mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
Add a sample which tests OpenVINO models
This commit is contained in:
parent
767b31cfbf
commit
28e08ae0bd
@ -120,3 +120,9 @@ if(BUILD_PERF_TESTS)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Test Intel's Inference Engine models
|
||||
if(HAVE_INF_ENGINE AND TARGET opencv_test_dnn)
|
||||
ocv_target_include_directories(opencv_test_dnn PRIVATE ${INF_ENGINE_INCLUDE_DIRS})
|
||||
ocv_target_link_libraries(opencv_test_dnn LINK_PRIVATE ${INF_ENGINE_LIBRARIES})
|
||||
endif()
|
||||
|
@ -428,9 +428,8 @@ void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
|
||||
|
||||
try
|
||||
{
|
||||
static std::map<std::string, InferenceEngine::InferenceEnginePluginPtr> sharedPlugins;
|
||||
std::string deviceName = InferenceEngine::getDeviceName(targetDevice);
|
||||
auto pluginIt = sharedPlugins.find(deviceName);
|
||||
static std::map<InferenceEngine::TargetDevice, InferenceEngine::InferenceEnginePluginPtr> sharedPlugins;
|
||||
auto pluginIt = sharedPlugins.find(targetDevice);
|
||||
if (pluginIt != sharedPlugins.end())
|
||||
{
|
||||
enginePtr = pluginIt->second;
|
||||
@ -438,7 +437,7 @@ void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
|
||||
else
|
||||
{
|
||||
enginePtr = InferenceEngine::PluginDispatcher({""}).getSuitablePlugin(targetDevice);
|
||||
sharedPlugins[deviceName] = enginePtr;
|
||||
sharedPlugins[targetDevice] = enginePtr;
|
||||
|
||||
if (targetDevice == InferenceEngine::TargetDevice::eCPU)
|
||||
{
|
||||
|
220
modules/dnn/test/test_ie_models.cpp
Normal file
220
modules/dnn/test/test_ie_models.cpp
Normal file
@ -0,0 +1,220 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
#include <opencv2/core/utils/filesystem.hpp>
|
||||
|
||||
#include <inference_engine.hpp>
|
||||
#include <ie_icnn_network.hpp>
|
||||
#include <ie_extension.h>
|
||||
|
||||
static std::string extraTestDataPath =
|
||||
#ifdef WINRT
|
||||
NULL;
|
||||
#else
|
||||
getenv("INTEL_CVSDK_DIR");
|
||||
#endif
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
using namespace InferenceEngine;
|
||||
|
||||
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr)
|
||||
{
|
||||
std::vector<int> reversedDims(dims.begin(), dims.end());
|
||||
std::reverse(reversedDims.begin(), reversedDims.end());
|
||||
|
||||
m.create(reversedDims, CV_32F);
|
||||
randu(m, -1, 1);
|
||||
|
||||
dataPtr = make_shared_blob<float>(Precision::FP32, dims, (float*)m.data);
|
||||
}
|
||||
|
||||
void runIE(Target target, const std::string& xmlPath, const std::string& binPath,
|
||||
std::map<std::string, cv::Mat>& inputsMap, std::map<std::string, cv::Mat>& outputsMap)
|
||||
{
|
||||
CNNNetReader reader;
|
||||
reader.ReadNetwork(xmlPath);
|
||||
reader.ReadWeights(binPath);
|
||||
|
||||
CNNNetwork net = reader.getNetwork();
|
||||
|
||||
InferenceEnginePluginPtr enginePtr;
|
||||
InferencePlugin plugin;
|
||||
ExecutableNetwork netExec;
|
||||
InferRequest infRequest;
|
||||
TargetDevice targetDevice;
|
||||
switch (target)
|
||||
{
|
||||
case DNN_TARGET_CPU:
|
||||
targetDevice = TargetDevice::eCPU;
|
||||
break;
|
||||
case DNN_TARGET_OPENCL:
|
||||
case DNN_TARGET_OPENCL_FP16:
|
||||
targetDevice = TargetDevice::eGPU;
|
||||
break;
|
||||
case DNN_TARGET_MYRIAD:
|
||||
targetDevice = TargetDevice::eMYRIAD;
|
||||
break;
|
||||
default:
|
||||
CV_Error(Error::StsNotImplemented, "Unknown target");
|
||||
};
|
||||
|
||||
try
|
||||
{
|
||||
enginePtr = PluginDispatcher({""}).getSuitablePlugin(targetDevice);
|
||||
|
||||
if (targetDevice == TargetDevice::eCPU)
|
||||
{
|
||||
std::string suffixes[] = {"_avx2", "_sse4", ""};
|
||||
bool haveFeature[] = {
|
||||
checkHardwareSupport(CPU_AVX2),
|
||||
checkHardwareSupport(CPU_SSE4_2),
|
||||
true
|
||||
};
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
if (!haveFeature[i])
|
||||
continue;
|
||||
#ifdef _WIN32
|
||||
std::string libName = "cpu_extension" + suffixes[i] + ".dll";
|
||||
#else
|
||||
std::string libName = "libcpu_extension" + suffixes[i] + ".so";
|
||||
#endif // _WIN32
|
||||
try
|
||||
{
|
||||
IExtensionPtr extension = make_so_pointer<IExtension>(libName);
|
||||
enginePtr->AddExtension(extension, 0);
|
||||
break;
|
||||
}
|
||||
catch(...) {}
|
||||
}
|
||||
// Some of networks can work without a library of extra layers.
|
||||
}
|
||||
plugin = InferencePlugin(enginePtr);
|
||||
|
||||
netExec = plugin.LoadNetwork(net, {});
|
||||
infRequest = netExec.CreateInferRequest();
|
||||
}
|
||||
catch (const std::exception& ex)
|
||||
{
|
||||
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
|
||||
}
|
||||
|
||||
// Fill input blobs.
|
||||
inputsMap.clear();
|
||||
BlobMap inputBlobs;
|
||||
for (auto& it : net.getInputsInfo())
|
||||
{
|
||||
genData(it.second->getDims(), inputsMap[it.first], inputBlobs[it.first]);
|
||||
}
|
||||
infRequest.SetInput(inputBlobs);
|
||||
|
||||
// Fill output blobs.
|
||||
outputsMap.clear();
|
||||
BlobMap outputBlobs;
|
||||
for (auto& it : net.getOutputsInfo())
|
||||
{
|
||||
genData(it.second->dims, outputsMap[it.first], outputBlobs[it.first]);
|
||||
}
|
||||
infRequest.SetOutput(outputBlobs);
|
||||
|
||||
infRequest.Infer();
|
||||
}
|
||||
|
||||
std::vector<String> getOutputsNames(const Net& net)
|
||||
{
|
||||
std::vector<String> names;
|
||||
if (names.empty())
|
||||
{
|
||||
std::vector<int> outLayers = net.getUnconnectedOutLayers();
|
||||
std::vector<String> layersNames = net.getLayerNames();
|
||||
names.resize(outLayers.size());
|
||||
for (size_t i = 0; i < outLayers.size(); ++i)
|
||||
names[i] = layersNames[outLayers[i] - 1];
|
||||
}
|
||||
return names;
|
||||
}
|
||||
|
||||
void runCV(Target target, const std::string& xmlPath, const std::string& binPath,
|
||||
const std::map<std::string, cv::Mat>& inputsMap,
|
||||
std::map<std::string, cv::Mat>& outputsMap)
|
||||
{
|
||||
Net net = readNet(xmlPath, binPath);
|
||||
for (auto& it : inputsMap)
|
||||
net.setInput(it.second, it.first);
|
||||
net.setPreferableTarget(target);
|
||||
|
||||
std::vector<String> outNames = getOutputsNames(net);
|
||||
std::vector<Mat> outs;
|
||||
net.forward(outs, outNames);
|
||||
|
||||
outputsMap.clear();
|
||||
EXPECT_EQ(outs.size(), outNames.size());
|
||||
for (int i = 0; i < outs.size(); ++i)
|
||||
{
|
||||
EXPECT_TRUE(outputsMap.insert({outNames[i], outs[i]}).second);
|
||||
}
|
||||
}
|
||||
|
||||
typedef TestWithParam<tuple<Target, String> > DNNTestOpenVINO;
|
||||
TEST_P(DNNTestOpenVINO, models)
|
||||
{
|
||||
Target target = (dnn::Target)(int)get<0>(GetParam());
|
||||
std::string modelName = get<1>(GetParam());
|
||||
|
||||
if (modelName == "semantic-segmentation-adas-0001" && target == DNN_TARGET_OPENCL_FP16)
|
||||
throw SkipTestException("");
|
||||
|
||||
std::string precision = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "FP16" : "FP32";
|
||||
std::string prefix = utils::fs::join(extraTestDataPath,
|
||||
utils::fs::join("deployment_tools",
|
||||
utils::fs::join("intel_models",
|
||||
utils::fs::join(modelName,
|
||||
utils::fs::join(precision, modelName)))));
|
||||
std::string xmlPath = prefix + ".xml";
|
||||
std::string binPath = prefix + ".bin";
|
||||
|
||||
std::map<std::string, cv::Mat> inputsMap;
|
||||
std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap;
|
||||
runIE(target, xmlPath, binPath, inputsMap, ieOutputsMap);
|
||||
runCV(target, xmlPath, binPath, inputsMap, cvOutputsMap);
|
||||
|
||||
EXPECT_EQ(ieOutputsMap.size(), cvOutputsMap.size());
|
||||
for (auto& srcIt : ieOutputsMap)
|
||||
{
|
||||
auto dstIt = cvOutputsMap.find(srcIt.first);
|
||||
CV_Assert(dstIt != cvOutputsMap.end());
|
||||
double normInf = cvtest::norm(srcIt.second, dstIt->second, cv::NORM_INF);
|
||||
EXPECT_EQ(normInf, 0);
|
||||
}
|
||||
}
|
||||
|
||||
static testing::internal::ParamGenerator<String> intelModels()
|
||||
{
|
||||
String path = utils::fs::join(utils::fs::join(extraTestDataPath, "deployment_tools"), "intel_models");
|
||||
|
||||
std::vector<String> modelsNames;
|
||||
cv::utils::fs::glob_relative(path, "", modelsNames, false, true);
|
||||
|
||||
std::vector<String>::iterator end =
|
||||
std::remove_if(modelsNames.begin(), modelsNames.end(),
|
||||
[&](const String& dir){ return !utils::fs::isDirectory(utils::fs::join(path, dir)); });
|
||||
modelsNames = std::vector<String>(modelsNames.begin(), end);
|
||||
|
||||
return testing::ValuesIn(modelsNames);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, DNNTestOpenVINO, Combine(
|
||||
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16), intelModels()
|
||||
));
|
||||
|
||||
}}
|
||||
#endif // HAVE_INF_ENGINE
|
Loading…
Reference in New Issue
Block a user