ml: simplify interfaces of SimulatedAnnealingSolver

This commit is contained in:
Alexander Alekhin 2017-12-22 15:33:23 +03:00
parent 09c84a0164
commit 289a8da39e
4 changed files with 99 additions and 208 deletions

View File

@ -1912,75 +1912,49 @@ public:
* Simulated annealing solver *
\****************************************************************************************/
/** @brief The class defines interface for system state used in simulated annealing optimization algorithm.
#ifdef CV_DOXYGEN
/** @brief This class declares example interface for system state used in simulated annealing optimization algorithm.
@cite Kirkpatrick83 for details
@note This class is not defined in C++ code and can't be use directly - you need your own implementation with the same methods.
*/
class CV_EXPORTS SimulatedAnnealingSolverSystem
struct SimulatedAnnealingSolverSystem
{
protected:
inline SimulatedAnnealingSolverSystem() {}
public:
virtual ~SimulatedAnnealingSolverSystem() {}
/** Give energy value for a state of system.*/
virtual double energy() const = 0;
double energy() const;
/** Function which change the state of system (random pertubation).*/
virtual void changeState() = 0;
void changeState();
/** Function to reverse to the previous state. Can be called once only after changeState(). */
virtual void reverseState() = 0;
void reverseState();
};
#endif // CV_DOXYGEN
/** @brief The class implements simulated annealing for optimization.
*
@cite Kirkpatrick83 for details
@param solverSystem optimization system (see SimulatedAnnealingSolverSystem)
@param initialTemperature initial temperature
@param finalTemperature final temperature
@param coolingRatio temperature step multiplies
@param iterationsPerStep number of iterations per temperature changing step
@param lastTemperature optional output for last used temperature
@param rngEnergy specify custom random numbers generator (cv::theRNG() by default)
*/
class CV_EXPORTS SimulatedAnnealingSolver : public Algorithm
{
public:
SimulatedAnnealingSolver(const Ptr<SimulatedAnnealingSolverSystem>& system);
inline ~SimulatedAnnealingSolver() { release(); }
/** Simulated annealing procedure. */
int run();
/** Set/initialize RNG (energy).
@param rng new RNG
*/
void setEnergyRNG(const RNG& rng);
/** Set initial temperature of simulated annealing procedure.
@param x new initial temperature. x\>0
*/
void setInitialTemperature(double x);
/** Set final temperature of simulated annealing procedure.
@param x new final temperature value. 0\<x\<initial temperature
*/
void setFinalTemperature(double x);
/** Get final temperature of simulated annealing procedure. */
double getFinalTemperature();
/** Set setCoolingRatio of simulated annealing procedure : T(t) = coolingRatio * T(t-1).
@param x new cooling ratio value. 0\<x\<1
*/
void setCoolingRatio(double x);
/** Set number iteration per temperature step.
@param ite number of iteration per temperature step ite \> 0
*/
void setIterPerStep(int ite);
void release();
SimulatedAnnealingSolver(const SimulatedAnnealingSolver&);
SimulatedAnnealingSolver& operator=(const SimulatedAnnealingSolver&);
struct Impl; friend struct Impl;
protected:
Impl* impl;
};
template<class SimulatedAnnealingSolverSystem>
int simulatedAnnealingSolver(SimulatedAnnealingSolverSystem& solverSystem,
double initialTemperature, double finalTemperature, double coolingRatio,
size_t iterationsPerStep,
CV_OUT double* lastTemperature = NULL,
cv::RNG& rngEnergy = cv::theRNG()
);
//! @} ml
}
}
#include <opencv2/ml/ml.inl.hpp>
#endif // __cplusplus
#endif // OPENCV_ML_HPP

View File

@ -0,0 +1,60 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_ML_INL_HPP
#define OPENCV_ML_INL_HPP
namespace cv { namespace ml {
// declared in ml.hpp
template<class SimulatedAnnealingSolverSystem>
int simulatedAnnealingSolver(SimulatedAnnealingSolverSystem& solverSystem,
double initialTemperature, double finalTemperature, double coolingRatio,
size_t iterationsPerStep,
CV_OUT double* lastTemperature,
cv::RNG& rngEnergy
)
{
CV_Assert(finalTemperature > 0);
CV_Assert(initialTemperature > finalTemperature);
CV_Assert(iterationsPerStep > 0);
CV_Assert(coolingRatio < 1.0f);
double Ti = initialTemperature;
double previousEnergy = solverSystem.energy();
int exchange = 0;
while (Ti > finalTemperature)
{
for (size_t i = 0; i < iterationsPerStep; i++)
{
solverSystem.changeState();
double newEnergy = solverSystem.energy();
if (newEnergy < previousEnergy)
{
previousEnergy = newEnergy;
exchange++;
}
else
{
double r = rngEnergy.uniform(0.0, 1.0);
if (r < std::exp(-(newEnergy - previousEnergy) / Ti))
{
previousEnergy = newEnergy;
exchange++;
}
else
{
solverSystem.reverseState();
}
}
}
Ti *= coolingRatio;
}
if (lastTemperature)
*lastTemperature = Ti;
return exchange;
}
}} //namespace
#endif // OPENCV_ML_INL_HPP

View File

@ -42,41 +42,6 @@
namespace cv { namespace ml {
struct SimulatedAnnealingSolver::Impl
{
int refcount;
const Ptr<SimulatedAnnealingSolverSystem> systemPtr;
SimulatedAnnealingSolverSystem& system;
RNG rEnergy;
double coolingRatio;
double initialT;
double finalT;
int iterPerStep;
Impl(const Ptr<SimulatedAnnealingSolverSystem>& s) :
refcount(1),
systemPtr(s),
system(*(s.get())),
rEnergy(12345)
{
CV_Assert(!systemPtr.empty());
initialT = 2;
finalT = 0.1;
coolingRatio = 0.95;
iterPerStep = 100;
}
inline double energy() { return system.energy(); }
inline void changeState() { system.changeState(); }
inline void reverseState() { system.reverseState(); }
void addref() { CV_XADD(&refcount, 1); }
void release() { if (CV_XADD(&refcount, -1) == 1) delete this; }
protected:
virtual ~Impl() { CV_Assert(refcount==0); }
};
struct AnnParams
{
AnnParams()
@ -115,103 +80,7 @@ inline T inBounds(T val, T min_val, T max_val)
return std::min(std::max(val, min_val), max_val);
}
SimulatedAnnealingSolver::SimulatedAnnealingSolver(const Ptr<SimulatedAnnealingSolverSystem>& system)
{
impl = new Impl(system);
}
SimulatedAnnealingSolver::SimulatedAnnealingSolver(const SimulatedAnnealingSolver& b)
{
if (b.impl) b.impl->addref();
release();
impl = b.impl;
}
void SimulatedAnnealingSolver::release()
{
if (impl) { impl->release(); impl = NULL; }
}
void SimulatedAnnealingSolver::setIterPerStep(int ite)
{
CV_Assert(impl);
CV_Assert(ite>0);
impl->iterPerStep = ite;
}
int SimulatedAnnealingSolver::run()
{
CV_Assert(impl);
CV_Assert(impl->initialT>impl->finalT);
double Ti = impl->initialT;
double previousEnergy = impl->energy();
int exchange = 0;
while (Ti > impl->finalT)
{
for (int i = 0; i < impl->iterPerStep; i++)
{
impl->changeState();
double newEnergy = impl->energy();
if (newEnergy < previousEnergy)
{
previousEnergy = newEnergy;
exchange++;
}
else
{
double r = impl->rEnergy.uniform(0.0, 1.0);
if (r < std::exp(-(newEnergy - previousEnergy) / Ti))
{
previousEnergy = newEnergy;
exchange++;
}
else
{
impl->reverseState();
}
}
}
Ti *= impl->coolingRatio;
}
impl->finalT = Ti;
return exchange;
}
void SimulatedAnnealingSolver::setEnergyRNG(const RNG& rng)
{
CV_Assert(impl);
impl->rEnergy = rng;
}
void SimulatedAnnealingSolver::setInitialTemperature(double x)
{
CV_Assert(impl);
CV_Assert(x>0);
impl->initialT = x;
}
void SimulatedAnnealingSolver::setFinalTemperature(double x)
{
CV_Assert(impl);
CV_Assert(x>0);
impl->finalT = x;
}
double SimulatedAnnealingSolver::getFinalTemperature()
{
CV_Assert(impl);
return impl->finalT;
}
void SimulatedAnnealingSolver::setCoolingRatio(double x)
{
CV_Assert(impl);
CV_Assert(x>0 && x<1);
impl->coolingRatio = x;
}
class SimulatedAnnealingANN_MLP : public SimulatedAnnealingSolverSystem
class SimulatedAnnealingANN_MLP
{
protected:
ml::ANN_MLP& nn;
@ -228,7 +97,7 @@ public:
initVarMap();
}
~SimulatedAnnealingANN_MLP() {}
protected:
void changeState()
{
index = rIndex.uniform(0, nbVariables);
@ -1075,14 +944,9 @@ public:
}
int train_anneal(const Ptr<TrainData>& trainData)
{
SimulatedAnnealingSolver t(Ptr<SimulatedAnnealingANN_MLP>(new SimulatedAnnealingANN_MLP(*this, trainData)));
t.setEnergyRNG(params.rEnergy);
t.setFinalTemperature(params.finalT);
t.setInitialTemperature(params.initialT);
t.setCoolingRatio(params.coolingRatio);
t.setIterPerStep(params.itePerStep);
SimulatedAnnealingANN_MLP s(*this, trainData);
trained = true; // Enable call to CalcError
int iter = t.run();
int iter = simulatedAnnealingSolver(s, params.initialT, params.finalT, params.coolingRatio, params.itePerStep, NULL, params.rEnergy);
trained =false;
return iter;
}

View File

@ -2,7 +2,7 @@
using namespace cv;
class TravelSalesman : public ml::SimulatedAnnealingSolverSystem
class TravelSalesman
{
private :
const std::vector<Point>& posCity;
@ -17,11 +17,11 @@ public:
rng = theRNG();
}
/** Give energy value for a state of system.*/
/*virtual*/ double energy() const;
double energy() const;
/** Function which change the state of system (random pertubation).*/
/*virtual*/ void changeState();
void changeState();
/** Function to reverse to the previous state.*/
/*virtual*/ void reverseState();
void reverseState();
};
@ -81,31 +81,24 @@ int main(void)
posCity[i].y = static_cast<int>(radius*sin(theta)) + center.y;
next[i]=(i+1)%nbCity;
}
Ptr<TravelSalesman> ts_system(new TravelSalesman(posCity, next));
ml::SimulatedAnnealingSolver ts(ts_system);
TravelSalesman ts_system(posCity, next);
ts.setIterPerStep(10000*nbCity);
ts.setCoolingRatio(0.99);
ts.setInitialTemperature(100);
ts.setFinalTemperature(100*0.97);
DrawTravelMap(img,posCity,next);
imshow("Map",img);
waitKey(10);
double currentTemperature = 100.0;
for (int i = 0, zeroChanges = 0; zeroChanges < 10; i++)
{
int changesApplied = ts.run();
img = Mat::zeros(img.size(),CV_8UC3);
int changesApplied = ml::simulatedAnnealingSolver(ts_system, currentTemperature, currentTemperature*0.97, 0.99, 10000*nbCity, &currentTemperature, rng);
img.setTo(Scalar::all(0));
DrawTravelMap(img, posCity, next);
imshow("Map", img);
int k = waitKey(10);
double ti=ts.getFinalTemperature();
std::cout << "i=" << i << " changesApplied=" << changesApplied << " temp=" << ti << " result=" << ts_system->energy() << std::endl;
std::cout << "i=" << i << " changesApplied=" << changesApplied << " temp=" << currentTemperature << " result=" << ts_system.energy() << std::endl;
if (k == 27 || k == 'q' || k == 'Q')
return 0;
if (changesApplied == 0)
zeroChanges++;
ts.setInitialTemperature(ti);
ts.setFinalTemperature(ti*0.97);
}
std::cout << "Done" << std::endl;
waitKey(0);