mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
Remove Shift deep learning layer
This commit is contained in:
parent
29421d7def
commit
2c3c59d018
@ -503,7 +503,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
class CV_EXPORTS ShiftLayer : public Layer
|
||||
{
|
||||
public:
|
||||
static Ptr<ShiftLayer> create(const LayerParams& params);
|
||||
static Ptr<Layer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
class CV_EXPORTS PriorBoxLayer : public Layer
|
||||
|
@ -28,6 +28,7 @@ public:
|
||||
setParamsFrom(params);
|
||||
hasBias = params.get<bool>("bias_term", false);
|
||||
axis = params.get<int>("axis", 1);
|
||||
hasWeights = false;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -35,11 +36,16 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 2 && blobs.empty() || blobs.size() == 1 + hasBias);
|
||||
outputs.assign(1, inputs[0]);
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
||||
{
|
||||
hasWeights = blobs.size() == 2 || (blobs.size() == 1 && !hasBias);
|
||||
CV_Assert(inputs.size() == 2 && blobs.empty() || blobs.size() == (int)hasWeights + (int)hasBias);
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_DEFAULT ||
|
||||
@ -63,10 +69,15 @@ public:
|
||||
|
||||
Mat &inpBlob = *inputs[0];
|
||||
Mat &outBlob = outputs[0];
|
||||
Mat &weights = blobs.empty() ? *inputs[1] : blobs[0];
|
||||
Mat bias = hasBias ? blobs.back() : Mat();
|
||||
// There is a mode when we multiply a first blob by a second one
|
||||
// instead of trainable weights.
|
||||
Mat weights = blobs.empty() ? *inputs[1] : (hasWeights ? blobs[0] : Mat());
|
||||
Mat bias = hasBias ? blobs.back().reshape(1, 1) : Mat();
|
||||
if (!weights.empty())
|
||||
weights = weights.reshape(1, 1);
|
||||
MatShape inpShape = shape(inpBlob);
|
||||
const int numWeights = weights.total();
|
||||
const int numWeights = !weights.empty() ? weights.total() : bias.total();
|
||||
CV_Assert(numWeights != 0, !hasWeights || !hasBias || weights.total() == bias.total());
|
||||
|
||||
int endAxis;
|
||||
for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis)
|
||||
@ -84,15 +95,15 @@ public:
|
||||
|
||||
if (endAxis != inpBlob.dims)
|
||||
{
|
||||
float* weightsData = (float*)weights.data;
|
||||
float* weightsData = !weights.empty() ? (float*)weights.data : 0;
|
||||
float* biasesData = hasBias ? (float*)bias.data : 0;
|
||||
int spatialSize = total(inpShape, endAxis); // spatialSize != 1
|
||||
for (int i = 0; i < numSlices; ++i)
|
||||
{
|
||||
for (int j = 0; j < numWeights; ++j)
|
||||
{
|
||||
float w = weightsData[j];
|
||||
float b = hasBias ? biasesData[j] : 0;
|
||||
float w = weightsData ? weightsData[j] : 1;
|
||||
float b = biasesData ? biasesData[j] : 0;
|
||||
Mat inpSlice(1, spatialSize, CV_32F, inpData);
|
||||
Mat outSlice(1, spatialSize, CV_32F, outData);
|
||||
inpSlice.convertTo(outSlice, CV_32F, w, b);
|
||||
@ -105,12 +116,16 @@ public:
|
||||
{
|
||||
for (int i = 0; i < numSlices; ++i)
|
||||
{
|
||||
Mat inpSlice(weights.dims, weights.size, CV_32F, inpData);
|
||||
Mat outSlice(weights.dims, weights.size, CV_32F, outData);
|
||||
multiply(inpSlice, weights, outSlice);
|
||||
if (hasBias)
|
||||
add(outSlice, bias, outSlice);
|
||||
|
||||
Mat inpSlice(1, numWeights, CV_32F, inpData);
|
||||
Mat outSlice(1, numWeights, CV_32F, outData);
|
||||
if (!weights.empty())
|
||||
{
|
||||
multiply(inpSlice, weights, outSlice);
|
||||
if (hasBias)
|
||||
add(outSlice, bias, outSlice);
|
||||
}
|
||||
else if (hasBias)
|
||||
add(inpSlice, bias, outSlice);
|
||||
inpData += numWeights;
|
||||
outData += numWeights;
|
||||
}
|
||||
@ -157,11 +172,15 @@ public:
|
||||
|
||||
const int numChannels = blobs[0].total();
|
||||
|
||||
auto weights = wrapToHalideBuffer(blobs[0], {numChannels});
|
||||
Halide::Expr topExpr = input * weights(c);
|
||||
Halide::Expr topExpr = input;
|
||||
if (hasWeights)
|
||||
{
|
||||
auto weights = wrapToHalideBuffer(blobs[0], {numChannels});
|
||||
topExpr *= weights(c);
|
||||
}
|
||||
if (hasBias)
|
||||
{
|
||||
auto bias = wrapToHalideBuffer(blobs[1], {numChannels});
|
||||
auto bias = wrapToHalideBuffer(blobs.back(), {numChannels});
|
||||
topExpr += bias(c);
|
||||
}
|
||||
top(x, y, c, n) = topExpr;
|
||||
@ -178,10 +197,24 @@ public:
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
|
||||
|
||||
CV_Assert(!blobs.empty());
|
||||
const size_t numChannels = blobs[0].total();
|
||||
ieLayer->_weights = wrapToInfEngineBlob(blobs[0], {numChannels}, InferenceEngine::Layout::C);
|
||||
if (hasWeights)
|
||||
{
|
||||
ieLayer->_weights = wrapToInfEngineBlob(blobs[0], {numChannels}, InferenceEngine::Layout::C);
|
||||
}
|
||||
else
|
||||
{
|
||||
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
|
||||
{numChannels});
|
||||
weights->allocate();
|
||||
|
||||
std::vector<float> ones(numChannels, 1);
|
||||
weights->set(ones);
|
||||
ieLayer->_weights = weights;
|
||||
}
|
||||
if (hasBias)
|
||||
ieLayer->_biases = wrapToInfEngineBlob(blobs[1], {numChannels}, InferenceEngine::Layout::C);
|
||||
ieLayer->_biases = wrapToInfEngineBlob(blobs.back(), {numChannels}, InferenceEngine::Layout::C);
|
||||
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
#endif // HAVE_INF_ENGINE
|
||||
@ -190,8 +223,8 @@ public:
|
||||
|
||||
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
|
||||
{
|
||||
scale = !blobs.empty() ? blobs[0] : Mat();
|
||||
shift = hasBias ? blobs[1] : Mat();
|
||||
scale = hasWeights ? blobs[0] : Mat();
|
||||
shift = hasBias ? blobs.back() : Mat();
|
||||
}
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
@ -205,6 +238,9 @@ public:
|
||||
}
|
||||
return flops;
|
||||
}
|
||||
|
||||
private:
|
||||
bool hasWeights;
|
||||
};
|
||||
|
||||
|
||||
@ -213,5 +249,16 @@ Ptr<ScaleLayer> ScaleLayer::create(const LayerParams& params)
|
||||
return Ptr<ScaleLayer>(new ScaleLayerImpl(params));
|
||||
}
|
||||
|
||||
Ptr<Layer> ShiftLayer::create(const LayerParams& params)
|
||||
{
|
||||
LayerParams scaleParams;
|
||||
scaleParams.name = params.name;
|
||||
scaleParams.type = "Scale";
|
||||
scaleParams.blobs = params.blobs;
|
||||
scaleParams.set("bias_term", true);
|
||||
scaleParams.set("axis", 0);
|
||||
return Ptr<ScaleLayer>(new ScaleLayerImpl(scaleParams));
|
||||
}
|
||||
|
||||
} // namespace dnn
|
||||
} // namespace cv
|
||||
|
@ -1,145 +0,0 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
/*
|
||||
Implementation of shift layer, which adds up const values to blob.
|
||||
*/
|
||||
|
||||
#include "../precomp.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace dnn
|
||||
{
|
||||
|
||||
class ShiftLayerImpl CV_FINAL : public ShiftLayer
|
||||
{
|
||||
public:
|
||||
ShiftLayerImpl(const LayerParams ¶ms)
|
||||
{
|
||||
setParamsFrom(params);
|
||||
CV_Assert(blobs.size() == 1);
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_DEFAULT ||
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
||||
internals.assign(1, shape(1, total(inputs[0], 2)));
|
||||
return true;
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
||||
}
|
||||
|
||||
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_Assert(inputs.size() > 0);
|
||||
CV_Assert(blobs.size() > 0);
|
||||
|
||||
if(inputs[0]->dims == blobs[0].dims)
|
||||
{
|
||||
for (size_t ii = 0; ii < outputs.size(); ii++)
|
||||
{
|
||||
Mat &inpBlob = *inputs[ii];
|
||||
Mat &outBlob = outputs[ii];
|
||||
|
||||
outBlob = inpBlob + blobs[0];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat biasOnesMat = internals[0];
|
||||
biasOnesMat.setTo(1);
|
||||
for (size_t ii = 0; ii < outputs.size(); ii++)
|
||||
{
|
||||
Mat &inpBlob = *inputs[ii];
|
||||
Mat &outBlob = outputs[ii];
|
||||
|
||||
inpBlob.copyTo(outBlob);
|
||||
|
||||
for (int n = 0; n < inpBlob.size[0]; n++)
|
||||
{
|
||||
Mat dstMat(inpBlob.size[1], inpBlob.size[2] * inpBlob.size[3],
|
||||
outBlob.type(), outBlob.ptr(n));
|
||||
gemm(blobs[0], biasOnesMat, 1, dstMat, 1, dstMat); //TODO: gemv
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
// Inference Engine has no layer just for biases. Create a linear
|
||||
// transformation layer with ones weights.
|
||||
InferenceEngine::LayerParams lp;
|
||||
lp.name = name;
|
||||
lp.type = "ScaleShift";
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
|
||||
|
||||
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
|
||||
{blobs[0].total()});
|
||||
weights->allocate();
|
||||
|
||||
std::vector<float> ones(blobs[0].total(), 1);
|
||||
weights->set(ones);
|
||||
ieLayer->_weights = weights;
|
||||
|
||||
ieLayer->_biases = wrapToInfEngineBlob(blobs[0]);
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
#endif // HAVE_INF_ENGINE
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
|
||||
{
|
||||
scale = Mat();
|
||||
shift = blobs[0];
|
||||
}
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
||||
{
|
||||
(void)outputs; // suppress unused variable warning
|
||||
long flops = 0;
|
||||
|
||||
for(int i= 0; i < inputs.size(); i++)
|
||||
{
|
||||
flops += total(inputs[i]);
|
||||
}
|
||||
|
||||
return flops;
|
||||
}
|
||||
};
|
||||
|
||||
Ptr<ShiftLayer> ShiftLayer::create(const LayerParams& params)
|
||||
{
|
||||
return Ptr<ShiftLayer>(new ShiftLayerImpl(params));
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -743,10 +743,20 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
if (haveConst)
|
||||
{
|
||||
layerParams.blobs.resize(1);
|
||||
blobFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]);
|
||||
Mat values = getTensorContent(getConstBlob(layer, value_id));
|
||||
CV_Assert(values.type() == CV_32FC1);
|
||||
|
||||
int id = dstNet.addLayer(name, "Shift", layerParams);
|
||||
int id;
|
||||
if (values.total() == 1) // is a scalar.
|
||||
{
|
||||
layerParams.set("shift", values.at<float>(0));
|
||||
id = dstNet.addLayer(name, "Power", layerParams);
|
||||
}
|
||||
else // is a vector
|
||||
{
|
||||
layerParams.blobs.resize(1, values);
|
||||
id = dstNet.addLayer(name, "Shift", layerParams);
|
||||
}
|
||||
layer_id[name] = id;
|
||||
|
||||
// one input only
|
||||
@ -777,11 +787,21 @@ void TFImporter::populateNet(Net dstNet)
|
||||
}
|
||||
CV_Assert(haveConst);
|
||||
|
||||
layerParams.blobs.resize(1);
|
||||
blobFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]);
|
||||
layerParams.blobs[0] *= -1;
|
||||
Mat values = getTensorContent(getConstBlob(layer, value_id));
|
||||
CV_Assert(values.type() == CV_32FC1);
|
||||
values *= -1.0f;
|
||||
|
||||
int id = dstNet.addLayer(name, "Shift", layerParams);
|
||||
int id;
|
||||
if (values.total() == 1) // is a scalar.
|
||||
{
|
||||
layerParams.set("shift", values.at<float>(0));
|
||||
id = dstNet.addLayer(name, "Power", layerParams);
|
||||
}
|
||||
else // is a vector
|
||||
{
|
||||
layerParams.blobs.resize(1, values);
|
||||
id = dstNet.addLayer(name, "Shift", layerParams);
|
||||
}
|
||||
layer_id[name] = id;
|
||||
|
||||
// one input only
|
||||
|
Loading…
Reference in New Issue
Block a user