Add OpenCL accelerated implementation for Retina.

This commit is contained in:
peng xiao 2013-08-13 16:27:12 +08:00
parent d8c6e89a54
commit 29eefe52bb
7 changed files with 3185 additions and 2 deletions

View File

@ -1,2 +1,2 @@
set(the_description "Biologically inspired algorithms")
ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui)
ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui opencv_ocl)

View File

@ -304,7 +304,8 @@ public:
CV_EXPORTS Ptr<Retina> createRetina(Size inputSize);
CV_EXPORTS Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
CV_EXPORTS Ptr<Retina> createRetina_OCL(Size inputSize);
CV_EXPORTS Ptr<Retina> createRetina_OCL(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);
}
}
#endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */

View File

@ -0,0 +1,753 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/////////////////////////////////////////////////////////
//*******************************************************
// basicretinafilter
//////////////// _spatiotemporalLPfilter ////////////////
//_horizontalCausalFilter_addInput
kernel void horizontalCausalFilter_addInput(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int in_offset,
const int out_offset,
const float _tau,
const float _a
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global const float * iptr =
input + mad24(gid, elements_per_row, in_offset / 4);
global float * optr =
output + mad24(gid, elements_per_row, out_offset / 4);
float res;
float4 in_v4, out_v4, res_v4 = (float4)(0);
//vectorize to increase throughput
for(int i = 0; i < cols / 4; ++i, iptr += 4, optr += 4)
{
in_v4 = vload4(0, iptr);
out_v4 = vload4(0, optr);
res_v4.x = in_v4.x + _tau * out_v4.x + _a * res_v4.w;
res_v4.y = in_v4.y + _tau * out_v4.y + _a * res_v4.x;
res_v4.z = in_v4.z + _tau * out_v4.z + _a * res_v4.y;
res_v4.w = in_v4.w + _tau * out_v4.w + _a * res_v4.z;
vstore4(res_v4, 0, optr);
}
res = res_v4.w;
// there may be left some
for(int i = 0; i < cols % 4; ++i, ++iptr, ++optr)
{
res = *iptr + _tau * *optr + _a * res;
*optr = res;
}
}
//_horizontalAnticausalFilter
kernel void horizontalAnticausalFilter(
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const float _a
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global float * optr = output +
mad24(gid + 1, elements_per_row, - 1 + out_offset / 4);
float4 result = (float4)(0), out_v4;
// we assume elements_per_row is multple of 4
for(int i = 0; i < elements_per_row / 4; ++i, optr -= 4)
{
// shift left, `offset` is type `size_t` so it cannot be negative
out_v4 = vload4(0, optr - 3);
result.w = out_v4.w + _a * result.x;
result.z = out_v4.z + _a * result.w;
result.y = out_v4.y + _a * result.z;
result.x = out_v4.x + _a * result.y;
vstore4(result, 0, optr - 3);
}
}
//_verticalCausalFilter
kernel void verticalCausalFilter(
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const float _a
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
global float * optr = output + gid + out_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, optr += elements_per_row)
{
result = *optr + _a * result;
*optr = result;
}
}
//_verticalCausalFilter
kernel void verticalAnticausalFilter_multGain(
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const float _a,
const float _gain
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
global float * optr = output + (rows - 1) * elements_per_row + gid + out_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, optr -= elements_per_row)
{
result = *optr + _a * result;
*optr = _gain * result;
}
}
//
// end of _spatiotemporalLPfilter
/////////////////////////////////////////////////////////////////////
//////////////// horizontalAnticausalFilter_Irregular ////////////////
kernel void horizontalAnticausalFilter_Irregular(
global float * output,
global float * buffer,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const int buffer_offset
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global float * optr =
output + mad24(rows - gid, elements_per_row, -1 + out_offset / 4);
global float * bptr =
buffer + mad24(rows - gid, elements_per_row, -1 + buffer_offset / 4);
float4 buf_v4, out_v4, res_v4 = (float4)(0);
for(int i = 0; i < elements_per_row / 4; ++i, optr -= 4, bptr -= 4)
{
buf_v4 = vload4(0, bptr - 3);
out_v4 = vload4(0, optr - 3);
res_v4.w = out_v4.w + buf_v4.w * res_v4.x;
res_v4.z = out_v4.z + buf_v4.z * res_v4.w;
res_v4.y = out_v4.y + buf_v4.y * res_v4.z;
res_v4.x = out_v4.x + buf_v4.x * res_v4.y;
vstore4(res_v4, 0, optr - 3);
}
}
//////////////// verticalCausalFilter_Irregular ////////////////
kernel void verticalCausalFilter_Irregular(
global float * output,
global float * buffer,
const int cols,
const int rows,
const int elements_per_row,
const int out_offset,
const int buffer_offset
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
global float * optr = output + gid + out_offset / 4;
global float * bptr = buffer + gid + buffer_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, optr += elements_per_row, bptr += elements_per_row)
{
result = *optr + *bptr * result;
*optr = result;
}
}
//////////////// _adaptiveHorizontalCausalFilter_addInput ////////////////
kernel void adaptiveHorizontalCausalFilter_addInput(
global const float * input,
global const float * gradient,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int in_offset,
const int grad_offset,
const int out_offset
)
{
int gid = get_global_id(0);
if(gid >= rows)
{
return;
}
global const float * iptr =
input + mad24(gid, elements_per_row, in_offset / 4);
global const float * gptr =
gradient + mad24(gid, elements_per_row, grad_offset / 4);
global float * optr =
output + mad24(gid, elements_per_row, out_offset / 4);
float4 in_v4, grad_v4, out_v4, res_v4 = (float4)(0);
for(int i = 0; i < cols / 4; ++i, iptr += 4, gptr += 4, optr += 4)
{
in_v4 = vload4(0, iptr);
grad_v4 = vload4(0, gptr);
res_v4.x = in_v4.x + grad_v4.x * res_v4.w;
res_v4.y = in_v4.y + grad_v4.y * res_v4.x;
res_v4.z = in_v4.z + grad_v4.z * res_v4.y;
res_v4.w = in_v4.w + grad_v4.w * res_v4.z;
vstore4(res_v4, 0, optr);
}
for(int i = 0; i < cols % 4; ++i, ++iptr, ++gptr, ++optr)
{
res_v4.w = *iptr + *gptr * res_v4.w;
*optr = res_v4.w;
}
}
//////////////// _adaptiveVerticalAnticausalFilter_multGain ////////////////
kernel void adaptiveVerticalAnticausalFilter_multGain(
global const float * gradient,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const int grad_offset,
const int out_offset,
const float gain
)
{
int gid = get_global_id(0);
if(gid >= cols)
{
return;
}
int start_idx = mad24(rows - 1, elements_per_row, gid);
global const float * gptr = gradient + start_idx + grad_offset / 4;
global float * optr = output + start_idx + out_offset / 4;
float result = 0;
for(int i = 0; i < rows; ++i, gptr -= elements_per_row, optr -= elements_per_row)
{
result = *optr + *gptr * result;
*optr = gain * result;
}
}
//////////////// _localLuminanceAdaptation ////////////////
// FIXME:
// This kernel seems to have precision problem on GPU
kernel void localLuminanceAdaptation(
global const float * luma,
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const float _localLuminanceAddon,
const float _localLuminanceFactor,
const float _maxInputValue
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
float X0 = luma[offset] * _localLuminanceFactor + _localLuminanceAddon;
float input_val = input[offset];
// output of the following line may be different between GPU and CPU
output[offset] = (_maxInputValue + X0) * input_val / (input_val + X0 + 0.00000000001f);
}
// end of basicretinafilter
//*******************************************************
/////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////
//******************************************************
// magno
// TODO: this kernel has too many buffer accesses, better to make it
// vector read/write for fetch efficiency
kernel void amacrineCellsComputing(
global const float * opl_on,
global const float * opl_off,
global float * prev_in_on,
global float * prev_in_off,
global float * out_on,
global float * out_off,
const int cols,
const int rows,
const int elements_per_row,
const float coeff
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
opl_on += offset;
opl_off += offset;
prev_in_on += offset;
prev_in_off += offset;
out_on += offset;
out_off += offset;
float magnoXonPixelResult = coeff * (*out_on + *opl_on - *prev_in_on);
*out_on = fmax(magnoXonPixelResult, 0);
float magnoXoffPixelResult = coeff * (*out_off + *opl_off - *prev_in_off);
*out_off = fmax(magnoXoffPixelResult, 0);
*prev_in_on = *opl_on;
*prev_in_off = *opl_off;
}
/////////////////////////////////////////////////////////
//******************************************************
// parvo
// TODO: this kernel has too many buffer accesses, needs optimization
kernel void OPL_OnOffWaysComputing(
global float4 * photo_out,
global float4 * horiz_out,
global float4 * bipol_on,
global float4 * bipol_off,
global float4 * parvo_on,
global float4 * parvo_off,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx * 4 >= cols || gidy >= rows)
{
return;
}
// we assume elements_per_row must be multiples of 4
int offset = mad24(gidy, elements_per_row >> 2, gidx);
photo_out += offset;
horiz_out += offset;
bipol_on += offset;
bipol_off += offset;
parvo_on += offset;
parvo_off += offset;
float4 diff = *photo_out - *horiz_out;
float4 isPositive;// = convert_float4(diff > (float4)(0.0f, 0.0f, 0.0f, 0.0f));
isPositive.x = diff.x > 0.0f;
isPositive.y = diff.y > 0.0f;
isPositive.z = diff.z > 0.0f;
isPositive.w = diff.w > 0.0f;
float4 res_on = isPositive * diff;
float4 res_off = (isPositive - (float4)(1.0f)) * diff;
*bipol_on = res_on;
*parvo_on = res_on;
*bipol_off = res_off;
*parvo_off = res_off;
}
/////////////////////////////////////////////////////////
//******************************************************
// retinacolor
inline int bayerSampleOffset(int step, int rows, int x, int y)
{
return mad24(y, step, x) +
((y % 2) + (x % 2)) * rows * step;
}
/////// colorMultiplexing //////
kernel void runColorMultiplexingBayer(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
output[offset] = input[bayerSampleOffset(elements_per_row, rows, gidx, gidy)];
}
kernel void runColorDemultiplexingBayer(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
output[bayerSampleOffset(elements_per_row, rows, gidx, gidy)] = input[offset];
}
kernel void demultiplexAssign(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = bayerSampleOffset(elements_per_row, rows, gidx, gidy);
output[offset] = input[offset];
}
//// normalizeGrayOutputCentredSigmoide
kernel void normalizeGrayOutputCentredSigmoide(
global const float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const float meanval,
const float X0
)
{
int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
float input_val = input[offset];
output[offset] = meanval +
(meanval + X0) * (input_val - meanval) / (fabs(input_val - meanval) + X0);
}
//// normalize by photoreceptors density
kernel void normalizePhotoDensity(
global const float * chroma,
global const float * colorDensity,
global const float * multiplex,
global float * luma,
global float * demultiplex,
const int cols,
const int rows,
const int elements_per_row,
const float pG
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
int index = offset;
float Cr = chroma[index] * colorDensity[index];
index += elements_per_row * rows;
float Cg = chroma[index] * colorDensity[index];
index += elements_per_row * rows;
float Cb = chroma[index] * colorDensity[index];
const float luma_res = (Cr + Cg + Cb) * pG;
luma[offset] = luma_res;
demultiplex[bayerSampleOffset(elements_per_row, rows, gidx, gidy)] =
multiplex[offset] - luma_res;
}
//////// computeGradient ///////
// TODO:
// this function maybe accelerated by image2d_t or lds
kernel void computeGradient(
global const float * luma,
global float * gradient,
const int cols,
const int rows,
const int elements_per_row
)
{
int gidx = get_global_id(0) + 2, gidy = get_global_id(1) + 2;
if(gidx >= cols - 2 || gidy >= rows - 2)
{
return;
}
int offset = mad24(gidy, elements_per_row, gidx);
luma += offset;
// horizontal and vertical local gradients
const float v_grad = fabs(luma[elements_per_row] - luma[- elements_per_row]);
const float h_grad = fabs(luma[1] - luma[-1]);
// neighborhood horizontal and vertical gradients
const float cur_val = luma[0];
const float v_grad_p = fabs(cur_val - luma[- 2 * elements_per_row]);
const float h_grad_p = fabs(cur_val - luma[- 2]);
const float v_grad_n = fabs(cur_val - luma[2 * elements_per_row]);
const float h_grad_n = fabs(cur_val - luma[2]);
const float horiz_grad = 0.5f * h_grad + 0.25f * (h_grad_p + h_grad_n);
const float verti_grad = 0.5f * v_grad + 0.25f * (v_grad_p + v_grad_n);
const bool is_vertical_greater = horiz_grad < verti_grad;
gradient[offset + elements_per_row * rows] = is_vertical_greater ? 0.06f : 0.57f;
gradient[offset ] = is_vertical_greater ? 0.57f : 0.06f;
}
/////// substractResidual ///////
kernel void substractResidual(
global float * input,
const int cols,
const int rows,
const int elements_per_row,
const float pR,
const float pG,
const float pB
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
int indices [3] =
{
mad24(gidy, elements_per_row, gidx),
mad24(gidy + rows, elements_per_row, gidx),
mad24(gidy + 2 * rows, elements_per_row, gidx)
};
float vals[3] = {input[indices[0]], input[indices[1]], input[indices[2]]};
float residu = pR * vals[0] + pG * vals[1] + pB * vals[2];
input[indices[0]] = vals[0] - residu;
input[indices[1]] = vals[1] - residu;
input[indices[2]] = vals[2] - residu;
}
///// clipRGBOutput_0_maxInputValue /////
kernel void clipRGBOutput_0_maxInputValue(
global float * input,
const int cols,
const int rows,
const int elements_per_row,
const float maxVal
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float val = input[offset];
val = clamp(val, 0.0f, maxVal);
input[offset] = val;
}
//// normalizeGrayOutputNearZeroCentreredSigmoide ////
kernel void normalizeGrayOutputNearZeroCentreredSigmoide(
global float * input,
global float * output,
const int cols,
const int rows,
const int elements_per_row,
const float maxVal,
const float X0cube
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float currentCubeLuminance = input[offset];
currentCubeLuminance = currentCubeLuminance * currentCubeLuminance * currentCubeLuminance;
output[offset] = currentCubeLuminance * X0cube / (X0cube + currentCubeLuminance);
}
//// centerReductImageLuminance ////
kernel void centerReductImageLuminance(
global float * input,
const int cols,
const int rows,
const int elements_per_row,
const float mean,
const float std_dev
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float val = input[offset];
input[offset] = (val - mean) / std_dev;
}
//// inverseValue ////
kernel void inverseValue(
global float * input,
const int cols,
const int rows,
const int elements_per_row
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
input[offset] = 1.f / input[offset];
}
#define CV_PI 3.1415926535897932384626433832795
//// _processRetinaParvoMagnoMapping ////
kernel void processRetinaParvoMagnoMapping(
global float * parvo,
global float * magno,
global float * output,
const int cols,
const int rows,
const int halfCols,
const int halfRows,
const int elements_per_row,
const float minDistance
)
{
const int gidx = get_global_id(0), gidy = get_global_id(1);
if(gidx >= cols || gidy >= rows)
{
return;
}
const int offset = mad24(gidy, elements_per_row, gidx);
float distanceToCenter =
sqrt(((float)(gidy - halfRows) * (gidy - halfRows) + (gidx - halfCols) * (gidx - halfCols)));
float a = distanceToCenter < minDistance ?
(0.5f + 0.5f * (float)cos(CV_PI * distanceToCenter / minDistance)) : 0;
float b = 1.f - a;
output[offset] = parvo[offset] * a + magno[offset] * b;
}

View File

@ -43,11 +43,17 @@
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/opencv_modules.hpp"
#include "opencv2/bioinspired.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include <valarray>
#ifdef HAVE_OPENCV_OCL
#include "opencv2/ocl/private/util.hpp"
#endif
namespace cv
{

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,633 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OCL_RETINA_HPP__
#define __OCL_RETINA_HPP__
#include "precomp.hpp"
#ifdef HAVE_OPENCV_OCL
// please refer to c++ headers for API comments
namespace cv
{
namespace bioinspired
{
namespace ocl
{
void normalizeGrayOutputCentredSigmoide(const float meanValue, const float sensitivity, cv::ocl::oclMat &in, cv::ocl::oclMat &out, const float maxValue = 255.f);
void normalizeGrayOutput_0_maxOutputValue(cv::ocl::oclMat &inputOutputBuffer, const float maxOutputValue = 255.0);
void normalizeGrayOutputNearZeroCentreredSigmoide(cv::ocl::oclMat &inputPicture, cv::ocl::oclMat &outputBuffer, const float sensitivity = 40, const float maxOutputValue = 255.0f);
void centerReductImageLuminance(cv::ocl::oclMat &inputOutputBuffer);
class BasicRetinaFilter
{
public:
BasicRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns, const unsigned int parametersListSize = 1, const bool useProgressiveFilter = false);
~BasicRetinaFilter();
inline void clearOutputBuffer()
{
_filterOutput = 0;
};
inline void clearSecondaryBuffer()
{
_localBuffer = 0;
};
inline void clearAllBuffers()
{
clearOutputBuffer();
clearSecondaryBuffer();
};
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
const cv::ocl::oclMat &runFilter_LPfilter(const cv::ocl::oclMat &inputFrame, const unsigned int filterIndex = 0);
void runFilter_LPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
void runFilter_LPfilter_Autonomous(cv::ocl::oclMat &inputOutputFrame, const unsigned int filterIndex = 0);
const cv::ocl::oclMat &runFilter_LocalAdapdation(const cv::ocl::oclMat &inputOutputFrame, const cv::ocl::oclMat &localLuminance);
void runFilter_LocalAdapdation(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, cv::ocl::oclMat &outputFrame);
const cv::ocl::oclMat &runFilter_LocalAdapdation_autonomous(const cv::ocl::oclMat &inputFrame);
void runFilter_LocalAdapdation_autonomous(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame);
void setLPfilterParameters(const float beta, const float tau, const float k, const unsigned int filterIndex = 0);
inline void setV0CompressionParameter(const float v0, const float maxInputValue, const float)
{
_v0 = v0 * maxInputValue;
_localLuminanceFactor = v0;
_localLuminanceAddon = maxInputValue * (1.0f - v0);
_maxInputValue = maxInputValue;
};
inline void setV0CompressionParameter(const float v0, const float meanLuminance)
{
this->setV0CompressionParameter(v0, _maxInputValue, meanLuminance);
};
inline void setV0CompressionParameter(const float v0)
{
_v0 = v0 * _maxInputValue;
_localLuminanceFactor = v0;
_localLuminanceAddon = _maxInputValue * (1.0f - v0);
};
inline void setV0CompressionParameterToneMapping(const float v0, const float maxInputValue, const float meanLuminance = 128.0f)
{
_v0 = v0 * maxInputValue;
_localLuminanceFactor = 1.0f;
_localLuminanceAddon = meanLuminance * _v0;
_maxInputValue = maxInputValue;
};
inline void updateCompressionParameter(const float meanLuminance)
{
_localLuminanceFactor = 1;
_localLuminanceAddon = meanLuminance * _v0;
};
inline float getV0CompressionParameter()
{
return _v0 / _maxInputValue;
};
inline const cv::ocl::oclMat &getOutput() const
{
return _filterOutput;
};
inline unsigned int getNBrows()
{
return _filterOutput.rows;
};
inline unsigned int getNBcolumns()
{
return _filterOutput.cols;
};
inline unsigned int getNBpixels()
{
return _filterOutput.size().area();
};
inline void normalizeGrayOutput_0_maxOutputValue(const float maxValue)
{
ocl::normalizeGrayOutput_0_maxOutputValue(_filterOutput, maxValue);
};
inline void normalizeGrayOutputCentredSigmoide()
{
ocl::normalizeGrayOutputCentredSigmoide(0.0, 2.0, _filterOutput, _filterOutput);
};
inline void centerReductImageLuminance()
{
ocl::centerReductImageLuminance(_filterOutput);
};
inline float getMaxInputValue()
{
return this->_maxInputValue;
};
inline void setMaxInputValue(const float newMaxInputValue)
{
this->_maxInputValue = newMaxInputValue;
};
protected:
cv::ocl::oclMat _filterOutput;
cv::ocl::oclMat _localBuffer;
int _NBrows;
int _NBcols;
unsigned int _halfNBrows;
unsigned int _halfNBcolumns;
std::valarray <float>_filteringCoeficientsTable;
float _v0;
float _maxInputValue;
float _meanInputValue;
float _localLuminanceFactor;
float _localLuminanceAddon;
float _a;
float _tau;
float _gain;
void _spatiotemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &LPfilterOutput, const unsigned int coefTableOffset = 0);
float _squaringSpatiotemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
void _spatiotemporalLPfilter_Irregular(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const unsigned int filterIndex = 0);
void _localSquaringSpatioTemporalLPfilter(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &LPfilterOutput, const unsigned int *integrationAreas, const unsigned int filterIndex = 0);
void _localLuminanceAdaptation(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, cv::ocl::oclMat &outputFrame, const bool updateLuminanceMean = true);
void _localLuminanceAdaptation(cv::ocl::oclMat &inputOutputFrame, const cv::ocl::oclMat &localLuminance);
void _localLuminanceAdaptationPosNegValues(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &localLuminance, float *outputFrame);
void _horizontalCausalFilter_addInput(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame);
void _horizontalAnticausalFilter(cv::ocl::oclMat &outputFrame);
void _verticalCausalFilter(cv::ocl::oclMat &outputFrame);
void _horizontalAnticausalFilter_Irregular(cv::ocl::oclMat &outputFrame, const cv::ocl::oclMat &spatialConstantBuffer);
void _verticalCausalFilter_Irregular(cv::ocl::oclMat &outputFrame, const cv::ocl::oclMat &spatialConstantBuffer);
void _verticalAnticausalFilter_multGain(cv::ocl::oclMat &outputFrame);
};
class MagnoRetinaFilter: public BasicRetinaFilter
{
public:
MagnoRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns);
virtual ~MagnoRetinaFilter();
void clearAllBuffers();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
void setCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float localAdaptIntegration_tau, const float localAdaptIntegration_k);
const cv::ocl::oclMat &runFilter(const cv::ocl::oclMat &OPL_ON, const cv::ocl::oclMat &OPL_OFF);
inline const cv::ocl::oclMat &getMagnoON() const
{
return _magnoXOutputON;
};
inline const cv::ocl::oclMat &getMagnoOFF() const
{
return _magnoXOutputOFF;
};
inline const cv::ocl::oclMat &getMagnoYsaturated() const
{
return _magnoYsaturated;
};
inline void normalizeGrayOutputNearZeroCentreredSigmoide()
{
ocl::normalizeGrayOutputNearZeroCentreredSigmoide(_magnoYOutput, _magnoYsaturated);
};
inline float getTemporalConstant()
{
return this->_filteringCoeficientsTable[2];
};
private:
cv::ocl::oclMat _previousInput_ON;
cv::ocl::oclMat _previousInput_OFF;
cv::ocl::oclMat _amacrinCellsTempOutput_ON;
cv::ocl::oclMat _amacrinCellsTempOutput_OFF;
cv::ocl::oclMat _magnoXOutputON;
cv::ocl::oclMat _magnoXOutputOFF;
cv::ocl::oclMat _localProcessBufferON;
cv::ocl::oclMat _localProcessBufferOFF;
cv::ocl::oclMat _magnoYOutput;
cv::ocl::oclMat _magnoYsaturated;
float _temporalCoefficient;
void _amacrineCellsComputing(const cv::ocl::oclMat &OPL_ON, const cv::ocl::oclMat &OPL_OFF);
};
class ParvoRetinaFilter: public BasicRetinaFilter
{
public:
ParvoRetinaFilter(const unsigned int NBrows = 480, const unsigned int NBcolumns = 640);
virtual ~ParvoRetinaFilter();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
void clearAllBuffers();
void setOPLandParvoFiltersParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2);
inline void setGanglionCellsLocalAdaptationLPfilterParameters(const float tau, const float k)
{
BasicRetinaFilter::setLPfilterParameters(0, tau, k, 2);
};
const cv::ocl::oclMat &runFilter(const cv::ocl::oclMat &inputFrame, const bool useParvoOutput = true);
inline const cv::ocl::oclMat &getPhotoreceptorsLPfilteringOutput() const
{
return _photoreceptorsOutput;
};
inline const cv::ocl::oclMat &getHorizontalCellsOutput() const
{
return _horizontalCellsOutput;
};
inline const cv::ocl::oclMat &getParvoON() const
{
return _parvocellularOutputON;
};
inline const cv::ocl::oclMat &getParvoOFF() const
{
return _parvocellularOutputOFF;
};
inline const cv::ocl::oclMat &getBipolarCellsON() const
{
return _bipolarCellsOutputON;
};
inline const cv::ocl::oclMat &getBipolarCellsOFF() const
{
return _bipolarCellsOutputOFF;
};
inline float getPhotoreceptorsTemporalConstant()
{
return this->_filteringCoeficientsTable[2];
};
inline float getHcellsTemporalConstant()
{
return this->_filteringCoeficientsTable[5];
};
private:
cv::ocl::oclMat _photoreceptorsOutput;
cv::ocl::oclMat _horizontalCellsOutput;
cv::ocl::oclMat _parvocellularOutputON;
cv::ocl::oclMat _parvocellularOutputOFF;
cv::ocl::oclMat _bipolarCellsOutputON;
cv::ocl::oclMat _bipolarCellsOutputOFF;
cv::ocl::oclMat _localAdaptationOFF;
cv::ocl::oclMat _localAdaptationON;
cv::ocl::oclMat _parvocellularOutputONminusOFF;
void _OPL_OnOffWaysComputing();
};
class RetinaColor: public BasicRetinaFilter
{
public:
RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod = RETINA_COLOR_DIAGONAL);
virtual ~RetinaColor();
void clearAllBuffers();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
inline void runColorMultiplexing(const cv::ocl::oclMat &inputRGBFrame)
{
runColorMultiplexing(inputRGBFrame, _multiplexedFrame);
};
void runColorMultiplexing(const cv::ocl::oclMat &demultiplexedInputFrame, cv::ocl::oclMat &multiplexedFrame);
void runColorDemultiplexing(const cv::ocl::oclMat &multiplexedColorFrame, const bool adaptiveFiltering = false, const float maxInputValue = 255.0);
void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0)
{
_saturateColors = saturateColors;
_colorSaturationValue = colorSaturationValue;
};
void setChrominanceLPfilterParameters(const float beta, const float tau, const float k)
{
setLPfilterParameters(beta, tau, k);
};
bool applyKrauskopfLMS2Acr1cr2Transform(cv::ocl::oclMat &result);
bool applyLMS2LabTransform(cv::ocl::oclMat &result);
inline const cv::ocl::oclMat &getMultiplexedFrame() const
{
return _multiplexedFrame;
};
inline const cv::ocl::oclMat &getDemultiplexedColorFrame() const
{
return _demultiplexedColorFrame;
};
inline const cv::ocl::oclMat &getLuminance() const
{
return _luminance;
};
inline const cv::ocl::oclMat &getChrominance() const
{
return _chrominance;
};
void clipRGBOutput_0_maxInputValue(cv::ocl::oclMat &inputOutputBuffer, const float maxOutputValue = 255.0);
void normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue = 255.0);
inline void setDemultiplexedColorFrame(const cv::ocl::oclMat &demultiplexedImage)
{
_demultiplexedColorFrame = demultiplexedImage;
};
protected:
inline unsigned int bayerSampleOffset(unsigned int index)
{
return index + ((index / getNBcolumns()) % 2) * getNBpixels() + ((index % getNBcolumns()) % 2) * getNBpixels();
}
inline Rect getROI(int idx)
{
return Rect(0, idx * _NBrows, _NBcols, _NBrows);
}
int _samplingMethod;
bool _saturateColors;
float _colorSaturationValue;
cv::ocl::oclMat _luminance;
cv::ocl::oclMat _multiplexedFrame;
cv::ocl::oclMat _RGBmosaic;
cv::ocl::oclMat _tempMultiplexedFrame;
cv::ocl::oclMat _demultiplexedTempBuffer;
cv::ocl::oclMat _demultiplexedColorFrame;
cv::ocl::oclMat _chrominance;
cv::ocl::oclMat _colorLocalDensity;
cv::ocl::oclMat _imageGradient;
float _pR, _pG, _pB;
bool _objectInit;
void _initColorSampling();
void _adaptiveSpatialLPfilter(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
void _adaptiveHorizontalCausalFilter_addInput(const cv::ocl::oclMat &inputFrame, const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
void _adaptiveVerticalAnticausalFilter_multGain(const cv::ocl::oclMat &gradient, cv::ocl::oclMat &outputFrame);
void _computeGradient(const cv::ocl::oclMat &luminance, cv::ocl::oclMat &gradient);
void _normalizeOutputs_0_maxOutputValue(void);
void _applyImageColorSpaceConversion(const cv::ocl::oclMat &inputFrame, cv::ocl::oclMat &outputFrame, const float *transformTable);
};
class RetinaFilter
{
public:
RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode = false, const int samplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0);
~RetinaFilter();
void clearAllBuffers();
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
bool checkInput(const cv::ocl::oclMat &input, const bool colorMode);
bool runFilter(const cv::ocl::oclMat &imageInput, const bool useAdaptiveFiltering = true, const bool processRetinaParvoMagnoMapping = false, const bool useColorMode = false, const bool inputIsColorMultiplexed = false);
void setGlobalParameters(const float OPLspatialResponse1 = 0.7, const float OPLtemporalresponse1 = 1, const float OPLassymetryGain = 0, const float OPLspatialResponse2 = 5, const float OPLtemporalresponse2 = 1, const float LPfilterSpatialResponse = 5, const float LPfilterGain = 0, const float LPfilterTemporalresponse = 0, const float MovingContoursExtractorCoefficient = 5, const bool normalizeParvoOutput_0_maxOutputValue = false, const bool normalizeMagnoOutput_0_maxOutputValue = false, const float maxOutputValue = 255.0, const float maxInputValue = 255.0, const float meanValue = 128.0);
inline void setPhotoreceptorsLocalAdaptationSensitivity(const float V0CompressionParameter)
{
_photoreceptorsPrefilter.setV0CompressionParameter(1 - V0CompressionParameter);
_setInitPeriodCount();
};
inline void setParvoGanglionCellsLocalAdaptationSensitivity(const float V0CompressionParameter)
{
_ParvoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
inline void setGanglionCellsLocalAdaptationLPfilterParameters(const float spatialResponse, const float temporalResponse)
{
_ParvoRetinaFilter.setGanglionCellsLocalAdaptationLPfilterParameters(temporalResponse, spatialResponse);
_setInitPeriodCount();
};
inline void setMagnoGanglionCellsLocalAdaptationSensitivity(const float V0CompressionParameter)
{
_MagnoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
void setOPLandParvoParameters(const float beta1, const float tau1, const float k1, const float beta2, const float tau2, const float k2, const float V0CompressionParameter)
{
_ParvoRetinaFilter.setOPLandParvoFiltersParameters(beta1, tau1, k1, beta2, tau2, k2);
_ParvoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
void setMagnoCoefficientsTable(const float parasolCells_beta, const float parasolCells_tau, const float parasolCells_k, const float amacrinCellsTemporalCutFrequency, const float V0CompressionParameter, const float localAdaptintegration_tau, const float localAdaptintegration_k)
{
_MagnoRetinaFilter.setCoefficientsTable(parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, localAdaptintegration_tau, localAdaptintegration_k);
_MagnoRetinaFilter.setV0CompressionParameter(V0CompressionParameter);
_setInitPeriodCount();
};
inline void activateNormalizeParvoOutput_0_maxOutputValue(const bool normalizeParvoOutput_0_maxOutputValue)
{
_normalizeParvoOutput_0_maxOutputValue = normalizeParvoOutput_0_maxOutputValue;
};
inline void activateNormalizeMagnoOutput_0_maxOutputValue(const bool normalizeMagnoOutput_0_maxOutputValue)
{
_normalizeMagnoOutput_0_maxOutputValue = normalizeMagnoOutput_0_maxOutputValue;
};
inline void setMaxOutputValue(const float maxOutputValue)
{
_maxOutputValue = maxOutputValue;
};
void setColorMode(const bool desiredColorMode)
{
_useColorMode = desiredColorMode;
};
inline void setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0)
{
_colorEngine.setColorSaturation(saturateColors, colorSaturationValue);
};
inline const cv::ocl::oclMat &getLocalAdaptation() const
{
return _photoreceptorsPrefilter.getOutput();
};
inline const cv::ocl::oclMat &getPhotoreceptors() const
{
return _ParvoRetinaFilter.getPhotoreceptorsLPfilteringOutput();
};
inline const cv::ocl::oclMat &getHorizontalCells() const
{
return _ParvoRetinaFilter.getHorizontalCellsOutput();
};
inline bool areContoursProcessed()
{
return _useParvoOutput;
};
bool getParvoFoveaResponse(cv::ocl::oclMat &parvoFovealResponse);
inline void activateContoursProcessing(const bool useParvoOutput)
{
_useParvoOutput = useParvoOutput;
};
const cv::ocl::oclMat &getContours();
inline const cv::ocl::oclMat &getContoursON() const
{
return _ParvoRetinaFilter.getParvoON();
};
inline const cv::ocl::oclMat &getContoursOFF() const
{
return _ParvoRetinaFilter.getParvoOFF();
};
inline bool areMovingContoursProcessed()
{
return _useMagnoOutput;
};
inline void activateMovingContoursProcessing(const bool useMagnoOutput)
{
_useMagnoOutput = useMagnoOutput;
};
inline const cv::ocl::oclMat &getMovingContours() const
{
return _MagnoRetinaFilter.getOutput();
};
inline const cv::ocl::oclMat &getMovingContoursSaturated() const
{
return _MagnoRetinaFilter.getMagnoYsaturated();
};
inline const cv::ocl::oclMat &getMovingContoursON() const
{
return _MagnoRetinaFilter.getMagnoON();
};
inline const cv::ocl::oclMat &getMovingContoursOFF() const
{
return _MagnoRetinaFilter.getMagnoOFF();
};
inline const cv::ocl::oclMat &getRetinaParvoMagnoMappedOutput() const
{
return _retinaParvoMagnoMappedFrame;
};
inline const cv::ocl::oclMat &getParvoContoursChannel() const
{
return _colorEngine.getLuminance();
};
inline const cv::ocl::oclMat &getParvoChrominance() const
{
return _colorEngine.getChrominance();
};
inline const cv::ocl::oclMat &getColorOutput() const
{
return _colorEngine.getDemultiplexedColorFrame();
};
inline bool isColorMode()
{
return _useColorMode;
};
bool getColorMode()
{
return _useColorMode;
};
inline bool isInitTransitionDone()
{
if (_ellapsedFramesSinceLastReset < _globalTemporalConstant)
{
return false;
}
return true;
};
inline float getRetinaSamplingBackProjection(const float projectedRadiusLength)
{
return projectedRadiusLength;
};
inline unsigned int getInputNBrows()
{
return _photoreceptorsPrefilter.getNBrows();
};
inline unsigned int getInputNBcolumns()
{
return _photoreceptorsPrefilter.getNBcolumns();
};
inline unsigned int getInputNBpixels()
{
return _photoreceptorsPrefilter.getNBpixels();
};
inline unsigned int getOutputNBrows()
{
return _photoreceptorsPrefilter.getNBrows();
};
inline unsigned int getOutputNBcolumns()
{
return _photoreceptorsPrefilter.getNBcolumns();
};
inline unsigned int getOutputNBpixels()
{
return _photoreceptorsPrefilter.getNBpixels();
};
private:
bool _useParvoOutput;
bool _useMagnoOutput;
unsigned int _ellapsedFramesSinceLastReset;
unsigned int _globalTemporalConstant;
cv::ocl::oclMat _retinaParvoMagnoMappedFrame;
BasicRetinaFilter _photoreceptorsPrefilter;
ParvoRetinaFilter _ParvoRetinaFilter;
MagnoRetinaFilter _MagnoRetinaFilter;
RetinaColor _colorEngine;
bool _useMinimalMemoryForToneMappingONLY;
bool _normalizeParvoOutput_0_maxOutputValue;
bool _normalizeMagnoOutput_0_maxOutputValue;
float _maxOutputValue;
bool _useColorMode;
void _setInitPeriodCount();
void _processRetinaParvoMagnoMapping();
void _runGrayToneMapping(const cv::ocl::oclMat &grayImageInput, cv::ocl::oclMat &grayImageOutput , const float PhotoreceptorsCompression = 0.6, const float ganglionCellsCompression = 0.6);
};
} /* namespace ocl */
} /* namespace bioinspired */
} /* namespace cv */
#endif /* HAVE_OPENCV_OCL */
#endif /* __OCL_RETINA_HPP__ */

View File

@ -0,0 +1,139 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/opencv_modules.hpp"
#include "opencv2/bioinspired.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/ocl.hpp"
#if defined(HAVE_OPENCV_OCL) && defined(HAVE_OPENCL)
#define RETINA_ITERATIONS 5
static double checkNear(const cv::Mat &m1, const cv::Mat &m2)
{
return cv::norm(m1, m2, cv::NORM_INF);
}
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
PARAM_TEST_CASE(Retina_OCL, bool, int, bool, double, double)
{
bool colorMode;
int colorSamplingMethod;
bool useLogSampling;
double reductionFactor;
double samplingStrength;
std::vector<cv::ocl::Info> infos;
virtual void SetUp()
{
colorMode = GET_PARAM(0);
colorSamplingMethod = GET_PARAM(1);
useLogSampling = GET_PARAM(2);
reductionFactor = GET_PARAM(3);
samplingStrength = GET_PARAM(4);
cv::ocl::getDevice(infos);
std::cout << "Device name:" << infos[0].DeviceName[0] << std::endl;
}
};
TEST_P(Retina_OCL, Accuracy)
{
using namespace cv;
Mat input = imread(cvtest::TS::ptr()->get_data_path() + "shared/lena.png", colorMode);
CV_Assert(!input.empty());
ocl::oclMat ocl_input(input);
Ptr<bioinspired::Retina> ocl_retina = bioinspired::createRetina_OCL(
input.size(),
colorMode,
colorSamplingMethod,
useLogSampling,
reductionFactor,
samplingStrength);
Ptr<bioinspired::Retina> gold_retina = bioinspired::createRetina(
input.size(),
colorMode,
colorSamplingMethod,
useLogSampling,
reductionFactor,
samplingStrength);
Mat gold_parvo;
Mat gold_magno;
ocl::oclMat ocl_parvo;
ocl::oclMat ocl_magno;
for(int i = 0; i < RETINA_ITERATIONS; i ++)
{
ocl_retina->run(ocl_input);
gold_retina->run(input);
gold_retina->getParvo(gold_parvo);
gold_retina->getMagno(gold_magno);
ocl_retina->getParvo(ocl_parvo);
ocl_retina->getMagno(ocl_magno);
EXPECT_LE(checkNear(gold_parvo, (Mat)ocl_parvo), 1.0);
EXPECT_LE(checkNear(gold_magno, (Mat)ocl_magno), 1.0);
}
}
INSTANTIATE_TEST_CASE_P(Contrib, Retina_OCL, testing::Combine(
testing::Values(false, true),
testing::Values((int)cv::bioinspired::RETINA_COLOR_BAYER),
testing::Values(false/*,true*/),
testing::Values(1.0, 0.5),
testing::Values(10.0, 5.0)));
#endif