mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge branch 'master' of https://github.com/nevion/opencv into cc
This commit is contained in:
commit
2a42960ff2
@ -118,6 +118,48 @@ These values are proved to be invariants to the image scale, rotation, and refle
|
||||
|
||||
.. seealso:: :ocv:func:`matchShapes`
|
||||
|
||||
connectedComponents
|
||||
-----------
|
||||
computes the connected components labeled image of boolean image I with 4 or 8 way connectivity - returns N, the total
|
||||
number of labels [0, N-1] where 0 represents the background label. L's value type determines the label type, an important
|
||||
consideration based on the total number of labels or alternatively the total number of pixels.
|
||||
|
||||
.. ocv:function:: uint64 connectedComponents(Mat &L, const Mat &I, int connectivity = 8)
|
||||
|
||||
.. ocv:function:: uint64 connectedComponentsWithStats(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity = 8)
|
||||
|
||||
:param L: destitination Labeled image
|
||||
|
||||
:param I: the image to be labeled
|
||||
|
||||
:param connectivity: 8 or 4 for 8-way or 4-way connectivity respectively
|
||||
|
||||
:param statsv: statistics for each label, including the background label
|
||||
|
||||
Statistics information such as bounding box, area, and centroid is exported via the ``ConnectComponentStats`` structure defined as: ::
|
||||
|
||||
class CV_EXPORTS ConnectedComponentStats
|
||||
{
|
||||
public:
|
||||
//! lower left corner column
|
||||
int lower_x;
|
||||
//! lower left corner row
|
||||
int lower_y;
|
||||
//! upper right corner column
|
||||
int upper_x;
|
||||
//! upper right corner row
|
||||
int upper_y;
|
||||
//! centroid column
|
||||
double centroid_x;
|
||||
//! centroid row
|
||||
double centroid_y;
|
||||
//! sum of all columns where the image was non-zero
|
||||
uint64 integral_x;
|
||||
//! sum of all rows where the image was non-zero
|
||||
uint64 integral_y;
|
||||
//! count of all non-zero pixels
|
||||
unsigned int area;
|
||||
};
|
||||
|
||||
findContours
|
||||
----------------
|
||||
|
@ -1102,6 +1102,15 @@ enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF
|
||||
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
|
||||
OutputArray result, int method );
|
||||
|
||||
enum { CC_STAT_LEFT=0, CC_STAT_TOP=1, CC_STAT_WIDTH=2, CC_STAT_HEIGHT=3, CC_STAT_AREA=4, CC_STAT_MAX = 5};
|
||||
|
||||
//! computes the connected components labeled image of boolean image I with 4 or 8 way connectivity - returns N, the total
|
||||
//number of labels [0, N-1] where 0 represents the background label. L's value type determines the label type, an important
|
||||
//consideration based on the total number of labels or alternatively the total number of pixels.
|
||||
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, int connectivity = 8, int ltype=CV_32S);
|
||||
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, OutputArray stats, OutputArray centroids, int connectivity = 8, int ltype=CV_32S);
|
||||
|
||||
|
||||
//! mode of the contour retrieval algorithm
|
||||
enum
|
||||
{
|
||||
|
437
modules/imgproc/src/connectedcomponents.cpp
Normal file
437
modules/imgproc/src/connectedcomponents.cpp
Normal file
@ -0,0 +1,437 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
// 2011 Jason Newton <nevion@gmail.com>
|
||||
//M*/
|
||||
//
|
||||
#include "precomp.hpp"
|
||||
#include <vector>
|
||||
|
||||
#if defined _MSC_VER
|
||||
#pragma warning(disable: 4127)
|
||||
#endif
|
||||
|
||||
namespace cv{
|
||||
namespace connectedcomponents{
|
||||
|
||||
template<typename LabelT>
|
||||
struct NoOp{
|
||||
NoOp(){
|
||||
}
|
||||
void init(const LabelT labels){
|
||||
(void) labels;
|
||||
}
|
||||
inline
|
||||
void operator()(int r, int c, LabelT l){
|
||||
(void) r;
|
||||
(void) c;
|
||||
(void) l;
|
||||
}
|
||||
void finish(){}
|
||||
};
|
||||
struct Point2ui64{
|
||||
uint64 x, y;
|
||||
Point2ui64(uint64 _x, uint64 _y):x(_x), y(_y){}
|
||||
};
|
||||
template<typename LabelT>
|
||||
struct CCStatsOp{
|
||||
OutputArray _mstatsv;
|
||||
cv::Mat statsv;
|
||||
OutputArray _mcentroidsv;
|
||||
cv::Mat centroidsv;
|
||||
std::vector<Point2ui64> integrals;
|
||||
|
||||
CCStatsOp(OutputArray _statsv, OutputArray _centroidsv): _mstatsv(_statsv), _mcentroidsv(_centroidsv){
|
||||
}
|
||||
inline
|
||||
void init(const LabelT nlabels){
|
||||
_mstatsv.create(cv::Size(nlabels, CC_STAT_MAX), cv::DataType<int>::type);
|
||||
statsv = _mstatsv.getMat();
|
||||
_mcentroidsv.create(cv::Size(nlabels, 2), cv::DataType<double>::type);
|
||||
centroidsv = _mcentroidsv.getMat();
|
||||
|
||||
for(int l = 0; l < (int) nlabels; ++l){
|
||||
unsigned int *row = (unsigned int *) &statsv.at<int>(l, 0);
|
||||
row[CC_STAT_LEFT] = std::numeric_limits<LabelT>::max();
|
||||
row[CC_STAT_TOP] = std::numeric_limits<LabelT>::max();
|
||||
row[CC_STAT_WIDTH] = std::numeric_limits<LabelT>::min();
|
||||
row[CC_STAT_HEIGHT] = std::numeric_limits<LabelT>::min();
|
||||
//row[CC_STAT_CX] = 0;
|
||||
//row[CC_STAT_CY] = 0;
|
||||
row[CC_STAT_AREA] = 0;
|
||||
}
|
||||
integrals.resize(nlabels, Point2ui64(0, 0));
|
||||
}
|
||||
void operator()(int r, int c, LabelT l){
|
||||
int *row = &statsv.at<int>(l, 0);
|
||||
unsigned int *urow = (unsigned int *) row;
|
||||
if(c > row[CC_STAT_WIDTH]){
|
||||
row[CC_STAT_WIDTH] = c;
|
||||
}else{
|
||||
if(c < row[CC_STAT_LEFT]){
|
||||
row[CC_STAT_LEFT] = c;
|
||||
}
|
||||
}
|
||||
if(r > row[CC_STAT_HEIGHT]){
|
||||
row[CC_STAT_HEIGHT] = r;
|
||||
}else{
|
||||
if(r < row[CC_STAT_TOP]){
|
||||
row[CC_STAT_TOP] = r;
|
||||
}
|
||||
}
|
||||
urow[CC_STAT_AREA]++;
|
||||
Point2ui64 &integral = integrals[l];
|
||||
integral.x += c;
|
||||
integral.y += r;
|
||||
}
|
||||
void finish(){
|
||||
for(int l = 0; l < statsv.rows; ++l){
|
||||
unsigned int *row = (unsigned int *) &statsv.at<int>(l, 0);
|
||||
row[CC_STAT_LEFT] = std::min(row[CC_STAT_LEFT], row[CC_STAT_WIDTH]);
|
||||
row[CC_STAT_WIDTH] = row[CC_STAT_WIDTH] - row[CC_STAT_LEFT] + 1;
|
||||
row[CC_STAT_TOP] = std::min(row[CC_STAT_TOP], row[CC_STAT_HEIGHT]);
|
||||
row[CC_STAT_HEIGHT] = row[CC_STAT_HEIGHT] - row[CC_STAT_TOP] + 1;
|
||||
|
||||
Point2ui64 &integral = integrals[l];
|
||||
double *centroid = ¢roidsv.at<double>(l, 0);
|
||||
centroid[0] = double(integral.x) / row[CC_STAT_AREA];
|
||||
centroid[1] = double(integral.y) / row[CC_STAT_AREA];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
//Find the root of the tree of node i
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT findRoot(const LabelT *P, LabelT i){
|
||||
LabelT root = i;
|
||||
while(P[root] < root){
|
||||
root = P[root];
|
||||
}
|
||||
return root;
|
||||
}
|
||||
|
||||
//Make all nodes in the path of node i point to root
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
void setRoot(LabelT *P, LabelT i, LabelT root){
|
||||
while(P[i] < i){
|
||||
LabelT j = P[i];
|
||||
P[i] = root;
|
||||
i = j;
|
||||
}
|
||||
P[i] = root;
|
||||
}
|
||||
|
||||
//Find the root of the tree of the node i and compress the path in the process
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT find(LabelT *P, LabelT i){
|
||||
LabelT root = findRoot(P, i);
|
||||
setRoot(P, i, root);
|
||||
return root;
|
||||
}
|
||||
|
||||
//unite the two trees containing nodes i and j and return the new root
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT set_union(LabelT *P, LabelT i, LabelT j){
|
||||
LabelT root = findRoot(P, i);
|
||||
if(i != j){
|
||||
LabelT rootj = findRoot(P, j);
|
||||
if(root > rootj){
|
||||
root = rootj;
|
||||
}
|
||||
setRoot(P, j, root);
|
||||
}
|
||||
setRoot(P, i, root);
|
||||
return root;
|
||||
}
|
||||
|
||||
//Flatten the Union Find tree and relabel the components
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT flattenL(LabelT *P, LabelT length){
|
||||
LabelT k = 1;
|
||||
for(LabelT i = 1; i < length; ++i){
|
||||
if(P[i] < i){
|
||||
P[i] = P[P[i]];
|
||||
}else{
|
||||
P[i] = k; k = k + 1;
|
||||
}
|
||||
}
|
||||
return k;
|
||||
}
|
||||
|
||||
//Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
|
||||
//using decision trees
|
||||
//Kesheng Wu, et al
|
||||
//Note: rows are encoded as position in the "rows" array to save lookup times
|
||||
//reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods
|
||||
const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods
|
||||
//reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
|
||||
const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods
|
||||
template<typename LabelT, typename PixelT, typename StatsOp = NoOp<LabelT>, int connectivity = 8>
|
||||
struct LabelingImpl{
|
||||
LabelT operator()(const cv::Mat &I, cv::Mat &L, StatsOp &sop){
|
||||
CV_Assert(L.rows == I.rows);
|
||||
CV_Assert(L.cols == I.cols);
|
||||
const int rows = L.rows;
|
||||
const int cols = L.cols;
|
||||
size_t Plength = (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3);
|
||||
if(connectivity == 4){
|
||||
Plength = 4 * Plength;//a quick and dirty upper bound, an exact answer exists if you want to find it
|
||||
//the 4 comes from the fact that a 3x3 block can never have more than 4 unique labels
|
||||
}
|
||||
LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength);
|
||||
P[0] = 0;
|
||||
LabelT lunique = 1;
|
||||
//scanning phase
|
||||
for(int r_i = 0; r_i < rows; ++r_i){
|
||||
LabelT *Lrow = (LabelT *)(L.data + L.step.p[0] * r_i);
|
||||
LabelT *Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]);
|
||||
const PixelT *Irow = (PixelT *)(I.data + I.step.p[0] * r_i);
|
||||
const PixelT *Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]);
|
||||
LabelT *Lrows[2] = {
|
||||
Lrow,
|
||||
Lrow_prev
|
||||
};
|
||||
const PixelT *Irows[2] = {
|
||||
Irow,
|
||||
Irow_prev
|
||||
};
|
||||
if(connectivity == 8){
|
||||
const int a = 0;
|
||||
const int b = 1;
|
||||
const int c = 2;
|
||||
const int d = 3;
|
||||
const bool T_a_r = (r_i - G8[a][0]) >= 0;
|
||||
const bool T_b_r = (r_i - G8[b][0]) >= 0;
|
||||
const bool T_c_r = (r_i - G8[c][0]) >= 0;
|
||||
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
|
||||
if(!*Irows[0]){
|
||||
Lrow[c_i] = 0;
|
||||
continue;
|
||||
}
|
||||
Irows[1] = Irow_prev + c_i;
|
||||
Lrows[0] = Lrow + c_i;
|
||||
Lrows[1] = Lrow_prev + c_i;
|
||||
const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0 && *(Irows[G8[a][0]] + G8[a][1]);
|
||||
const bool T_b = T_b_r && *(Irows[G8[b][0]] + G8[b][1]);
|
||||
const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]);
|
||||
const bool T_d = (c_i + G8[d][1]) >= 0 && *(Irows[G8[d][0]] + G8[d][1]);
|
||||
|
||||
//decision tree
|
||||
if(T_b){
|
||||
//copy(b)
|
||||
*Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]);
|
||||
}else{//not b
|
||||
if(T_c){
|
||||
if(T_a){
|
||||
//copy(c, a)
|
||||
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1]));
|
||||
}else{
|
||||
if(T_d){
|
||||
//copy(c, d)
|
||||
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1]));
|
||||
}else{
|
||||
//copy(c)
|
||||
*Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]);
|
||||
}
|
||||
}
|
||||
}else{//not c
|
||||
if(T_a){
|
||||
//copy(a)
|
||||
*Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]);
|
||||
}else{
|
||||
if(T_d){
|
||||
//copy(d)
|
||||
*Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]);
|
||||
}else{
|
||||
//new label
|
||||
*Lrows[0] = lunique;
|
||||
P[lunique] = lunique;
|
||||
lunique = lunique + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}else{
|
||||
//B & D only
|
||||
assert(connectivity == 4);
|
||||
const int b = 0;
|
||||
const int d = 1;
|
||||
const bool T_b_r = (r_i - G4[b][0]) >= 0;
|
||||
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
|
||||
if(!*Irows[0]){
|
||||
Lrow[c_i] = 0;
|
||||
continue;
|
||||
}
|
||||
Irows[1] = Irow_prev + c_i;
|
||||
Lrows[0] = Lrow + c_i;
|
||||
Lrows[1] = Lrow_prev + c_i;
|
||||
const bool T_b = T_b_r && *(Irows[G4[b][0]] + G4[b][1]);
|
||||
const bool T_d = (c_i + G4[d][1]) >= 0 && *(Irows[G4[d][0]] + G4[d][1]);
|
||||
if(T_b){
|
||||
if(T_d){
|
||||
//copy(d, b)
|
||||
*Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1]));
|
||||
}else{
|
||||
//copy(b)
|
||||
*Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]);
|
||||
}
|
||||
}else{
|
||||
if(T_d){
|
||||
//copy(d)
|
||||
*Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]);
|
||||
}else{
|
||||
//new label
|
||||
*Lrows[0] = lunique;
|
||||
P[lunique] = lunique;
|
||||
lunique = lunique + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//analysis
|
||||
LabelT nLabels = flattenL(P, lunique);
|
||||
sop.init(nLabels);
|
||||
|
||||
for(int r_i = 0; r_i < rows; ++r_i){
|
||||
LabelT *Lrow_start = (LabelT *)(L.data + L.step.p[0] * r_i);
|
||||
LabelT *Lrow_end = Lrow_start + cols;
|
||||
LabelT *Lrow = Lrow_start;
|
||||
for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){
|
||||
const LabelT l = P[*Lrow];
|
||||
*Lrow = l;
|
||||
sop(r_i, c_i, l);
|
||||
}
|
||||
}
|
||||
|
||||
sop.finish();
|
||||
fastFree(P);
|
||||
|
||||
return nLabels;
|
||||
}//End function LabelingImpl operator()
|
||||
|
||||
};//End struct LabelingImpl
|
||||
}//end namespace connectedcomponents
|
||||
|
||||
//L's type must have an appropriate depth for the number of pixels in I
|
||||
template<typename StatsOp>
|
||||
static
|
||||
int connectedComponents_sub1(const cv::Mat &I, cv::Mat &L, int connectivity, StatsOp &sop){
|
||||
CV_Assert(L.channels() == 1 && I.channels() == 1);
|
||||
CV_Assert(connectivity == 8 || connectivity == 4);
|
||||
|
||||
int lDepth = L.depth();
|
||||
int iDepth = I.depth();
|
||||
using connectedcomponents::LabelingImpl;
|
||||
//warn if L's depth is not sufficient?
|
||||
|
||||
if(lDepth == CV_8U){
|
||||
if(iDepth == CV_8U || iDepth == CV_8S){
|
||||
if(connectivity == 4){
|
||||
return (int) LabelingImpl<uchar, uchar, StatsOp, 4>()(I, L, sop);
|
||||
}else{
|
||||
return (int) LabelingImpl<uchar, uchar, StatsOp, 8>()(I, L, sop);
|
||||
}
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
}
|
||||
}else if(lDepth == CV_16U){
|
||||
if(iDepth == CV_8U || iDepth == CV_8S){
|
||||
if(connectivity == 4){
|
||||
return (int) LabelingImpl<ushort, uchar, StatsOp, 4>()(I, L, sop);
|
||||
}else{
|
||||
return (int) LabelingImpl<ushort, uchar, StatsOp, 8>()(I, L, sop);
|
||||
}
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
}
|
||||
}else if(lDepth == CV_32S){
|
||||
//note that signed types don't really make sense here and not being able to use unsigned matters for scientific projects
|
||||
//OpenCV: how should we proceed? .at<T> typechecks in debug mode
|
||||
if(iDepth == CV_8U || iDepth == CV_8S){
|
||||
if(connectivity == 4){
|
||||
return (int) LabelingImpl<int, uchar, StatsOp, 4>()(I, L, sop);
|
||||
}else{
|
||||
return (int) LabelingImpl<int, uchar, StatsOp, 8>()(I, L, sop);
|
||||
}
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported label/image type");
|
||||
return -1;
|
||||
}
|
||||
|
||||
int connectedComponents(InputArray _I, OutputArray _L, int connectivity, int ltype){
|
||||
const cv::Mat I = _I.getMat();
|
||||
_L.create(I.size(), CV_MAT_TYPE(ltype));
|
||||
cv::Mat L = _L.getMat();
|
||||
if(ltype == CV_16U){
|
||||
connectedcomponents::NoOp<ushort> sop; return connectedComponents_sub1(I, L, connectivity, sop);
|
||||
}else if(ltype == CV_32S){
|
||||
connectedcomponents::NoOp<unsigned> sop; return connectedComponents_sub1(I, L, connectivity, sop);
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
int connectedComponentsWithStats(InputArray _I, OutputArray _L, OutputArray statsv, OutputArray centroids, int connectivity, int ltype){
|
||||
const cv::Mat I = _I.getMat();
|
||||
_L.create(I.size(), CV_MAT_TYPE(ltype));
|
||||
cv::Mat L = _L.getMat();
|
||||
if(ltype == CV_16U){
|
||||
connectedcomponents::CCStatsOp<ushort> sop(statsv, centroids); return connectedComponents_sub1(I, L, connectivity, sop);
|
||||
}else if(ltype == CV_32S){
|
||||
connectedcomponents::CCStatsOp<unsigned> sop(statsv, centroids); return connectedComponents_sub1(I, L, connectivity, sop);
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
108
modules/imgproc/test/test_connectedcomponents.cpp
Normal file
108
modules/imgproc/test/test_connectedcomponents.cpp
Normal file
@ -0,0 +1,108 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <string>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class CV_ConnectedComponentsTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_ConnectedComponentsTest();
|
||||
~CV_ConnectedComponentsTest();
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_ConnectedComponentsTest::CV_ConnectedComponentsTest() {}
|
||||
CV_ConnectedComponentsTest::~CV_ConnectedComponentsTest() {}
|
||||
|
||||
void CV_ConnectedComponentsTest::run( int /* start_from */)
|
||||
{
|
||||
string exp_path = string(ts->get_data_path()) + "connectedcomponents/ccomp_exp.png";
|
||||
Mat exp = imread(exp_path, 0);
|
||||
Mat orig = imread(string(ts->get_data_path()) + "connectedcomponents/concentric_circles.png", 0);
|
||||
|
||||
if (orig.empty())
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
Mat bw = orig > 128;
|
||||
Mat labelImage;
|
||||
int nLabels = connectedComponents(bw, labelImage, 8, CV_32S);
|
||||
|
||||
for(int r = 0; r < labelImage.rows; ++r){
|
||||
for(int c = 0; c < labelImage.cols; ++c){
|
||||
int l = labelImage.at<int>(r, c);
|
||||
bool pass = l >= 0 && l <= nLabels;
|
||||
if(!pass){
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( exp.empty() || orig.size() != exp.size() )
|
||||
{
|
||||
imwrite(exp_path, labelImage);
|
||||
exp = labelImage;
|
||||
}
|
||||
|
||||
if (0 != norm(labelImage > 0, exp > 0, NORM_INF))
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||||
return;
|
||||
}
|
||||
if (nLabels != norm(labelImage, NORM_INF)+1)
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||||
return;
|
||||
}
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
TEST(Imgproc_ConnectedComponents, regression) { CV_ConnectedComponentsTest test; test.safe_run(); }
|
||||
|
@ -410,7 +410,7 @@ static bool pyopencv_to(PyObject* obj, bool& value, const char* name = "<unknown
|
||||
|
||||
static PyObject* pyopencv_from(size_t value)
|
||||
{
|
||||
return PyLong_FromUnsignedLong((unsigned long)value);
|
||||
return PyLong_FromSize_t(value);
|
||||
}
|
||||
|
||||
static bool pyopencv_to(PyObject* obj, size_t& value, const char* name = "<unknown>")
|
||||
@ -497,9 +497,16 @@ static bool pyopencv_to(PyObject* obj, float& value, const char* name = "<unknow
|
||||
|
||||
static PyObject* pyopencv_from(int64 value)
|
||||
{
|
||||
return PyFloat_FromDouble((double)value);
|
||||
return PyLong_FromLongLong(value);
|
||||
}
|
||||
|
||||
#if !defined(__LP64__)
|
||||
static PyObject* pyopencv_from(uint64 value)
|
||||
{
|
||||
return PyLong_FromUnsignedLongLong(value);
|
||||
}
|
||||
#endif
|
||||
|
||||
static PyObject* pyopencv_from(const string& value)
|
||||
{
|
||||
return PyString_FromString(value.empty() ? "" : value.c_str());
|
||||
|
@ -11,25 +11,21 @@ int threshval = 100;
|
||||
static void on_trackbar(int, void*)
|
||||
{
|
||||
Mat bw = threshval < 128 ? (img < threshval) : (img > threshval);
|
||||
|
||||
vector<vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
|
||||
findContours( bw, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
|
||||
|
||||
Mat dst = Mat::zeros(img.size(), CV_8UC3);
|
||||
|
||||
if( !contours.empty() && !hierarchy.empty() )
|
||||
{
|
||||
// iterate through all the top-level contours,
|
||||
// draw each connected component with its own random color
|
||||
int idx = 0;
|
||||
for( ; idx >= 0; idx = hierarchy[idx][0] )
|
||||
{
|
||||
Scalar color( (rand()&255), (rand()&255), (rand()&255) );
|
||||
drawContours( dst, contours, idx, color, CV_FILLED, 8, hierarchy );
|
||||
}
|
||||
Mat labelImage(img.size(), CV_32S);
|
||||
int nLabels = connectedComponents(bw, labelImage, 8);
|
||||
std::vector<Vec3b> colors(nLabels);
|
||||
colors[0] = Vec3b(0, 0, 0);//background
|
||||
for(int label = 1; label < nLabels; ++label){
|
||||
colors[label] = Vec3b( (rand()&255), (rand()&255), (rand()&255) );
|
||||
}
|
||||
Mat dst(img.size(), CV_8UC3);
|
||||
for(int r = 0; r < dst.rows; ++r){
|
||||
for(int c = 0; c < dst.cols; ++c){
|
||||
int label = labelImage.at<int>(r, c);
|
||||
Vec3b &pixel = dst.at<Vec3b>(r, c);
|
||||
pixel = colors[label];
|
||||
}
|
||||
}
|
||||
|
||||
imshow( "Connected Components", dst );
|
||||
}
|
||||
@ -45,14 +41,14 @@ static void help()
|
||||
|
||||
const char* keys =
|
||||
{
|
||||
"{@image |stuff.jpg|image for converting to a grayscale}"
|
||||
"{@image|stuff.jpg|image for converting to a grayscale}"
|
||||
};
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
help();
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
string inputImage = parser.get<string>(1);
|
||||
string inputImage = parser.get<string>("@image");
|
||||
img = imread(inputImage.c_str(), 0);
|
||||
|
||||
if(img.empty())
|
||||
|
Loading…
Reference in New Issue
Block a user