mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
fix segfaults, support bias in untrainable mode, support batches in untrainable mode
This commit is contained in:
parent
4cdb4652cf
commit
2aeb32d2d1
@ -19,25 +19,51 @@
|
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
|
||||
struct ScaleShiftConfiguration {
|
||||
enum class OpMode {
|
||||
NONE,
|
||||
TRAINABLE, /* use a pretrained blob */
|
||||
UNTRAINABLE /* use another input */
|
||||
};
|
||||
|
||||
OpMode scaleMode;
|
||||
OpMode shiftMode;
|
||||
|
||||
std::size_t axis;
|
||||
};
|
||||
|
||||
template <class T>
|
||||
class ScaleShiftOp final : public CUDABackendNode {
|
||||
public:
|
||||
using wrapper_type = GetCUDABackendWrapperType<T>;
|
||||
|
||||
ScaleShiftOp(csl::Stream stream_, std::size_t axis, const cv::Mat& weights, const cv::Mat& bias)
|
||||
: stream(std::move(stream_)), axis{ axis }
|
||||
ScaleShiftOp(csl::Stream stream_, const ScaleShiftConfiguration& config, const cv::Mat& weights, const cv::Mat& bias)
|
||||
: stream(std::move(stream_)), axis{ config.axis }
|
||||
{
|
||||
if (!weights.empty())
|
||||
scaleMode = config.scaleMode;
|
||||
if (scaleMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
|
||||
{
|
||||
CV_Assert(!weights.empty());
|
||||
weightsTensor = csl::makeTensorHeader<T>(weights);
|
||||
csl::copyMatToTensor<T>(weights, weightsTensor, stream);
|
||||
}
|
||||
|
||||
if (!bias.empty())
|
||||
shiftMode = config.shiftMode;
|
||||
if (shiftMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
|
||||
{
|
||||
CV_Assert(!bias.empty());
|
||||
biasTensor = csl::makeTensorHeader<T>(bias);
|
||||
csl::copyMatToTensor<T>(bias, biasTensor, stream);
|
||||
}
|
||||
|
||||
CV_Assert(scaleMode != ScaleShiftConfiguration::OpMode::NONE ||
|
||||
shiftMode != ScaleShiftConfiguration::OpMode::NONE);
|
||||
|
||||
if (scaleMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE &&
|
||||
shiftMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE)
|
||||
{
|
||||
CV_Error(cv::Error::StsNotImplemented, "scale and shift both in untrainable mode is not supported");
|
||||
}
|
||||
}
|
||||
|
||||
void forward(
|
||||
@ -53,40 +79,60 @@ namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
|
||||
auto output = output_wrapper->getSpan();
|
||||
|
||||
/* number of batches in the weights/bias
|
||||
* trainable mode: same for all batches
|
||||
* untrainable mode: could be different for different batch samples
|
||||
*/
|
||||
std::size_t parameter_batch_size = 1;
|
||||
|
||||
csl::TensorView<T> weights;
|
||||
if (weightsTensor.empty() && biasTensor.empty())
|
||||
if (scaleMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
|
||||
{
|
||||
CV_Assert(!weightsTensor.empty());
|
||||
weights = csl::TensorView<T>(weightsTensor);
|
||||
}
|
||||
else if (scaleMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE)
|
||||
{
|
||||
CV_Assert(inputs.size() == 2);
|
||||
|
||||
/* no explicit scale/shift values provided; use the second input as weights */
|
||||
auto wrapper = inputs[1].dynamicCast<wrapper_type>();
|
||||
weights = wrapper->getView();
|
||||
}
|
||||
else if (!weightsTensor.empty())
|
||||
{
|
||||
weights = csl::TensorSpan<T>(weightsTensor);
|
||||
|
||||
parameter_batch_size = weights.get_axis_size(0);
|
||||
CV_Assert(parameter_batch_size == input.get_axis_size(0));
|
||||
}
|
||||
|
||||
csl::TensorView<T> bias;
|
||||
if (!biasTensor.empty())
|
||||
bias = csl::TensorSpan<T>(biasTensor);
|
||||
|
||||
const auto numParams = !weights.empty() ? weights.size() : bias.size();
|
||||
CV_Assert(numParams != 0);
|
||||
if (!weightsTensor.empty() && !biasTensor.empty())
|
||||
if (shiftMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
|
||||
{
|
||||
CV_CheckEQ(weights.size(), bias.size(), "weights and bias size are not equal");
|
||||
CV_Assert(!biasTensor.empty());
|
||||
bias = csl::TensorView<T>(biasTensor);
|
||||
}
|
||||
else if (shiftMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE)
|
||||
{
|
||||
CV_Assert(inputs.size() == 2);
|
||||
auto wrapper = inputs[1].dynamicCast<wrapper_type>();
|
||||
bias = wrapper->getView();
|
||||
|
||||
parameter_batch_size = bias.get_axis_size(0);
|
||||
CV_Assert(parameter_batch_size == input.get_axis_size(0));
|
||||
}
|
||||
|
||||
/* the weights/bias might require broadcasting to scale/shift */
|
||||
CV_Assert(!weights.empty() || !bias.empty());
|
||||
if (!weights.empty() && !bias.empty())
|
||||
{
|
||||
CV_CheckEQ(weights.size(), bias.size(), "different broadcasting options for weights and bias is not supported");
|
||||
}
|
||||
|
||||
const auto num_parameters = !weights.empty() ? weights.size() : bias.size();
|
||||
const auto mid_size = num_parameters / parameter_batch_size;
|
||||
|
||||
/* the scale shift operation might require broadcasting */
|
||||
const int end_axis = [&] {
|
||||
for (int endAxis = axis + 1; endAxis <= input.rank(); endAxis++)
|
||||
{
|
||||
std::size_t size = input.size_range(axis, endAxis);
|
||||
if (size == numParams)
|
||||
for (int endAxis = axis + 1; endAxis <= input.rank(); endAxis++) {
|
||||
if (input.size_range(axis, endAxis) == mid_size)
|
||||
return endAxis;
|
||||
}
|
||||
CV_Assert(0 /* invalid weights matrix */);
|
||||
CV_Assert(0 /* failed to find a broadcast config */);
|
||||
}();
|
||||
|
||||
std::size_t inner_size = input.size_range(end_axis, input.rank());
|
||||
@ -103,6 +149,8 @@ namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
csl::Stream stream;
|
||||
csl::Tensor<T> weightsTensor, biasTensor;
|
||||
std::size_t axis;
|
||||
|
||||
ScaleShiftConfiguration::OpMode scaleMode, shiftMode;
|
||||
};
|
||||
|
||||
}}} /* namespace cv::dnn::cuda4dnn */
|
||||
|
@ -159,14 +159,49 @@ public:
|
||||
|
||||
CV_Assert(!blobs.empty() || inputs.size() == 2);
|
||||
|
||||
cv::Mat weightsMat = hasWeights ? blobs[0] : Mat();
|
||||
auto weightsMat = Mat(), biasMat = Mat();
|
||||
|
||||
/* if the weights are provided, bias will be in blobs[1]; otherwise, it will be in blobs[0]
|
||||
* in either case, it is at the end of the blobs vector => bias = blobs.back()
|
||||
*/
|
||||
cv::Mat biasMat = hasBias ? blobs.back() : Mat();
|
||||
cuda4dnn::ScaleShiftConfiguration config;
|
||||
if (hasWeights)
|
||||
{
|
||||
if (blobs.empty())
|
||||
{
|
||||
config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::UNTRAINABLE;
|
||||
}
|
||||
else
|
||||
{
|
||||
weightsMat = blobs[0];
|
||||
config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::TRAINABLE;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::NONE;
|
||||
}
|
||||
|
||||
return make_cuda_node<cuda4dnn::ScaleShiftOp>(preferableTarget, std::move(context->stream), axis, weightsMat, biasMat);
|
||||
if (hasBias)
|
||||
{
|
||||
if(blobs.empty())
|
||||
{
|
||||
config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::UNTRAINABLE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* if the weights are provided, bias will be in blobs[1]; otherwise, it will be in blobs[0]
|
||||
* in either case, it is at the end of the blobs vector => bias = blobs.back()
|
||||
*/
|
||||
biasMat = blobs.back();
|
||||
config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::TRAINABLE;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::NONE;
|
||||
}
|
||||
|
||||
config.axis = axis;
|
||||
|
||||
return make_cuda_node<cuda4dnn::ScaleShiftOp>(preferableTarget, std::move(context->stream), config, weightsMat, biasMat);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -580,8 +580,8 @@ TEST_P(Test_Darknet_layers, convolutional)
|
||||
|
||||
TEST_P(Test_Darknet_layers, scale_channels)
|
||||
{
|
||||
// TODO: test fails for batches due to a bug/missing feature in ScaleLayer
|
||||
testDarknetLayer("scale_channels", false, false);
|
||||
bool testBatches = backend == DNN_BACKEND_CUDA;
|
||||
testDarknetLayer("scale_channels", false, testBatches);
|
||||
}
|
||||
|
||||
TEST_P(Test_Darknet_layers, connected)
|
||||
|
Loading…
Reference in New Issue
Block a user