mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Merge pull request #10661 from alalek:parallel_kmeans
This commit is contained in:
commit
27cddfb8e9
@ -3,14 +3,11 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace perf;
|
||||
using std::tr1::make_tuple;
|
||||
using std::tr1::get;
|
||||
|
||||
namespace {
|
||||
|
||||
typedef perf::TestBaseWithParam<size_t> VectorLength;
|
||||
|
||||
typedef std::tr1::tuple<int, int> MaxDim_MaxPoints_t;
|
||||
typedef perf::TestBaseWithParam<MaxDim_MaxPoints_t> MaxDim_MaxPoints;
|
||||
|
||||
PERF_TEST_P(VectorLength, phase32f, testing::Values(128, 1000, 128*1024, 512*1024, 1024*1024))
|
||||
{
|
||||
size_t length = GetParam();
|
||||
@ -39,47 +36,125 @@ PERF_TEST_P(VectorLength, phase64f, testing::Values(128, 1000, 128*1024, 512*102
|
||||
SANITY_CHECK(angle, 5e-5);
|
||||
}
|
||||
|
||||
PERF_TEST_P( MaxDim_MaxPoints, kmeans,
|
||||
testing::Combine( testing::Values( 16, 32, 64 ),
|
||||
testing::Values( 300, 400, 500) ) )
|
||||
typedef perf::TestBaseWithParam< testing::tuple<int, int, int> > KMeans;
|
||||
|
||||
PERF_TEST_P_(KMeans, single_iter)
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int MAX_DIM = get<0>(GetParam());
|
||||
const int MAX_POINTS = get<1>(GetParam());
|
||||
const int K = testing::get<0>(GetParam());
|
||||
const int dims = testing::get<1>(GetParam());
|
||||
const int N = testing::get<2>(GetParam());
|
||||
const int attempts = 5;
|
||||
|
||||
Mat labels, centers;
|
||||
int i, N = 0, N0 = 0, K = 0, dims = 0;
|
||||
dims = rng.uniform(1, MAX_DIM+1);
|
||||
N = rng.uniform(1, MAX_POINTS+1);
|
||||
N0 = rng.uniform(1, MAX(N/10, 2));
|
||||
K = rng.uniform(1, N+1);
|
||||
Mat data(N, dims, CV_32F);
|
||||
rng.fill(data, RNG::UNIFORM, -0.1, 0.1);
|
||||
|
||||
const int N0 = K;
|
||||
Mat data0(N0, dims, CV_32F);
|
||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||
|
||||
Mat data(N, dims, CV_32F);
|
||||
for( i = 0; i < N; i++ )
|
||||
data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
int base = rng.uniform(0, N0);
|
||||
cv::add(data0.row(base), data.row(i), data.row(i));
|
||||
}
|
||||
|
||||
declare.in(data);
|
||||
|
||||
Mat labels, centers;
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1, 0),
|
||||
attempts, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P_(KMeans, good)
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int K = testing::get<0>(GetParam());
|
||||
const int dims = testing::get<1>(GetParam());
|
||||
const int N = testing::get<2>(GetParam());
|
||||
const int attempts = 5;
|
||||
|
||||
Mat data(N, dims, CV_32F);
|
||||
rng.fill(data, RNG::UNIFORM, -0.1, 0.1);
|
||||
|
||||
const int N0 = K;
|
||||
Mat data0(N0, dims, CV_32F);
|
||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
int base = rng.uniform(0, N0);
|
||||
cv::add(data0.row(base), data.row(i), data.row(i));
|
||||
}
|
||||
|
||||
declare.in(data);
|
||||
|
||||
Mat labels, centers;
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||
attempts, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
|
||||
Mat clusterPointsNumber = Mat::zeros(1, K, CV_32S);
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
for( i = 0; i < labels.rows; i++ )
|
||||
PERF_TEST_P_(KMeans, with_duplicates)
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int K = testing::get<0>(GetParam());
|
||||
const int dims = testing::get<1>(GetParam());
|
||||
const int N = testing::get<2>(GetParam());
|
||||
const int attempts = 5;
|
||||
|
||||
Mat data(N, dims, CV_32F, Scalar::all(0));
|
||||
|
||||
const int N0 = std::max(2, K * 2 / 3);
|
||||
Mat data0(N0, dims, CV_32F);
|
||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
int clusterIdx = labels.at<int>(i);
|
||||
clusterPointsNumber.at<int>(clusterIdx)++;
|
||||
int base = rng.uniform(0, N0);
|
||||
data0.row(base).copyTo(data.row(i));
|
||||
}
|
||||
|
||||
Mat sortedClusterPointsNumber;
|
||||
cv::sort(clusterPointsNumber, sortedClusterPointsNumber, cv::SORT_EVERY_ROW + cv::SORT_ASCENDING);
|
||||
declare.in(data);
|
||||
|
||||
Mat labels, centers;
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||
attempts, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/ , KMeans,
|
||||
testing::Values(
|
||||
// K clusters, dims, N points
|
||||
testing::make_tuple(2, 3, 100000),
|
||||
testing::make_tuple(4, 3, 500),
|
||||
testing::make_tuple(4, 3, 1000),
|
||||
testing::make_tuple(4, 3, 10000),
|
||||
testing::make_tuple(8, 3, 1000),
|
||||
testing::make_tuple(8, 16, 1000),
|
||||
testing::make_tuple(8, 64, 1000),
|
||||
testing::make_tuple(16, 16, 1000),
|
||||
testing::make_tuple(16, 32, 1000),
|
||||
testing::make_tuple(32, 16, 1000),
|
||||
testing::make_tuple(32, 32, 1000),
|
||||
testing::make_tuple(100, 2, 1000)
|
||||
)
|
||||
);
|
||||
|
||||
SANITY_CHECK(sortedClusterPointsNumber);
|
||||
}
|
||||
|
@ -10,7 +10,7 @@
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2000-2018, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
@ -42,105 +42,100 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <opencv2/core/utils/configuration.private.hpp>
|
||||
|
||||
////////////////////////////////////////// kmeans ////////////////////////////////////////////
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
static void generateRandomCenter(const std::vector<Vec2f>& box, float* center, RNG& rng)
|
||||
static int CV_KMEANS_PARALLEL_GRANULARITY = (int)utils::getConfigurationParameterSizeT("OPENCV_KMEANS_PARALLEL_GRANULARITY", 1000);
|
||||
|
||||
static void generateRandomCenter(int dims, const Vec2f* box, float* center, RNG& rng)
|
||||
{
|
||||
size_t j, dims = box.size();
|
||||
float margin = 1.f/dims;
|
||||
for( j = 0; j < dims; j++ )
|
||||
for (int j = 0; j < dims; j++)
|
||||
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0];
|
||||
}
|
||||
|
||||
class KMeansPPDistanceComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
KMeansPPDistanceComputer( float *_tdist2,
|
||||
const float *_data,
|
||||
const float *_dist,
|
||||
int _dims,
|
||||
size_t _step,
|
||||
size_t _stepci )
|
||||
: tdist2(_tdist2),
|
||||
data(_data),
|
||||
dist(_dist),
|
||||
dims(_dims),
|
||||
step(_step),
|
||||
stepci(_stepci) { }
|
||||
KMeansPPDistanceComputer(float *tdist2_, const Mat& data_, const float *dist_, int ci_) :
|
||||
tdist2(tdist2_), data(data_), dist(dist_), ci(ci_)
|
||||
{ }
|
||||
|
||||
void operator()( const cv::Range& range ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
const int dims = data.cols;
|
||||
|
||||
for ( int i = begin; i<end; i++ )
|
||||
for (int i = begin; i<end; i++)
|
||||
{
|
||||
tdist2[i] = std::min(normL2Sqr(data + step*i, data + stepci, dims), dist[i]);
|
||||
tdist2[i] = std::min(normL2Sqr(data.ptr<float>(i), data.ptr<float>(ci), dims), dist[i]);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC
|
||||
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // = delete
|
||||
|
||||
float *tdist2;
|
||||
const float *data;
|
||||
const Mat& data;
|
||||
const float *dist;
|
||||
const int dims;
|
||||
const size_t step;
|
||||
const size_t stepci;
|
||||
const int ci;
|
||||
};
|
||||
|
||||
/*
|
||||
k-means center initialization using the following algorithm:
|
||||
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding
|
||||
*/
|
||||
static void generateCentersPP(const Mat& _data, Mat& _out_centers,
|
||||
static void generateCentersPP(const Mat& data, Mat& _out_centers,
|
||||
int K, RNG& rng, int trials)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
int i, j, k, dims = _data.cols, N = _data.rows;
|
||||
const float* data = _data.ptr<float>(0);
|
||||
size_t step = _data.step/sizeof(data[0]);
|
||||
std::vector<int> _centers(K);
|
||||
const int dims = data.cols, N = data.rows;
|
||||
cv::AutoBuffer<int, 64> _centers(K);
|
||||
int* centers = &_centers[0];
|
||||
std::vector<float> _dist(N*3);
|
||||
cv::AutoBuffer<float, 0> _dist(N*3);
|
||||
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N;
|
||||
double sum0 = 0;
|
||||
|
||||
centers[0] = (unsigned)rng % N;
|
||||
|
||||
for( i = 0; i < N; i++ )
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
dist[i] = normL2Sqr(data + step*i, data + step*centers[0], dims);
|
||||
dist[i] = normL2Sqr(data.ptr<float>(i), data.ptr<float>(centers[0]), dims);
|
||||
sum0 += dist[i];
|
||||
}
|
||||
|
||||
for( k = 1; k < K; k++ )
|
||||
for (int k = 1; k < K; k++)
|
||||
{
|
||||
double bestSum = DBL_MAX;
|
||||
int bestCenter = -1;
|
||||
|
||||
for( j = 0; j < trials; j++ )
|
||||
for (int j = 0; j < trials; j++)
|
||||
{
|
||||
double p = (double)rng*sum0, s = 0;
|
||||
for( i = 0; i < N-1; i++ )
|
||||
if( (p -= dist[i]) <= 0 )
|
||||
double p = (double)rng*sum0;
|
||||
int ci = 0;
|
||||
for (; ci < N - 1; ci++)
|
||||
{
|
||||
p -= dist[ci];
|
||||
if (p <= 0)
|
||||
break;
|
||||
int ci = i;
|
||||
}
|
||||
|
||||
parallel_for_(Range(0, N),
|
||||
KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci));
|
||||
for( i = 0; i < N; i++ )
|
||||
KMeansPPDistanceComputer(tdist2, data, dist, ci),
|
||||
divUp(dims * N, CV_KMEANS_PARALLEL_GRANULARITY));
|
||||
double s = 0;
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
s += tdist2[i];
|
||||
}
|
||||
|
||||
if( s < bestSum )
|
||||
if (s < bestSum)
|
||||
{
|
||||
bestSum = s;
|
||||
bestCenter = ci;
|
||||
@ -152,39 +147,39 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
|
||||
std::swap(dist, tdist);
|
||||
}
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
for (int k = 0; k < K; k++)
|
||||
{
|
||||
const float* src = data + step*centers[k];
|
||||
const float* src = data.ptr<float>(centers[k]);
|
||||
float* dst = _out_centers.ptr<float>(k);
|
||||
for( j = 0; j < dims; j++ )
|
||||
for (int j = 0; j < dims; j++)
|
||||
dst[j] = src[j];
|
||||
}
|
||||
}
|
||||
|
||||
template<bool onlyDistance>
|
||||
class KMeansDistanceComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
KMeansDistanceComputer( double *_distances,
|
||||
int *_labels,
|
||||
const Mat& _data,
|
||||
const Mat& _centers,
|
||||
bool _onlyDistance = false )
|
||||
: distances(_distances),
|
||||
labels(_labels),
|
||||
data(_data),
|
||||
centers(_centers),
|
||||
onlyDistance(_onlyDistance)
|
||||
KMeansDistanceComputer( double *distances_,
|
||||
int *labels_,
|
||||
const Mat& data_,
|
||||
const Mat& centers_)
|
||||
: distances(distances_),
|
||||
labels(labels_),
|
||||
data(data_),
|
||||
centers(centers_)
|
||||
{
|
||||
}
|
||||
|
||||
void operator()( const Range& range ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
const int K = centers.rows;
|
||||
const int dims = centers.cols;
|
||||
|
||||
for( int i = begin; i<end; ++i)
|
||||
for (int i = begin; i < end; ++i)
|
||||
{
|
||||
const float *sample = data.ptr<float>(i);
|
||||
if (onlyDistance)
|
||||
@ -193,34 +188,36 @@ public:
|
||||
distances[i] = normL2Sqr(sample, center, dims);
|
||||
continue;
|
||||
}
|
||||
int k_best = 0;
|
||||
double min_dist = DBL_MAX;
|
||||
|
||||
for( int k = 0; k < K; k++ )
|
||||
else
|
||||
{
|
||||
const float* center = centers.ptr<float>(k);
|
||||
const double dist = normL2Sqr(sample, center, dims);
|
||||
int k_best = 0;
|
||||
double min_dist = DBL_MAX;
|
||||
|
||||
if( min_dist > dist )
|
||||
for (int k = 0; k < K; k++)
|
||||
{
|
||||
min_dist = dist;
|
||||
k_best = k;
|
||||
}
|
||||
}
|
||||
const float* center = centers.ptr<float>(k);
|
||||
const double dist = normL2Sqr(sample, center, dims);
|
||||
|
||||
distances[i] = min_dist;
|
||||
labels[i] = k_best;
|
||||
if (min_dist > dist)
|
||||
{
|
||||
min_dist = dist;
|
||||
k_best = k;
|
||||
}
|
||||
}
|
||||
|
||||
distances[i] = min_dist;
|
||||
labels[i] = k_best;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // to quiet MSVC
|
||||
KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // = delete
|
||||
|
||||
double *distances;
|
||||
int *labels;
|
||||
const Mat& data;
|
||||
const Mat& centers;
|
||||
bool onlyDistance;
|
||||
};
|
||||
|
||||
}
|
||||
@ -231,13 +228,12 @@ double cv::kmeans( InputArray _data, int K,
|
||||
int flags, OutputArray _centers )
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
const int SPP_TRIALS = 3;
|
||||
Mat data0 = _data.getMat();
|
||||
bool isrow = data0.rows == 1;
|
||||
int N = isrow ? data0.cols : data0.rows;
|
||||
int dims = (isrow ? 1 : data0.cols)*data0.channels();
|
||||
int type = data0.depth();
|
||||
const bool isrow = data0.rows == 1;
|
||||
const int N = isrow ? data0.cols : data0.rows;
|
||||
const int dims = (isrow ? 1 : data0.cols)*data0.channels();
|
||||
const int type = data0.depth();
|
||||
|
||||
attempts = std::max(attempts, 1);
|
||||
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 );
|
||||
@ -248,129 +244,115 @@ double cv::kmeans( InputArray _data, int K,
|
||||
_bestLabels.create(N, 1, CV_32S, -1, true);
|
||||
|
||||
Mat _labels, best_labels = _bestLabels.getMat();
|
||||
if( flags & CV_KMEANS_USE_INITIAL_LABELS )
|
||||
if (flags & CV_KMEANS_USE_INITIAL_LABELS)
|
||||
{
|
||||
CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) &&
|
||||
best_labels.cols*best_labels.rows == N &&
|
||||
best_labels.type() == CV_32S &&
|
||||
best_labels.isContinuous());
|
||||
best_labels.copyTo(_labels);
|
||||
best_labels.reshape(1, N).copyTo(_labels);
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
CV_Assert((unsigned)_labels.at<int>(i) < (unsigned)K);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( !((best_labels.cols == 1 || best_labels.rows == 1) &&
|
||||
if (!((best_labels.cols == 1 || best_labels.rows == 1) &&
|
||||
best_labels.cols*best_labels.rows == N &&
|
||||
best_labels.type() == CV_32S &&
|
||||
best_labels.isContinuous()))
|
||||
best_labels.create(N, 1, CV_32S);
|
||||
best_labels.type() == CV_32S &&
|
||||
best_labels.isContinuous()))
|
||||
{
|
||||
_bestLabels.create(N, 1, CV_32S);
|
||||
best_labels = _bestLabels.getMat();
|
||||
}
|
||||
_labels.create(best_labels.size(), best_labels.type());
|
||||
}
|
||||
int* labels = _labels.ptr<int>();
|
||||
|
||||
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type);
|
||||
std::vector<int> counters(K);
|
||||
std::vector<Vec2f> _box(dims);
|
||||
Mat dists(1, N, CV_64F);
|
||||
Vec2f* box = &_box[0];
|
||||
double best_compactness = DBL_MAX, compactness = 0;
|
||||
cv::AutoBuffer<int, 64> counters(K);
|
||||
cv::AutoBuffer<double, 64> dists(N);
|
||||
RNG& rng = theRNG();
|
||||
int a, iter, i, j, k;
|
||||
|
||||
if( criteria.type & TermCriteria::EPS )
|
||||
if (criteria.type & TermCriteria::EPS)
|
||||
criteria.epsilon = std::max(criteria.epsilon, 0.);
|
||||
else
|
||||
criteria.epsilon = FLT_EPSILON;
|
||||
criteria.epsilon *= criteria.epsilon;
|
||||
|
||||
if( criteria.type & TermCriteria::COUNT )
|
||||
if (criteria.type & TermCriteria::COUNT)
|
||||
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
|
||||
else
|
||||
criteria.maxCount = 100;
|
||||
|
||||
if( K == 1 )
|
||||
if (K == 1)
|
||||
{
|
||||
attempts = 1;
|
||||
criteria.maxCount = 2;
|
||||
}
|
||||
|
||||
const float* sample = data.ptr<float>(0);
|
||||
for( j = 0; j < dims; j++ )
|
||||
box[j] = Vec2f(sample[j], sample[j]);
|
||||
|
||||
for( i = 1; i < N; i++ )
|
||||
cv::AutoBuffer<Vec2f, 64> box(dims);
|
||||
if (!(flags & KMEANS_PP_CENTERS))
|
||||
{
|
||||
sample = data.ptr<float>(i);
|
||||
for( j = 0; j < dims; j++ )
|
||||
{
|
||||
float v = sample[j];
|
||||
box[j][0] = std::min(box[j][0], v);
|
||||
box[j][1] = std::max(box[j][1], v);
|
||||
const float* sample = data.ptr<float>(0);
|
||||
for (int j = 0; j < dims; j++)
|
||||
box[j] = Vec2f(sample[j], sample[j]);
|
||||
}
|
||||
for (int i = 1; i < N; i++)
|
||||
{
|
||||
const float* sample = data.ptr<float>(i);
|
||||
for (int j = 0; j < dims; j++)
|
||||
{
|
||||
float v = sample[j];
|
||||
box[j][0] = std::min(box[j][0], v);
|
||||
box[j][1] = std::max(box[j][1], v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for( a = 0; a < attempts; a++ )
|
||||
double best_compactness = DBL_MAX;
|
||||
for (int a = 0; a < attempts; a++)
|
||||
{
|
||||
double max_center_shift = DBL_MAX;
|
||||
for( iter = 0;; )
|
||||
double compactness = 0;
|
||||
|
||||
for (int iter = 0; ;)
|
||||
{
|
||||
double max_center_shift = iter == 0 ? DBL_MAX : 0.0;
|
||||
|
||||
swap(centers, old_centers);
|
||||
|
||||
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) )
|
||||
if (iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)))
|
||||
{
|
||||
if( flags & KMEANS_PP_CENTERS )
|
||||
if (flags & KMEANS_PP_CENTERS)
|
||||
generateCentersPP(data, centers, K, rng, SPP_TRIALS);
|
||||
else
|
||||
{
|
||||
for( k = 0; k < K; k++ )
|
||||
generateRandomCenter(_box, centers.ptr<float>(k), rng);
|
||||
for (int k = 0; k < K; k++)
|
||||
generateRandomCenter(dims, box, centers.ptr<float>(k), rng);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) )
|
||||
{
|
||||
for( i = 0; i < N; i++ )
|
||||
CV_Assert( (unsigned)labels[i] < (unsigned)K );
|
||||
}
|
||||
|
||||
// compute centers
|
||||
centers = Scalar(0);
|
||||
for( k = 0; k < K; k++ )
|
||||
for (int k = 0; k < K; k++)
|
||||
counters[k] = 0;
|
||||
|
||||
for( i = 0; i < N; i++ )
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
sample = data.ptr<float>(i);
|
||||
k = labels[i];
|
||||
const float* sample = data.ptr<float>(i);
|
||||
int k = labels[i];
|
||||
float* center = centers.ptr<float>(k);
|
||||
j=0;
|
||||
#if CV_ENABLE_UNROLLED
|
||||
for(; j <= dims - 4; j += 4 )
|
||||
{
|
||||
float t0 = center[j] + sample[j];
|
||||
float t1 = center[j+1] + sample[j+1];
|
||||
|
||||
center[j] = t0;
|
||||
center[j+1] = t1;
|
||||
|
||||
t0 = center[j+2] + sample[j+2];
|
||||
t1 = center[j+3] + sample[j+3];
|
||||
|
||||
center[j+2] = t0;
|
||||
center[j+3] = t1;
|
||||
}
|
||||
#endif
|
||||
for( ; j < dims; j++ )
|
||||
for (int j = 0; j < dims; j++)
|
||||
center[j] += sample[j];
|
||||
counters[k]++;
|
||||
}
|
||||
|
||||
if( iter > 0 )
|
||||
max_center_shift = 0;
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
for (int k = 0; k < K; k++)
|
||||
{
|
||||
if( counters[k] != 0 )
|
||||
if (counters[k] != 0)
|
||||
continue;
|
||||
|
||||
// if some cluster appeared to be empty then:
|
||||
@ -378,29 +360,28 @@ double cv::kmeans( InputArray _data, int K,
|
||||
// 2. find the farthest from the center point in the biggest cluster
|
||||
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
|
||||
int max_k = 0;
|
||||
for( int k1 = 1; k1 < K; k1++ )
|
||||
for (int k1 = 1; k1 < K; k1++)
|
||||
{
|
||||
if( counters[max_k] < counters[k1] )
|
||||
if (counters[max_k] < counters[k1])
|
||||
max_k = k1;
|
||||
}
|
||||
|
||||
double max_dist = 0;
|
||||
int farthest_i = -1;
|
||||
float* new_center = centers.ptr<float>(k);
|
||||
float* old_center = centers.ptr<float>(max_k);
|
||||
float* _old_center = temp.ptr<float>(); // normalized
|
||||
float* base_center = centers.ptr<float>(max_k);
|
||||
float* _base_center = temp.ptr<float>(); // normalized
|
||||
float scale = 1.f/counters[max_k];
|
||||
for( j = 0; j < dims; j++ )
|
||||
_old_center[j] = old_center[j]*scale;
|
||||
for (int j = 0; j < dims; j++)
|
||||
_base_center[j] = base_center[j]*scale;
|
||||
|
||||
for( i = 0; i < N; i++ )
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
if( labels[i] != max_k )
|
||||
if (labels[i] != max_k)
|
||||
continue;
|
||||
sample = data.ptr<float>(i);
|
||||
double dist = normL2Sqr(sample, _old_center, dims);
|
||||
const float* sample = data.ptr<float>(i);
|
||||
double dist = normL2Sqr(sample, _base_center, dims);
|
||||
|
||||
if( max_dist <= dist )
|
||||
if (max_dist <= dist)
|
||||
{
|
||||
max_dist = dist;
|
||||
farthest_i = i;
|
||||
@ -410,29 +391,30 @@ double cv::kmeans( InputArray _data, int K,
|
||||
counters[max_k]--;
|
||||
counters[k]++;
|
||||
labels[farthest_i] = k;
|
||||
sample = data.ptr<float>(farthest_i);
|
||||
|
||||
for( j = 0; j < dims; j++ )
|
||||
const float* sample = data.ptr<float>(farthest_i);
|
||||
float* cur_center = centers.ptr<float>(k);
|
||||
for (int j = 0; j < dims; j++)
|
||||
{
|
||||
old_center[j] -= sample[j];
|
||||
new_center[j] += sample[j];
|
||||
base_center[j] -= sample[j];
|
||||
cur_center[j] += sample[j];
|
||||
}
|
||||
}
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
for (int k = 0; k < K; k++)
|
||||
{
|
||||
float* center = centers.ptr<float>(k);
|
||||
CV_Assert( counters[k] != 0 );
|
||||
|
||||
float scale = 1.f/counters[k];
|
||||
for( j = 0; j < dims; j++ )
|
||||
for (int j = 0; j < dims; j++)
|
||||
center[j] *= scale;
|
||||
|
||||
if( iter > 0 )
|
||||
if (iter > 0)
|
||||
{
|
||||
double dist = 0;
|
||||
const float* old_center = old_centers.ptr<float>(k);
|
||||
for( j = 0; j < dims; j++ )
|
||||
for (int j = 0; j < dims; j++)
|
||||
{
|
||||
double t = center[j] - old_center[j];
|
||||
dist += t*t;
|
||||
@ -444,25 +426,29 @@ double cv::kmeans( InputArray _data, int K,
|
||||
|
||||
bool isLastIter = (++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon);
|
||||
|
||||
// assign labels
|
||||
dists = 0;
|
||||
double* dist = dists.ptr<double>(0);
|
||||
parallel_for_(Range(0, N), KMeansDistanceComputer(dist, labels, data, centers, isLastIter));
|
||||
compactness = sum(dists)[0];
|
||||
|
||||
if (isLastIter)
|
||||
{
|
||||
// don't re-assign labels to avoid creation of empty clusters
|
||||
parallel_for_(Range(0, N), KMeansDistanceComputer<true>(dists, labels, data, centers), divUp(dims * N, CV_KMEANS_PARALLEL_GRANULARITY));
|
||||
compactness = sum(Mat(Size(N, 1), CV_64F, &dists[0]))[0];
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
// assign labels
|
||||
parallel_for_(Range(0, N), KMeansDistanceComputer<false>(dists, labels, data, centers), divUp(dims * N * K, CV_KMEANS_PARALLEL_GRANULARITY));
|
||||
}
|
||||
}
|
||||
|
||||
if( compactness < best_compactness )
|
||||
if (compactness < best_compactness)
|
||||
{
|
||||
best_compactness = compactness;
|
||||
if( _centers.needed() )
|
||||
if (_centers.needed())
|
||||
{
|
||||
Mat reshaped = centers;
|
||||
if(_centers.fixedType() && _centers.channels() == dims)
|
||||
reshaped = centers.reshape(dims);
|
||||
reshaped.copyTo(_centers);
|
||||
if (_centers.fixedType() && _centers.channels() == dims)
|
||||
centers.reshape(dims).copyTo(_centers);
|
||||
else
|
||||
centers.copyTo(_centers);
|
||||
}
|
||||
_labels.copyTo(best_labels);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user