mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
revise accuracy and perf tests
This commit is contained in:
parent
843094a07f
commit
2c198f6cd6
@ -52,6 +52,8 @@ int main(int argc, const char *argv[])
|
||||
cerr << "no device found\n";
|
||||
return -1;
|
||||
}
|
||||
// set this to overwrite binary cache every time the test starts
|
||||
ocl::setBinaryDiskCache(ocl::CACHE_UPDATE);
|
||||
|
||||
int devidx = 0;
|
||||
|
||||
|
@ -15,8 +15,8 @@
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Chunpeng Zhang chunpeng@multicorewareinc.com
|
||||
//
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -31,7 +31,7 @@
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
@ -45,50 +45,57 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <iomanip>
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
PARAM_TEST_CASE(ColumnSum, cv::Size)
|
||||
///////////// StereoMatchBM ////////////////////////
|
||||
PERFTEST(StereoMatchBM)
|
||||
{
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
Mat left_image = imread(abspath("aloeL.jpg"), cv::IMREAD_GRAYSCALE);
|
||||
Mat right_image = imread(abspath("aloeR.jpg"), cv::IMREAD_GRAYSCALE);
|
||||
Mat disp,dst;
|
||||
ocl::oclMat d_left, d_right,d_disp;
|
||||
int n_disp= 128;
|
||||
int winSize =19;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
size = GET_PARAM(0);
|
||||
}
|
||||
};
|
||||
SUBTEST << left_image.cols << 'x' << left_image.rows << "; aloeL.jpg ;"<< right_image.cols << 'x' << right_image.rows << "; aloeR.jpg ";
|
||||
|
||||
TEST_P(ColumnSum, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_32FC1);
|
||||
cv::ocl::oclMat d_dst;
|
||||
cv::ocl::oclMat d_src(src);
|
||||
StereoBM bm(0, n_disp, winSize);
|
||||
bm(left_image, right_image, dst);
|
||||
|
||||
cv::ocl::columnSum(d_src, d_dst);
|
||||
CPU_ON;
|
||||
bm(left_image, right_image, dst);
|
||||
CPU_OFF;
|
||||
|
||||
cv::Mat dst(d_dst);
|
||||
d_left.upload(left_image);
|
||||
d_right.upload(right_image);
|
||||
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(0, j);
|
||||
float res = dst.at<float>(0, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
ocl::StereoBM_OCL d_bm(0, n_disp, winSize);
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
|
||||
float res = dst.at<float>(i, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
}
|
||||
WARMUP_ON;
|
||||
d_bm(d_left, d_right, d_disp);
|
||||
WARMUP_OFF;
|
||||
|
||||
cv::Mat ocl_mat;
|
||||
d_disp.download(ocl_mat);
|
||||
ocl_mat.convertTo(ocl_mat, dst.type());
|
||||
|
||||
GPU_ON;
|
||||
d_bm(d_left, d_right, d_disp);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_left.upload(left_image);
|
||||
d_right.upload(right_image);
|
||||
d_bm(d_left, d_right, d_disp);
|
||||
d_disp.download(disp);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
TestSystem::instance().setAccurate(-1, 0.);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, ColumnSum, DIFFERENT_SIZES);
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -284,6 +284,7 @@ PERFTEST(GaussianBlur)
|
||||
Mat src, dst, ocl_dst;
|
||||
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
|
||||
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
|
||||
const int ksize = 7;
|
||||
|
||||
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
|
||||
{
|
||||
@ -291,29 +292,28 @@ PERFTEST(GaussianBlur)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
|
||||
|
||||
gen(src, size, size, all_type[j], 5, 16);
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
|
||||
GaussianBlur(src, dst, Size(9, 9), 0);
|
||||
GaussianBlur(src, dst, Size(ksize, ksize), 0);
|
||||
|
||||
CPU_ON;
|
||||
GaussianBlur(src, dst, Size(9, 9), 0);
|
||||
GaussianBlur(src, dst, Size(ksize, ksize), 0);
|
||||
CPU_OFF;
|
||||
|
||||
ocl::oclMat d_src(src);
|
||||
ocl::oclMat d_dst(src.size(), src.type());
|
||||
ocl::oclMat d_buf;
|
||||
ocl::oclMat d_dst;
|
||||
|
||||
WARMUP_ON;
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(9, 9), 0);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
|
||||
WARMUP_OFF;
|
||||
|
||||
GPU_ON;
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(9, 9), 0);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(9, 9), 0);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
|
@ -46,11 +46,6 @@
|
||||
#include "precomp.hpp"
|
||||
|
||||
///////////// HOG////////////////////////
|
||||
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold)
|
||||
{
|
||||
return ((abs(r1.x - r2.x) < threshold) && (abs(r1.y - r2.y) < threshold) &&
|
||||
(abs(r1.width - r2.width) < threshold) && (abs(r1.height - r2.height) < threshold));
|
||||
}
|
||||
|
||||
PERFTEST(HOG)
|
||||
{
|
||||
@ -61,13 +56,12 @@ PERFTEST(HOG)
|
||||
throw runtime_error("can't open road.png");
|
||||
}
|
||||
|
||||
|
||||
cv::HOGDescriptor hog;
|
||||
hog.setSVMDetector(hog.getDefaultPeopleDetector());
|
||||
std::vector<cv::Rect> found_locations;
|
||||
std::vector<cv::Rect> d_found_locations;
|
||||
|
||||
SUBTEST << 768 << 'x' << 576 << "; road.png";
|
||||
SUBTEST << src.cols << 'x' << src.rows << "; road.png";
|
||||
|
||||
hog.detectMultiScale(src, found_locations);
|
||||
|
||||
@ -84,70 +78,10 @@ PERFTEST(HOG)
|
||||
ocl_hog.detectMultiScale(d_src, d_found_locations);
|
||||
WARMUP_OFF;
|
||||
|
||||
// Ground-truth rectangular people window
|
||||
cv::Rect win1_64x128(231, 190, 72, 144);
|
||||
cv::Rect win2_64x128(621, 156, 97, 194);
|
||||
cv::Rect win1_48x96(238, 198, 63, 126);
|
||||
cv::Rect win2_48x96(619, 161, 92, 185);
|
||||
cv::Rect win3_48x96(488, 136, 56, 112);
|
||||
|
||||
// Compare whether ground-truth windows are detected and compare the number of windows detected.
|
||||
std::vector<int> d_comp(4);
|
||||
std::vector<int> comp(4);
|
||||
for(int i = 0; i < (int)d_comp.size(); i++)
|
||||
{
|
||||
d_comp[i] = 0;
|
||||
comp[i] = 0;
|
||||
}
|
||||
|
||||
int threshold = 10;
|
||||
int val = 32;
|
||||
d_comp[0] = (int)d_found_locations.size();
|
||||
comp[0] = (int)found_locations.size();
|
||||
|
||||
cv::Size winSize = hog.winSize;
|
||||
|
||||
if (winSize == cv::Size(48, 96))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found_locations[i], win1_48x96, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found_locations[i], win2_48x96, threshold))
|
||||
d_comp[2] = val;
|
||||
if (match_rect(d_found_locations[i], win3_48x96, threshold))
|
||||
d_comp[3] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(found_locations[i], win1_48x96, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found_locations[i], win2_48x96, threshold))
|
||||
comp[2] = val;
|
||||
if (match_rect(found_locations[i], win3_48x96, threshold))
|
||||
comp[3] = val;
|
||||
}
|
||||
}
|
||||
else if (winSize == cv::Size(64, 128))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found_locations[i], win1_64x128, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found_locations[i], win2_64x128, threshold))
|
||||
d_comp[2] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(found_locations[i], win1_64x128, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found_locations[i], win2_64x128, threshold))
|
||||
comp[2] = val;
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat gpu_rst(d_comp), cpu_rst(comp);
|
||||
TestSystem::instance().ExpectedMatNear(gpu_rst, cpu_rst, 3);
|
||||
if(d_found_locations.size() == found_locations.size())
|
||||
TestSystem::instance().setAccurate(1, 0);
|
||||
else
|
||||
TestSystem::instance().setAccurate(0, abs((int)found_locations.size() - (int)d_found_locations.size()));
|
||||
|
||||
GPU_ON;
|
||||
ocl_hog.detectMultiScale(d_src, found_locations);
|
||||
|
@ -743,12 +743,12 @@ PERFTEST(meanShiftFiltering)
|
||||
WARMUP_OFF;
|
||||
|
||||
GPU_ON;
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr);
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr, crit);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr);
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr, crit);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
@ -969,3 +969,45 @@ PERFTEST(CLAHE)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////// columnSum////////////////////////
|
||||
PERFTEST(columnSum)
|
||||
{
|
||||
Mat src, dst, ocl_dst;
|
||||
ocl::oclMat d_src, d_dst;
|
||||
|
||||
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; CV_32FC1";
|
||||
|
||||
gen(src, size, size, CV_32FC1, 0, 256);
|
||||
|
||||
CPU_ON;
|
||||
dst.create(src.size(), src.type());
|
||||
for (int j = 0; j < src.cols; j++)
|
||||
dst.at<float>(0, j) = src.at<float>(0, j);
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
dst.at<float>(i, j) = dst.at<float>(i - 1 , j) + src.at<float>(i , j);
|
||||
CPU_OFF;
|
||||
|
||||
d_src.upload(src);
|
||||
|
||||
WARMUP_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
WARMUP_OFF;
|
||||
|
||||
GPU_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 5e-1);
|
||||
}
|
||||
}
|
||||
|
@ -44,45 +44,49 @@
|
||||
//
|
||||
//M*/
|
||||
#include "precomp.hpp"
|
||||
|
||||
///////////// columnSum////////////////////////
|
||||
PERFTEST(columnSum)
|
||||
///////////// Moments ////////////////////////
|
||||
PERFTEST(Moments)
|
||||
{
|
||||
Mat src, dst, ocl_dst;
|
||||
ocl::oclMat d_src, d_dst;
|
||||
Mat src;
|
||||
bool binaryImage = 0;
|
||||
|
||||
int all_type[] = {CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1};
|
||||
std::string type_name[] = {"CV_8UC1", "CV_16SC1", "CV_32FC1", "CV_64FC1"};
|
||||
|
||||
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; CV_32FC1";
|
||||
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; " << type_name[j];
|
||||
|
||||
gen(src, size, size, CV_32FC1, 0, 256);
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
|
||||
CPU_ON;
|
||||
dst.create(src.size(), src.type());
|
||||
for (int j = 0; j < src.cols; j++)
|
||||
dst.at<float>(0, j) = src.at<float>(0, j);
|
||||
cv::Moments CvMom = moments(src, binaryImage);
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
dst.at<float>(i, j) = dst.at<float>(i - 1 , j) + src.at<float>(i , j);
|
||||
CPU_OFF;
|
||||
CPU_ON;
|
||||
moments(src, binaryImage);
|
||||
CPU_OFF;
|
||||
|
||||
d_src.upload(src);
|
||||
cv::Moments oclMom;
|
||||
WARMUP_ON;
|
||||
oclMom = ocl::ocl_moments(src, binaryImage);
|
||||
WARMUP_OFF;
|
||||
|
||||
WARMUP_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
WARMUP_OFF;
|
||||
Mat gpu_dst, cpu_dst;
|
||||
HuMoments(CvMom, cpu_dst);
|
||||
HuMoments(oclMom, gpu_dst);
|
||||
|
||||
GPU_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
GPU_OFF;
|
||||
GPU_ON;
|
||||
ocl::ocl_moments(src, binaryImage);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
GPU_FULL_ON;
|
||||
ocl::ocl_moments(src, binaryImage);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(gpu_dst, cpu_dst, .5);
|
||||
|
||||
}
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 5e-1);
|
||||
}
|
||||
}
|
||||
}
|
@ -331,20 +331,6 @@ void TestSystem::printMetrics(int is_accurate, double cpu_time, double gpu_time,
|
||||
cout << setiosflags(ios_base::left);
|
||||
stringstream stream;
|
||||
|
||||
#if 0
|
||||
if(is_accurate == 1)
|
||||
stream << "Pass";
|
||||
else if(is_accurate_ == 0)
|
||||
stream << "Fail";
|
||||
else if(is_accurate == -1)
|
||||
stream << " ";
|
||||
else
|
||||
{
|
||||
std::cout<<"is_accurate errer: "<<is_accurate<<"\n";
|
||||
exit(-1);
|
||||
}
|
||||
#endif
|
||||
|
||||
std::stringstream &cur_subtest_description = getCurSubtestDescription();
|
||||
|
||||
#if GTEST_OS_WINDOWS&&!GTEST_OS_WINDOWS_MOBILE
|
||||
|
@ -1,180 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Sen Liu, swjutls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
#include "precomp.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
extern string workdir;
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
|
||||
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
|
||||
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
|
||||
struct getRect
|
||||
{
|
||||
Rect operator ()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Haar, double, int, CascadeName)
|
||||
{
|
||||
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
cv::CascadeClassifier cpucascade, cpunestedCascade;
|
||||
|
||||
double scale;
|
||||
int flags;
|
||||
std::string cascadeName;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
scale = GET_PARAM(0);
|
||||
flags = GET_PARAM(1);
|
||||
cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(2));
|
||||
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////faceDetect/////////////////////////////////////////////////
|
||||
TEST_P(Haar, FaceDetect)
|
||||
{
|
||||
string imgName = workdir + "lena.jpg";
|
||||
Mat img = imread( imgName, 1 );
|
||||
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read " << imgName << std::endl;
|
||||
return ;
|
||||
}
|
||||
|
||||
vector<Rect> faces, oclfaces;
|
||||
|
||||
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
|
||||
cv::ocl::oclMat image;
|
||||
CvSeq *_objects;
|
||||
image.upload(smallImg);
|
||||
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
|
||||
3, flags, Size(30, 30), Size(0, 0) );
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
}
|
||||
|
||||
TEST_P(Haar, FaceDetectUseBuf)
|
||||
{
|
||||
string imgName = workdir + "lena.jpg";
|
||||
Mat img = imread( imgName, 1 );
|
||||
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read " << imgName << std::endl;
|
||||
return ;
|
||||
}
|
||||
|
||||
vector<Rect> faces, oclfaces;
|
||||
|
||||
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
|
||||
cv::ocl::oclMat image;
|
||||
image.upload(smallImg);
|
||||
|
||||
cv::ocl::OclCascadeClassifierBuf cascadebuf;
|
||||
if( !cascadebuf.load( cascadeName ) )
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << endl;
|
||||
return;
|
||||
}
|
||||
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
|
||||
// intentionally run ocl facedetect again and check if it still works after the first run
|
||||
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30));
|
||||
cascadebuf.release();
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(FaceDetect, Haar,
|
||||
Combine(Values(1.0),
|
||||
Values(CV_HAAR_SCALE_IMAGE, 0), Values(cascade_frontalface_alt, cascade_frontalface_alt2)));
|
||||
|
||||
#endif // HAVE_OPENCL
|
@ -1573,6 +1573,47 @@ TEST_P(Convolve, Mat)
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////// ColumnSum //////////////////////////////////////
|
||||
PARAM_TEST_CASE(ColumnSum, cv::Size)
|
||||
{
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
size = GET_PARAM(0);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(ColumnSum, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_32FC1);
|
||||
cv::ocl::oclMat d_dst;
|
||||
cv::ocl::oclMat d_src(src);
|
||||
|
||||
cv::ocl::columnSum(d_src, d_dst);
|
||||
|
||||
cv::Mat dst(d_dst);
|
||||
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(0, j);
|
||||
float res = dst.at<float>(0, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
|
||||
float res = dst.at<float>(i, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
}
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine(
|
||||
ONE_TYPE(CV_8UC1),
|
||||
NULL_TYPE,
|
||||
@ -1688,7 +1729,6 @@ INSTANTIATE_TEST_CASE_P(ImgProc, CLAHE, Combine(
|
||||
Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300)),
|
||||
Values(0.0, 40.0)));
|
||||
|
||||
//INSTANTIATE_TEST_CASE_P(ConvolveTestBase, Convolve, Combine(
|
||||
// Values(CV_32FC1, CV_32FC1),
|
||||
// Values(false))); // Values(false) is the reserved parameter
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, ColumnSum, DIFFERENT_SIZES);
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
@ -15,7 +15,7 @@
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Wenju He, wenju@multicorewareinc.com
|
||||
// Yao Wang, bitwangyaoyao@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -45,51 +45,58 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/core.hpp"
|
||||
using namespace std;
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace testing;
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
extern string workdir;
|
||||
PARAM_TEST_CASE(HOG, cv::Size, int)
|
||||
|
||||
///////////////////// HOG /////////////////////////////
|
||||
PARAM_TEST_CASE(HOG, Size, int)
|
||||
{
|
||||
cv::Size winSize;
|
||||
Size winSize;
|
||||
int type;
|
||||
Mat img_rgb;
|
||||
virtual void SetUp()
|
||||
{
|
||||
winSize = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
img_rgb = readImage(workdir + "../gpu/road.png");
|
||||
if(img_rgb.empty())
|
||||
{
|
||||
std::cout << "Couldn't read road.png" << std::endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HOG, GetDescriptors)
|
||||
{
|
||||
// Load image
|
||||
cv::Mat img_rgb = readImage(workdir + "lena.jpg");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
// Convert image
|
||||
cv::Mat img;
|
||||
Mat img;
|
||||
switch (type)
|
||||
{
|
||||
case CV_8UC1:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
break;
|
||||
case CV_8UC4:
|
||||
default:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
break;
|
||||
}
|
||||
cv::ocl::oclMat d_img(img);
|
||||
ocl::oclMat d_img(img);
|
||||
|
||||
// HOGs
|
||||
cv::ocl::HOGDescriptor ocl_hog;
|
||||
ocl::HOGDescriptor ocl_hog;
|
||||
ocl_hog.gamma_correction = true;
|
||||
cv::HOGDescriptor hog;
|
||||
HOGDescriptor hog;
|
||||
hog.gammaCorrection = true;
|
||||
|
||||
// Compute descriptor
|
||||
cv::ocl::oclMat d_descriptors;
|
||||
ocl::oclMat d_descriptors;
|
||||
ocl_hog.getDescriptors(d_img, ocl_hog.win_size, d_descriptors, ocl_hog.DESCR_FORMAT_COL_BY_COL);
|
||||
cv::Mat down_descriptors;
|
||||
Mat down_descriptors;
|
||||
d_descriptors.download(down_descriptors);
|
||||
down_descriptors = down_descriptors.reshape(0, down_descriptors.cols * down_descriptors.rows);
|
||||
|
||||
@ -105,45 +112,34 @@ TEST_P(HOG, GetDescriptors)
|
||||
hog.compute(img_rgb, descriptors, ocl_hog.win_size);
|
||||
break;
|
||||
}
|
||||
cv::Mat cpu_descriptors(descriptors);
|
||||
Mat cpu_descriptors(descriptors);
|
||||
|
||||
EXPECT_MAT_SIMILAR(down_descriptors, cpu_descriptors, 1e-2);
|
||||
}
|
||||
|
||||
|
||||
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold)
|
||||
{
|
||||
return ((abs(r1.x - r2.x) < threshold) && (abs(r1.y - r2.y) < threshold) &&
|
||||
(abs(r1.width - r2.width) < threshold) && (abs(r1.height - r2.height) < threshold));
|
||||
}
|
||||
|
||||
TEST_P(HOG, Detect)
|
||||
{
|
||||
// Load image
|
||||
cv::Mat img_rgb = readImage(workdir + "lena.jpg");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
// Convert image
|
||||
cv::Mat img;
|
||||
Mat img;
|
||||
switch (type)
|
||||
{
|
||||
case CV_8UC1:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
break;
|
||||
case CV_8UC4:
|
||||
default:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
break;
|
||||
}
|
||||
cv::ocl::oclMat d_img(img);
|
||||
ocl::oclMat d_img(img);
|
||||
|
||||
// HOGs
|
||||
if ((winSize != cv::Size(48, 96)) && (winSize != cv::Size(64, 128)))
|
||||
winSize = cv::Size(64, 128);
|
||||
cv::ocl::HOGDescriptor ocl_hog(winSize);
|
||||
if ((winSize != Size(48, 96)) && (winSize != Size(64, 128)))
|
||||
winSize = Size(64, 128);
|
||||
ocl::HOGDescriptor ocl_hog(winSize);
|
||||
ocl_hog.gamma_correction = true;
|
||||
|
||||
cv::HOGDescriptor hog;
|
||||
HOGDescriptor hog;
|
||||
hog.winSize = winSize;
|
||||
hog.gammaCorrection = true;
|
||||
|
||||
@ -165,88 +161,117 @@ TEST_P(HOG, Detect)
|
||||
}
|
||||
|
||||
// OpenCL detection
|
||||
std::vector<cv::Rect> d_found;
|
||||
ocl_hog.detectMultiScale(d_img, d_found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
||||
std::vector<Rect> d_found;
|
||||
ocl_hog.detectMultiScale(d_img, d_found, 0, Size(8, 8), Size(0, 0), 1.05, 6);
|
||||
|
||||
// CPU detection
|
||||
std::vector<cv::Rect> found;
|
||||
std::vector<Rect> found;
|
||||
switch (type)
|
||||
{
|
||||
case CV_8UC1:
|
||||
hog.detectMultiScale(img, found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
||||
hog.detectMultiScale(img, found, 0, Size(8, 8), Size(0, 0), 1.05, 6);
|
||||
break;
|
||||
case CV_8UC4:
|
||||
default:
|
||||
hog.detectMultiScale(img_rgb, found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
||||
hog.detectMultiScale(img_rgb, found, 0, Size(8, 8), Size(0, 0), 1.05, 6);
|
||||
break;
|
||||
}
|
||||
|
||||
// Ground-truth rectangular people window
|
||||
cv::Rect win1_64x128(231, 190, 72, 144);
|
||||
cv::Rect win2_64x128(621, 156, 97, 194);
|
||||
cv::Rect win1_48x96(238, 198, 63, 126);
|
||||
cv::Rect win2_48x96(619, 161, 92, 185);
|
||||
cv::Rect win3_48x96(488, 136, 56, 112);
|
||||
|
||||
// Compare whether ground-truth windows are detected and compare the number of windows detected.
|
||||
std::vector<int> d_comp(4);
|
||||
std::vector<int> comp(4);
|
||||
for(int i = 0; i < (int)d_comp.size(); i++)
|
||||
{
|
||||
d_comp[i] = 0;
|
||||
comp[i] = 0;
|
||||
}
|
||||
|
||||
int threshold = 10;
|
||||
int val = 32;
|
||||
d_comp[0] = (int)d_found.size();
|
||||
comp[0] = (int)found.size();
|
||||
if (winSize == cv::Size(48, 96))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found[i], win1_48x96, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found[i], win2_48x96, threshold))
|
||||
d_comp[2] = val;
|
||||
if (match_rect(d_found[i], win3_48x96, threshold))
|
||||
d_comp[3] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found.size(); i++)
|
||||
{
|
||||
if (match_rect(found[i], win1_48x96, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found[i], win2_48x96, threshold))
|
||||
comp[2] = val;
|
||||
if (match_rect(found[i], win3_48x96, threshold))
|
||||
comp[3] = val;
|
||||
}
|
||||
}
|
||||
else if (winSize == cv::Size(64, 128))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found[i], win1_64x128, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found[i], win2_64x128, threshold))
|
||||
d_comp[2] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found.size(); i++)
|
||||
{
|
||||
if (match_rect(found[i], win1_64x128, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found[i], win2_64x128, threshold))
|
||||
comp[2] = val;
|
||||
}
|
||||
}
|
||||
|
||||
EXPECT_MAT_NEAR(cv::Mat(d_comp), cv::Mat(comp), 3);
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), found, d_found), 1.0);
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, HOG, testing::Combine(
|
||||
testing::Values(cv::Size(64, 128), cv::Size(48, 96)),
|
||||
testing::Values(Size(64, 128), Size(48, 96)),
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
|
||||
|
||||
///////////////////////////// Haar //////////////////////////////
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
|
||||
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
|
||||
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
|
||||
struct getRect
|
||||
{
|
||||
Rect operator ()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
|
||||
#endif //HAVE_OPENCL
|
||||
PARAM_TEST_CASE(Haar, int, CascadeName)
|
||||
{
|
||||
ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
CascadeClassifier cpucascade, cpunestedCascade;
|
||||
|
||||
int flags;
|
||||
std::string cascadeName;
|
||||
vector<Rect> faces, oclfaces;
|
||||
Mat img;
|
||||
ocl::oclMat d_img;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
flags = GET_PARAM(0);
|
||||
cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(1));
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
|
||||
{
|
||||
std::cout << "ERROR: Could not load classifier cascade" << std::endl;
|
||||
return;
|
||||
}
|
||||
img = readImage(workdir + "lena.jpg", IMREAD_GRAYSCALE);
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read lena.jpg" << std::endl;
|
||||
return ;
|
||||
}
|
||||
equalizeHist(img, img);
|
||||
d_img.upload(img);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Haar, FaceDetect)
|
||||
{
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
CvSeq *_objects;
|
||||
_objects = cascade.oclHaarDetectObjects(d_img, storage, 1.1, 3,
|
||||
flags, Size(30, 30), Size(0, 0));
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
|
||||
cpucascade.detectMultiScale(img, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
|
||||
}
|
||||
|
||||
TEST_P(Haar, FaceDetectUseBuf)
|
||||
{
|
||||
ocl::OclCascadeClassifierBuf cascadebuf;
|
||||
if(!cascadebuf.load(cascadeName))
|
||||
{
|
||||
std::cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << std::endl;
|
||||
return;
|
||||
}
|
||||
cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
cpucascade.detectMultiScale(img, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
|
||||
// intentionally run ocl facedetect again and check if it still works after the first run
|
||||
cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30));
|
||||
cascadebuf.release();
|
||||
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, Haar,
|
||||
Combine(Values(CV_HAAR_SCALE_IMAGE, 0),
|
||||
Values(cascade_frontalface_alt/*, cascade_frontalface_alt2*/)));
|
||||
|
||||
#endif //HAVE_OPENCL
|
@ -15,7 +15,6 @@
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Dachuan Zhao, dachuan@multicorewareinc.com
|
||||
// Yao Wang yao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@ -56,11 +55,12 @@ using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
|
||||
PARAM_TEST_CASE(PyrDown, MatType, int)
|
||||
PARAM_TEST_CASE(PyrBase, MatType, int)
|
||||
{
|
||||
int type;
|
||||
int channels;
|
||||
|
||||
Mat dst_cpu;
|
||||
oclMat gdst;
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
@ -69,19 +69,19 @@ PARAM_TEST_CASE(PyrDown, MatType, int)
|
||||
|
||||
};
|
||||
|
||||
/////////////////////// PyrDown //////////////////////////
|
||||
struct PyrDown : PyrBase {};
|
||||
|
||||
TEST_P(PyrDown, Mat)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
cv::Size size(MWIDTH, MHEIGHT);
|
||||
cv::RNG &rng = TS::ptr()->get_rng();
|
||||
cv::Mat src = randomMat(rng, size, CV_MAKETYPE(type, channels), 0, 100, false);
|
||||
|
||||
cv::ocl::oclMat gsrc(src), gdst;
|
||||
cv::Mat dst_cpu;
|
||||
cv::pyrDown(src, dst_cpu);
|
||||
cv::ocl::pyrDown(gsrc, gdst);
|
||||
Size size(MWIDTH, MHEIGHT);
|
||||
Mat src = randomMat(size, CV_MAKETYPE(type, channels));
|
||||
oclMat gsrc(src);
|
||||
|
||||
pyrDown(src, dst_cpu);
|
||||
pyrDown(gsrc, gdst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_cpu, Mat(gdst), type == CV_32F ? 1e-4f : 1.0f);
|
||||
}
|
||||
@ -90,5 +90,27 @@ TEST_P(PyrDown, Mat)
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrDown, Combine(
|
||||
Values(CV_8U, CV_32F), Values(1, 3, 4)));
|
||||
|
||||
/////////////////////// PyrUp //////////////////////////
|
||||
|
||||
struct PyrUp : PyrBase {};
|
||||
|
||||
TEST_P(PyrUp, Accuracy)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
Size size(MWIDTH, MHEIGHT);
|
||||
Mat src = randomMat(size, CV_MAKETYPE(type, channels));
|
||||
oclMat gsrc(src);
|
||||
|
||||
pyrUp(src, dst_cpu);
|
||||
pyrUp(gsrc, gdst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_cpu, Mat(gdst), (type == CV_32F ? 1e-4f : 1.0));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrUp, testing::Combine(
|
||||
Values(CV_8U, CV_32F), Values(1, 3, 4)));
|
||||
#endif // HAVE_OPENCL
|
@ -1,91 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Zhang Chunpeng chunpeng@multicorewareinc.com
|
||||
// Yao Wang yao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/core.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace cv;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
|
||||
PARAM_TEST_CASE(PyrUp, MatType, int)
|
||||
{
|
||||
int type;
|
||||
int channels;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
channels = GET_PARAM(1);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(PyrUp, Accuracy)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
Size size(MWIDTH, MHEIGHT);
|
||||
Mat src = randomMat(size, CV_MAKETYPE(type, channels));
|
||||
Mat dst_gold;
|
||||
pyrUp(src, dst_gold);
|
||||
ocl::oclMat dst;
|
||||
ocl::oclMat srcMat(src);
|
||||
ocl::pyrUp(srcMat, dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, Mat(dst), (type == CV_32F ? 1e-4f : 1.0));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrUp, testing::Combine(
|
||||
Values(CV_8U, CV_32F), Values(1, 3, 4)));
|
||||
|
||||
|
||||
#endif // HAVE_OPENCL
|
@ -100,12 +100,6 @@ Mat randomMat(Size size, int type, double minVal, double maxVal)
|
||||
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
void showDiff(InputArray gold_, InputArray actual_, double eps)
|
||||
{
|
||||
@ -137,58 +131,7 @@ void showDiff(InputArray gold_, InputArray actual_, double eps)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
bool supportFeature(const DeviceInfo& info, FeatureSet feature)
|
||||
{
|
||||
return TargetArchs::builtWith(feature) && info.supports(feature);
|
||||
}
|
||||
|
||||
const vector<DeviceInfo>& devices()
|
||||
{
|
||||
static vector<DeviceInfo> devs;
|
||||
static bool first = true;
|
||||
|
||||
if (first)
|
||||
{
|
||||
int deviceCount = getCudaEnabledDeviceCount();
|
||||
|
||||
devs.reserve(deviceCount);
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
DeviceInfo info(i);
|
||||
if (info.isCompatible())
|
||||
devs.push_back(info);
|
||||
}
|
||||
|
||||
first = false;
|
||||
}
|
||||
|
||||
return devs;
|
||||
}
|
||||
|
||||
vector<DeviceInfo> devices(FeatureSet feature)
|
||||
{
|
||||
const vector<DeviceInfo>& d = devices();
|
||||
|
||||
vector<DeviceInfo> devs_filtered;
|
||||
|
||||
if (TargetArchs::builtWith(feature))
|
||||
{
|
||||
devs_filtered.reserve(d.size());
|
||||
|
||||
for (size_t i = 0, size = d.size(); i < size; ++i)
|
||||
{
|
||||
const DeviceInfo& info = d[i];
|
||||
|
||||
if (info.supports(feature))
|
||||
devs_filtered.push_back(info);
|
||||
}
|
||||
}
|
||||
|
||||
return devs_filtered;
|
||||
}
|
||||
*/
|
||||
|
||||
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
|
||||
{
|
||||
@ -264,3 +207,48 @@ void PrintTo(const Inverse &inverse, std::ostream *os)
|
||||
(*os) << "direct";
|
||||
}
|
||||
|
||||
double checkRectSimilarity(Size sz, std::vector<Rect>& ob1, std::vector<Rect>& ob2)
|
||||
{
|
||||
double final_test_result = 0.0;
|
||||
size_t sz1 = ob1.size();
|
||||
size_t sz2 = ob2.size();
|
||||
|
||||
if(sz1 != sz2)
|
||||
{
|
||||
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
|
||||
}
|
||||
else
|
||||
{
|
||||
if(sz1==0 && sz2==0)
|
||||
return 0;
|
||||
cv::Mat cpu_result(sz, CV_8UC1);
|
||||
cpu_result.setTo(0);
|
||||
|
||||
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
|
||||
{
|
||||
cv::Mat cpu_result_roi(cpu_result, *r);
|
||||
cpu_result_roi.setTo(1);
|
||||
cpu_result.copyTo(cpu_result);
|
||||
}
|
||||
int cpu_area = cv::countNonZero(cpu_result > 0);
|
||||
|
||||
cv::Mat gpu_result(sz, CV_8UC1);
|
||||
gpu_result.setTo(0);
|
||||
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
|
||||
{
|
||||
cv::Mat gpu_result_roi(gpu_result, *r2);
|
||||
gpu_result_roi.setTo(1);
|
||||
gpu_result.copyTo(gpu_result);
|
||||
}
|
||||
|
||||
cv::Mat result_;
|
||||
multiply(cpu_result, gpu_result, result_);
|
||||
int result = cv::countNonZero(result_ > 0);
|
||||
if(cpu_area!=0 && result!=0)
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
else if(cpu_area==0 && result!=0)
|
||||
final_test_result = -1;
|
||||
}
|
||||
return final_test_result;
|
||||
}
|
||||
|
||||
|
@ -55,13 +55,12 @@ cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal =
|
||||
|
||||
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
|
||||
|
||||
//! return true if device supports specified feature and gpu module was built with support the feature.
|
||||
//bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature);
|
||||
// This function test if gpu_rst matches cpu_rst.
|
||||
// If the two vectors are not equal, it will return the difference in vector size
|
||||
// Else it will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
||||
// The smaller, the better matched
|
||||
double checkRectSimilarity(cv::Size sz, std::vector<cv::Rect>& ob1, std::vector<cv::Rect>& ob2);
|
||||
|
||||
//! return all devices compatible with current gpu module build.
|
||||
//const std::vector<cv::ocl::DeviceInfo>& devices();
|
||||
//! return all devices compatible with current gpu module build which support specified feature.
|
||||
//std::vector<cv::ocl::DeviceInfo> devices(cv::gpu::FeatureSet feature);
|
||||
|
||||
//! read image from testdata folder.
|
||||
cv::Mat readImage(const std::string &fileName, int flags = cv::IMREAD_COLOR);
|
||||
|
Loading…
Reference in New Issue
Block a user