight, *color_weight;
};
static void
bilateralFilter_8u( const Mat& src, Mat& dst, int d,
double sigma_color, double sigma_space,
int borderType )
double sigma_color, double sigma_space,
int borderType )
{
int cn = src.channels();
int i, j, k, maxk, radius;
int i, j, maxk, radius;
Size size = src.size();
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
if( sigma_color <= 0 )
sigma_color = 1;
if( sigma_space <= 0 )
sigma_space = 1;
double gauss_color_coeff = -0.5/(sigma_color*sigma_color);
double gauss_space_coeff = -0.5/(sigma_space*sigma_space);
if( d <= 0 )
radius = cvRound(sigma_space*1.5);
else
radius = d/2;
radius = MAX(radius, 1);
d = radius*2 + 1;
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
vector<float> _color_weight(cn*256);
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
float* color_weight = &_color_weight[0];
float* space_weight = &_space_weight[0];
int* space_ofs = &_space_ofs[0];
// initialize color-related bilateral filter coefficients
for( i = 0; i < 256*cn; i++ )
color_weight[i] = (float)std::exp(i*i*gauss_color_coeff);
// initialize space-related bilateral filter coefficients
for( i = -radius, maxk = 0; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
@ -1340,55 +1411,89 @@ bilateralFilter_8u( const Mat& src, Mat& dst, int d,
space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff);
space_ofs[maxk++] = (int)(i*temp.step + j*cn);
}
BilateralFilter_8u_Invoker body(src, dst, temp, radius, maxk, space_ofs, space_weight, color_weight);
parallel_for_(Range(0, size.height), body);
}
for( i = 0; i < size.height; i++ )
class BilateralFilter_32f_Invoker :
public ParallelLoopBody
{
public:
BilateralFilter_32f_Invoker(int _cn, int _radius, int _maxk, int *_space_ofs,
Mat _temp, Mat *_dest, Size _size,
float _scale_index, float *_space_weight, float *_expLUT) :
ParallelLoopBody(), cn(_cn), radius(_radius), maxk(_maxk), space_ofs(_space_ofs),
temp(_temp), dest(_dest), size(_size), scale_index(_scale_index), space_weight(_space_weight), expLUT(_expLUT)
{
const uchar* sptr = temp.data + (i+radius)*temp.step + radius*cn;
uchar* dptr = dst.data + i*dst.step;
}
if( cn == 1 )
virtual void operator() (const Range& range) const
{
Mat& dst = *dest;
int i, j, k;
for( i = range.start; i < range.end; i++ )
{
for( j = 0; j < size.width; j++ )
const float* sptr = (const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
float* dptr = (float*)(dst.data + i*dst.step);
if( cn == 1 )
{
float sum = 0, wsum = 0;
int val0 = sptr[j];
for( k = 0; k < maxk; k++ )
for( j = 0; j < size.width; j++ )
{
int val = sptr[j + space_ofs[k]];
float w = space_weight[k]*color_weight[std::abs(val - val0)];
sum += val*w;
wsum += w;
float sum = 0, wsum = 0;
float val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
float val = sptr[j + space_ofs[k]];
float alpha = (float)(std::abs(val - val0)*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum += val*w;
wsum += w;
}
dptr[j] = (float)(sum/wsum);
}
// overflow is not possible here => there is no need to use CV_CAST_8U
dptr[j] = (uchar)cvRound(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
else
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
const uchar* sptr_k = sptr + j + space_ofs[k];
int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float w = space_weight[k]*color_weight[std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0)];
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const float* sptr_k = sptr + j + space_ofs[k];
float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float alpha = (float)((std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0))*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = sum_b*wsum;
g0 = sum_g*wsum;
r0 = sum_r*wsum;
dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0;
}
wsum = 1.f/wsum;
b0 = cvRound(sum_b*wsum);
g0 = cvRound(sum_g*wsum);
r0 = cvRound(sum_r*wsum);
dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0;
}
}
}
}
private:
int cn, radius, maxk, *space_ofs;
Mat temp, *dest;
Size size;
float scale_index, *space_weight, *expLUT;
};
static void
bilateralFilter_32f( const Mat& src, Mat& dst, int d,
@ -1396,7 +1501,7 @@ bilateralFilter_32f( const Mat& src, Mat& dst, int d,
int borderType )
{
int cn = src.channels();
int i, j, k, maxk, radius;
int i, j, maxk, radius;
double minValSrc=-1, maxValSrc=1;
const int kExpNumBinsPerChannel = 1 << 12;
int kExpNumBins = 0;
@ -1474,57 +1579,10 @@ bilateralFilter_32f( const Mat& src, Mat& dst, int d,
space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn);
}
for( i = 0; i < size.height; i++ )
{
const float* sptr = (const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
float* dptr = (float*)(dst.data + i*dst.step);
// parallel_for usage
if( cn == 1 )
{
for( j = 0; j < size.width; j++ )
{
float sum = 0, wsum = 0;
float val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
float val = sptr[j + space_ofs[k]];
float alpha = (float)(std::abs(val - val0)*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum += val*w;
wsum += w;
}
dptr[j] = (float)(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const float* sptr_k = sptr + j + space_ofs[k];
float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float alpha = (float)((std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0))*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = sum_b*wsum;
g0 = sum_g*wsum;
r0 = sum_r*wsum;
dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0;
}
}
}
BilateralFilter_32f_Invoker body(cn, radius, maxk, space_ofs, temp, &dst, size, scale_index, space_weight, expLUT);
parallel_for_(Range(0, size.height), body);
}
}

View File

@ -0,0 +1,290 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
namespace cvtest
{
class CV_BilateralFilterTest :
public cvtest::BaseTest
{
public:
enum
{
MAX_WIDTH = 1920, MIN_WIDTH = 1,
MAX_HEIGHT = 1080, MIN_HEIGHT = 1
};
CV_BilateralFilterTest();
~CV_BilateralFilterTest();
protected:
virtual void run_func();
virtual int prepare_test_case(int test_case_index);
virtual int validate_test_results(int test_case_index);
private:
void reference_bilateral_filter(const Mat& src, Mat& dst, int d, double sigma_color,
double sigma_space, int borderType = BORDER_DEFAULT);
int getRandInt(RNG& rng, int min_value, int max_value) const;
double _sigma_color;
double _sigma_space;
Mat _src;
Mat _parallel_dst;
int _d;
};
CV_BilateralFilterTest::CV_BilateralFilterTest() :
cvtest::BaseTest(), _src(), _parallel_dst(), _d()
{
test_case_count = 1000;
}
CV_BilateralFilterTest::~CV_BilateralFilterTest()
{
}
int CV_BilateralFilterTest::getRandInt(RNG& rng, int min_value, int max_value) const
{
double rand_value = rng.uniform(log(min_value), log(max_value + 1));
return cvRound(exp(rand_value));
}
void CV_BilateralFilterTest::reference_bilateral_filter(const Mat &src, Mat &dst, int d,
double sigma_color, double sigma_space, int borderType)
{
int cn = src.channels();
int i, j, k, maxk, radius;
double minValSrc = -1, maxValSrc = 1;
const int kExpNumBinsPerChannel = 1 << 12;
int kExpNumBins = 0;
float lastExpVal = 1.f;
float len, scale_index;
Size size = src.size();
dst.create(size, src.type());
CV_Assert( (src.type() == CV_32FC1 || src.type() == CV_32FC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
if( sigma_color <= 0 )
sigma_color = 1;
if( sigma_space <= 0 )
sigma_space = 1;
double gauss_color_coeff = -0.5/(sigma_color*sigma_color);
double gauss_space_coeff = -0.5/(sigma_space*sigma_space);
if( d <= 0 )
radius = cvRound(sigma_space*1.5);
else
radius = d/2;
radius = MAX(radius, 1);
d = radius*2 + 1;
// compute the min/max range for the input image (even if multichannel)
minMaxLoc( src.reshape(1), &minValSrc, &maxValSrc );
if(std::abs(minValSrc - maxValSrc) < FLT_EPSILON)
{
src.copyTo(dst);
return;
}
// temporary copy of the image with borders for easy processing
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
patchNaNs(temp);
// allocate lookup tables
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
float* space_weight = &_space_weight[0];
int* space_ofs = &_space_ofs[0];
// assign a length which is slightly more than needed
len = (float)(maxValSrc - minValSrc) * cn;
kExpNumBins = kExpNumBinsPerChannel * cn;
vector<float> _expLUT(kExpNumBins+2);
float* expLUT = &_expLUT[0];
scale_index = kExpNumBins/len;
// initialize the exp LUT
for( i = 0; i < kExpNumBins+2; i++ )
{
if( lastExpVal > 0.f )
{
double val = i / scale_index;
expLUT[i] = (float)std::exp(val * val * gauss_color_coeff);
lastExpVal = expLUT[i];
}
else
expLUT[i] = 0.f;
}
// initialize space-related bilateral filter coefficients
for( i = -radius, maxk = 0; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
double r = std::sqrt((double)i*i + (double)j*j);
if( r > radius )
continue;
space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff);
space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn);
}
for( i = 0; i < size.height; i++ )
{
const float* sptr = (const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
float* dptr = (float*)(dst.data + i*dst.step);
if( cn == 1 )
{
for( j = 0; j < size.width; j++ )
{
float sum = 0, wsum = 0;
float val0 = sptr[j];
for( k = 0; k < maxk; k++ )
{
float val = sptr[j + space_ofs[k]];
float alpha = (float)(std::abs(val - val0)*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum += val*w;
wsum += w;
}
dptr[j] = (float)(sum/wsum);
}
}
else
{
assert( cn == 3 );
for( j = 0; j < size.width*3; j += 3 )
{
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
for( k = 0; k < maxk; k++ )
{
const float* sptr_k = sptr + j + space_ofs[k];
float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
float alpha = (float)((std::abs(b - b0) +
std::abs(g - g0) + std::abs(r - r0))*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum = 1.f/wsum;
b0 = sum_b*wsum;
g0 = sum_g*wsum;
r0 = sum_r*wsum;
dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0;
}
}
}
}
int CV_BilateralFilterTest::prepare_test_case(int /* test_case_index */)
{
const static int types[] = { CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3 };
RNG& rng = ts->get_rng();
Size size(getRandInt(rng, MIN_WIDTH, MAX_WIDTH), getRandInt(rng, MIN_HEIGHT, MAX_HEIGHT));
int type = types[rng(sizeof(types) / sizeof(types[0]))];
_d = rng.uniform(0., 1.) > 0.5 ? 5 : 3;
_src.create(size, type);
rng.fill(_src, RNG::UNIFORM, 0, 256);
_sigma_color = _sigma_space = 1.;
return 1;
}
int CV_BilateralFilterTest::validate_test_results(int test_case_index)
{
static const double eps = 1;
Mat reference_dst, reference_src;
if (_src.depth() == CV_32F)
reference_bilateral_filter(_src, reference_dst, _d, _sigma_color, _sigma_space);
else
{
int type = _src.type();
_src.convertTo(reference_src, CV_32F);
reference_bilateral_filter(reference_src, reference_dst, _d, _sigma_color, _sigma_space);
reference_dst.convertTo(reference_dst, type);
}
double e = norm(reference_dst, _parallel_dst);
if (e > eps)
{
ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
else
ts->set_failed_test_info(cvtest::TS::OK);
return BaseTest::validate_test_results(test_case_index);
}
void CV_BilateralFilterTest::run_func()
{
bilateralFilter(_src, _parallel_dst, _d, _sigma_color, _sigma_space);
}
TEST(Imgproc_BilateralFilter, accuracy)
{
CV_BilateralFilterTest test;
test.safe_run();
}
} // end of namespace cvtest