Merge pull request #22404 from Kumataro:3.4-fix22388_2

* imgcodecs: tiff: Reduce memory usage to read 16bit image.

* imgcodecs: tiff: Reduce memory usage to read 8bit images

* imgcodecs: tiff: split basic test and full test.

* imgcodecs: tiff: fix to warning C4244

* imgcodecs: tiff: fix to warning C4244
This commit is contained in:
Kumataro 2022-10-04 00:24:15 +09:00 committed by GitHub
parent 572d4f4491
commit 2f79b1b087
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 646 additions and 31 deletions

View File

@ -234,7 +234,6 @@ public:
bool TiffDecoder::readHeader()
{
bool result = false;
TIFF* tif = static_cast<TIFF*>(m_tif.get());
if (!tif)
{
@ -390,18 +389,15 @@ static void fixOrientationFull(Mat &img, int orientation)
* For 8 bit some corrections are done by TIFFReadRGBAStrip/Tile already.
* Not so for 16/32/64 bit.
*/
static void fixOrientation(Mat &img, uint16 orientation, int dst_bpp)
static void fixOrientation(Mat &img, uint16 orientation, bool isOrientationFull)
{
switch(dst_bpp) {
case 8:
fixOrientationPartial(img, orientation);
break;
case 16:
case 32:
case 64:
fixOrientationFull(img, orientation);
break;
if( isOrientationFull )
{
fixOrientationFull(img, orientation);
}
else
{
fixOrientationPartial(img, orientation);
}
}
@ -440,17 +436,7 @@ bool TiffDecoder::readData( Mat& img )
(img_orientation == ORIENTATION_BOTRIGHT || img_orientation == ORIENTATION_RIGHTBOT ||
img_orientation == ORIENTATION_BOTLEFT || img_orientation == ORIENTATION_LEFTBOT);
int wanted_channels = normalizeChannelsNumber(img.channels());
if (dst_bpp == 8)
{
char errmsg[1024];
if (!TIFFRGBAImageOK(tif, errmsg))
{
CV_LOG_WARNING(NULL, "OpenCV TIFF: TIFFRGBAImageOK: " << errmsg);
close();
return false;
}
}
bool doReadScanline = false;
uint32 tile_width0 = m_width, tile_height0 = 0;
@ -480,25 +466,139 @@ bool TiffDecoder::readData( Mat& img )
const uint64_t MAX_TILE_SIZE = (CV_BIG_UINT(1) << 30);
CV_CheckLE((int)ncn, 4, "");
CV_CheckLE((int)bpp, 64, "");
CV_Assert(((uint64_t)tile_width0 * tile_height0 * ncn * std::max(1, (int)(bpp / bitsPerByte)) < MAX_TILE_SIZE) && "TIFF tile size is too large: >= 1Gb");
if (dst_bpp == 8)
{
// we will use TIFFReadRGBA* functions, so allocate temporary buffer for 32bit RGBA
bpp = 8;
ncn = 4;
const int _ncn = 4; // Read RGBA
const int _bpp = 8; // Read 8bit
// if buffer_size(as 32bit RGBA) >= MAX_TILE_SIZE*95%,
// we will use TIFFReadScanline function.
if (
(uint64_t)tile_width0 * tile_height0 * _ncn * std::max(1, (int)(_bpp / bitsPerByte))
>=
( (uint64_t) MAX_TILE_SIZE * 95 / 100)
)
{
uint16_t planerConfig = (uint16)-1;
CV_TIFF_CHECK_CALL(TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &planerConfig));
doReadScanline = (!is_tiled) // no tile
&&
( ( ncn == 1 ) || ( ncn == 3 ) || ( ncn == 4 ) )
&&
( ( bpp == 8 ) || ( bpp == 16 ) )
&&
(tile_height0 == (uint32_t) m_height) // single strip
&&
(
(photometric == PHOTOMETRIC_MINISWHITE)
||
(photometric == PHOTOMETRIC_MINISBLACK)
||
(photometric == PHOTOMETRIC_RGB)
)
&&
(planerConfig != PLANARCONFIG_SEPARATE);
// Currently only EXTRASAMPLE_ASSOCALPHA is supported.
if ( doReadScanline && ( ncn == 4 ) )
{
uint16_t extra_samples_num;
uint16_t *extra_samples = NULL;
CV_TIFF_CHECK_CALL(TIFFGetField(tif, TIFFTAG_EXTRASAMPLES, &extra_samples_num, &extra_samples ));
doReadScanline = ( extra_samples_num == 1 ) && ( extra_samples[0] == EXTRASAMPLE_ASSOCALPHA );
}
}
if ( !doReadScanline )
{
// we will use TIFFReadRGBA* functions, so allocate temporary buffer for 32bit RGBA
bpp = 8;
ncn = 4;
char errmsg[1024];
if (!TIFFRGBAImageOK(tif, errmsg))
{
CV_LOG_WARNING(NULL, "OpenCV TIFF: TIFFRGBAImageOK: " << errmsg);
close();
return false;
}
}
}
else if (dst_bpp == 16)
{
// if buffer_size >= MAX_TILE_SIZE*95%,
// we will use TIFFReadScanline function.
if (
(uint64_t)tile_width0 * tile_height0 * ncn * std::max(1, (int)(bpp / bitsPerByte))
>=
MAX_TILE_SIZE * 95 / 100
)
{
uint16_t planerConfig = (uint16)-1;
CV_TIFF_CHECK_CALL(TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &planerConfig));
doReadScanline = (!is_tiled) // no tile
&&
( ( ncn == 1 ) || ( ncn == 3 ) || ( ncn == 4 ) )
&&
( ( bpp == 8 ) || ( bpp == 16 ) )
&&
(tile_height0 == (uint32_t) m_height) // single strip
&&
(
(photometric == PHOTOMETRIC_MINISWHITE)
||
(photometric == PHOTOMETRIC_MINISBLACK)
||
(photometric == PHOTOMETRIC_RGB)
)
&&
(planerConfig != PLANARCONFIG_SEPARATE);
// Currently only EXTRASAMPLE_ASSOCALPHA is supported.
if ( doReadScanline && ( ncn == 4 ) )
{
uint16_t extra_samples_num;
uint16_t *extra_samples = NULL;
CV_TIFF_CHECK_CALL(TIFFGetField(tif, TIFFTAG_EXTRASAMPLES, &extra_samples_num, &extra_samples ));
doReadScanline = ( extra_samples_num == 1 ) && ( extra_samples[0] == EXTRASAMPLE_ASSOCALPHA );
}
}
}
else if (dst_bpp == 32 || dst_bpp == 64)
{
CV_Assert(ncn == img.channels());
CV_TIFF_CHECK_CALL(TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP));
}
if ( doReadScanline )
{
// Read each scanlines.
tile_height0 = 1;
}
const size_t buffer_size = (bpp / bitsPerByte) * ncn * tile_height0 * tile_width0;
CV_CheckLT( buffer_size, MAX_TILE_SIZE, "buffer_size is too large: >= 1Gb");
if ( doReadScanline )
{
CV_CheckGE( static_cast<int>(buffer_size),
static_cast<int>(TIFFScanlineSize(tif)),
"buffer_size is smaller than TIFFScanlineSize(). ");
}
AutoBuffer<uchar> _buffer(buffer_size);
uchar* buffer = _buffer.data();
ushort* buffer16 = (ushort*)buffer;
int tileidx = 0;
#define MAKE_FLAG(a,b) ( (a << 8) | b )
const int convert_flag = MAKE_FLAG( ncn, wanted_channels );
const bool isNeedConvert16to8 = ( doReadScanline ) && ( bpp == 16 ) && ( dst_bpp == 8);
for (int y = 0; y < m_height; y += (int)tile_height0)
{
int tile_height = std::min((int)tile_height0, m_height - y);
@ -514,7 +614,29 @@ bool TiffDecoder::readData( Mat& img )
case 8:
{
uchar* bstart = buffer;
if (!is_tiled)
if (doReadScanline)
{
CV_TIFF_CHECK_CALL((int)TIFFReadScanline(tif, (uint32*)buffer, y) >= 0);
if ( isNeedConvert16to8 )
{
// Convert buffer image from 16bit to 8bit.
int ix;
for ( ix = 0 ; ix < tile_width * ncn - 4; ix += 4 )
{
buffer[ ix ] = buffer[ ix * 2 + 1 ];
buffer[ ix + 1 ] = buffer[ ix * 2 + 3 ];
buffer[ ix + 2 ] = buffer[ ix * 2 + 5 ];
buffer[ ix + 3 ] = buffer[ ix * 2 + 7 ];
}
for ( ; ix < tile_width * ncn ; ix ++ )
{
buffer[ ix ] = buffer[ ix * 2 + 1];
}
}
}
else if (!is_tiled)
{
CV_TIFF_CHECK_CALL(TIFFReadRGBAStrip(tif, y, (uint32*)buffer));
}
@ -525,9 +647,65 @@ bool TiffDecoder::readData( Mat& img )
bstart += (tile_height0 - tile_height) * tile_width0 * 4;
}
uchar* img_line_buffer = (uchar*) img.ptr(y, 0);
for (int i = 0; i < tile_height; i++)
{
if (color)
if (doReadScanline)
{
switch ( convert_flag )
{
case MAKE_FLAG( 1, 1 ): // GRAY to GRAY
memcpy( (void*) img_line_buffer,
(void*) bstart,
tile_width * sizeof(uchar) );
break;
case MAKE_FLAG( 1, 3 ): // GRAY to BGR
icvCvt_Gray2BGR_8u_C1C3R( bstart, 0,
img_line_buffer, 0,
Size(tile_width, 1) );
break;
case MAKE_FLAG( 3, 1): // RGB to GRAY
icvCvt_BGR2Gray_8u_C3C1R( bstart, 0,
img_line_buffer, 0,
Size(tile_width, 1) );
break;
case MAKE_FLAG( 3, 3 ): // RGB to BGR
icvCvt_BGR2RGB_8u_C3R( bstart, 0,
img_line_buffer, 0,
Size(tile_width, 1) );
break;
case MAKE_FLAG( 4, 1 ): // RGBA to GRAY
icvCvt_BGRA2Gray_8u_C4C1R( bstart, 0,
img_line_buffer, 0,
Size(tile_width, 1) );
break;
case MAKE_FLAG( 4, 3 ): // RGBA to BGR
icvCvt_BGRA2BGR_8u_C4C3R( bstart, 0,
img_line_buffer, 0,
Size(tile_width, 1), 2 );
break;
case MAKE_FLAG( 4, 4 ): // RGBA to BGRA
icvCvt_BGRA2RGBA_8u_C4R(bstart, 0,
img_line_buffer, 0,
Size(tile_width, 1) );
break;
default:
CV_LOG_ONCE_ERROR(NULL, "OpenCV TIFF(line " << __LINE__ << "): Unsupported convertion :"
<< " bpp = " << bpp << " ncn = " << (int)ncn
<< " wanted_channels =" << wanted_channels );
break;
}
#undef MAKE_FLAG
}
else if (color)
{
if (wanted_channels == 4)
{
@ -556,7 +734,11 @@ bool TiffDecoder::readData( Mat& img )
case 16:
{
if (!is_tiled)
if (doReadScanline)
{
CV_TIFF_CHECK_CALL((int)TIFFReadScanline(tif, (uint32*)buffer, y) >= 0);
}
else if (!is_tiled)
{
CV_TIFF_CHECK_CALL((int)TIFFReadEncodedStrip(tif, tileidx, (uint32*)buffer, buffer_size) >= 0);
}
@ -655,7 +837,11 @@ bool TiffDecoder::readData( Mat& img )
} // for x
} // for y
}
fixOrientation(img, img_orientation, dst_bpp);
// If TIFFReadRGBA* function is used -> fixOrientationPartial().
// Otherwise -> fixOrientationFull().
fixOrientation(img, img_orientation,
( ( dst_bpp != 8 ) && ( !doReadScanline ) ) );
}
if (m_hdr && depth >= CV_32F)
@ -680,6 +866,7 @@ TiffEncoder::~TiffEncoder()
ImageEncoder TiffEncoder::newEncoder() const
{
cv_tiffSetErrorHandler();
return makePtr<TiffEncoder>();
}

View File

@ -2,6 +2,8 @@
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
#include "opencv2/core/utils/logger.hpp"
#include "opencv2/core/utils/configuration.private.hpp"
namespace opencv_test { namespace {
@ -46,6 +48,432 @@ TEST(Imgcodecs_Tiff, decode_tile16384x16384)
EXPECT_EQ(0, remove(file4.c_str()));
}
//==================================================================================================
// See https://github.com/opencv/opencv/issues/22388
/**
* Dummy enum to show combination of IMREAD_*.
*/
enum ImreadMixModes
{
IMREAD_MIX_UNCHANGED = IMREAD_UNCHANGED ,
IMREAD_MIX_GRAYSCALE = IMREAD_GRAYSCALE ,
IMREAD_MIX_COLOR = IMREAD_COLOR ,
IMREAD_MIX_GRAYSCALE_ANYDEPTH = IMREAD_GRAYSCALE | IMREAD_ANYDEPTH ,
IMREAD_MIX_GRAYSCALE_ANYCOLOR = IMREAD_GRAYSCALE | IMREAD_ANYCOLOR,
IMREAD_MIX_GRAYSCALE_ANYDEPTH_ANYCOLOR = IMREAD_GRAYSCALE | IMREAD_ANYDEPTH | IMREAD_ANYCOLOR,
IMREAD_MIX_COLOR_ANYDEPTH = IMREAD_COLOR | IMREAD_ANYDEPTH ,
IMREAD_MIX_COLOR_ANYCOLOR = IMREAD_COLOR | IMREAD_ANYCOLOR,
IMREAD_MIX_COLOR_ANYDEPTH_ANYCOLOR = IMREAD_COLOR | IMREAD_ANYDEPTH | IMREAD_ANYCOLOR
};
typedef tuple< uint64_t, tuple<string, int>, ImreadMixModes > Bufsize_and_Type;
typedef testing::TestWithParam<Bufsize_and_Type> Imgcodecs_Tiff_decode_Huge;
static inline
void PrintTo(const ImreadMixModes& val, std::ostream* os)
{
PrintTo( static_cast<ImreadModes>(val), os );
}
TEST_P(Imgcodecs_Tiff_decode_Huge, regression)
{
// Get test parameters
const uint64_t buffer_size = get<0>(GetParam());
const string mat_type_string = get<0>(get<1>(GetParam()));
const int mat_type = get<1>(get<1>(GetParam()));
const int imread_mode = get<2>(GetParam());
// Detect data file
const string req_filename = cv::format("readwrite/huge-tiff/%s_%llu.tif", mat_type_string.c_str(), buffer_size);
const string filename = findDataFile( req_filename );
// Preparation process for test
{
// Convert from mat_type and buffer_size to tiff file information.
const uint64_t width = 32768;
int ncn = CV_MAT_CN(mat_type);
int depth = ( CV_MAT_DEPTH(mat_type) == CV_16U) ? 2 : 1; // 16bit or 8 bit
const uint64_t height = (uint64_t) buffer_size / width / ncn / depth;
const uint64_t base_scanline_size = (uint64_t) width * ncn * depth;
const uint64_t base_strip_size = (uint64_t) base_scanline_size * height;
// To avoid exception about pixel size, check it.
static const size_t CV_IO_MAX_IMAGE_PIXELS = utils::getConfigurationParameterSizeT("OPENCV_IO_MAX_IMAGE_PIXELS", 1 << 30);
uint64_t pixels = (uint64_t) width * height;
if ( pixels > CV_IO_MAX_IMAGE_PIXELS )
{
throw SkipTestException( cv::format("Test is skipped( pixels(%lu) > CV_IO_MAX_IMAGE_PIXELS(%lu) )",
pixels, CV_IO_MAX_IMAGE_PIXELS ) );
}
// If buffer_size >= 1GB * 95%, TIFFReadScanline() is used.
const uint64_t BUFFER_SIZE_LIMIT_FOR_READS_CANLINE = (uint64_t) 1024*1024*1024*95/100;
const bool doReadScanline = ( base_strip_size >= BUFFER_SIZE_LIMIT_FOR_READS_CANLINE );
// Update ncn and depth for destination Mat.
switch ( imread_mode )
{
case IMREAD_UNCHANGED:
break;
case IMREAD_GRAYSCALE:
ncn = 1;
depth = 1;
break;
case IMREAD_GRAYSCALE | IMREAD_ANYDEPTH:
ncn = 1;
break;
case IMREAD_GRAYSCALE | IMREAD_ANYCOLOR:
ncn = (ncn == 1)?1:3;
depth = 1;
break;
case IMREAD_GRAYSCALE | IMREAD_ANYCOLOR | IMREAD_ANYDEPTH:
ncn = (ncn == 1)?1:3;
break;
case IMREAD_COLOR:
ncn = 3;
depth = 1;
break;
case IMREAD_COLOR | IMREAD_ANYDEPTH:
ncn = 3;
break;
case IMREAD_COLOR | IMREAD_ANYCOLOR:
ncn = 3;
depth = 1;
break;
case IMREAD_COLOR | IMREAD_ANYDEPTH | IMREAD_ANYCOLOR:
ncn = 3;
break;
default:
break;
}
// Memory usage for Destination Mat
const uint64_t memory_usage_cvmat = (uint64_t) width * ncn * depth * height;
// Memory usage for Work memory in libtiff.
uint64_t memory_usage_tiff = 0;
if ( ( depth == 1 ) && ( !doReadScanline ) )
{
// TIFFReadRGBA*() request to allocate RGBA(32bit) buffer.
memory_usage_tiff = (uint64_t)
width *
4 * // ncn = RGBA
1 * // dst_bpp = 8 bpp
height;
}
else
{
// TIFFReadEncodedStrip() or TIFFReadScanline() request to allocate strip memory.
memory_usage_tiff = base_strip_size;
}
// Memory usage for Work memory in imgcodec/grfmt_tiff.cpp
const uint64_t memory_usage_work =
( doReadScanline ) ? base_scanline_size // for TIFFReadScanline()
: base_strip_size; // for TIFFReadRGBA*() or TIFFReadEncodedStrip()
// Total memory usage.
const uint64_t memory_usage_total =
memory_usage_cvmat + // Destination Mat
memory_usage_tiff + // Work memory in libtiff
memory_usage_work; // Work memory in imgcodecs
// Output memory usage log.
CV_LOG_DEBUG(NULL, cv::format("OpenCV TIFF-test(line %d):memory usage info : mat(%llu), libtiff(%llu), work(%llu) -> total(%llu)",
__LINE__, memory_usage_cvmat, memory_usage_tiff, memory_usage_work, memory_usage_total) );
// Add test tags.
if ( memory_usage_total >= (uint64_t) 6144 * 1024 * 1024 )
{
applyTestTag( CV_TEST_TAG_MEMORY_14GB, CV_TEST_TAG_VERYLONG );
}
else if ( memory_usage_total >= (uint64_t) 2048 * 1024 * 1024 )
{
applyTestTag( CV_TEST_TAG_MEMORY_6GB, CV_TEST_TAG_VERYLONG );
}
else if ( memory_usage_total >= (uint64_t) 1024 * 1024 * 1024 )
{
applyTestTag( CV_TEST_TAG_MEMORY_2GB, CV_TEST_TAG_LONG );
}
else if ( memory_usage_total >= (uint64_t) 512 * 1024 * 1024 )
{
applyTestTag( CV_TEST_TAG_MEMORY_1GB );
}
else if ( memory_usage_total >= (uint64_t) 200 * 1024 * 1024 )
{
applyTestTag( CV_TEST_TAG_MEMORY_512MB );
}
else
{
// do nothing.
}
}
// TEST Main
cv::Mat img;
ASSERT_NO_THROW( img = cv::imread(filename, imread_mode) );
ASSERT_FALSE(img.empty());
/**
* Test marker pixels at each corners.
*
* 0xAn,0x00 ... 0x00, 0xBn
* 0x00,0x00 ... 0x00, 0x00
* : : : :
* 0x00,0x00 ... 0x00, 0x00
* 0xCn,0x00 .., 0x00, 0xDn
*
*/
#define MAKE_FLAG(from_type, to_type) (((uint64_t)from_type << 32 ) | to_type )
switch ( MAKE_FLAG(mat_type, img.type() ) )
{
// GRAY TO GRAY
case MAKE_FLAG(CV_8UC1, CV_8UC1):
case MAKE_FLAG(CV_16UC1, CV_8UC1):
EXPECT_EQ( 0xA0, img.at<uchar>(0, 0) );
EXPECT_EQ( 0xB0, img.at<uchar>(0, img.cols-1) );
EXPECT_EQ( 0xC0, img.at<uchar>(img.rows-1, 0) );
EXPECT_EQ( 0xD0, img.at<uchar>(img.rows-1, img.cols-1) );
break;
// RGB/RGBA TO BGR
case MAKE_FLAG(CV_8UC3, CV_8UC3):
case MAKE_FLAG(CV_8UC4, CV_8UC3):
case MAKE_FLAG(CV_16UC3, CV_8UC3):
case MAKE_FLAG(CV_16UC4, CV_8UC3):
EXPECT_EQ( 0xA2, img.at<Vec3b>(0, 0) [0] );
EXPECT_EQ( 0xA1, img.at<Vec3b>(0, 0) [1] );
EXPECT_EQ( 0xA0, img.at<Vec3b>(0, 0) [2] );
EXPECT_EQ( 0xB2, img.at<Vec3b>(0, img.cols-1)[0] );
EXPECT_EQ( 0xB1, img.at<Vec3b>(0, img.cols-1)[1] );
EXPECT_EQ( 0xB0, img.at<Vec3b>(0, img.cols-1)[2] );
EXPECT_EQ( 0xC2, img.at<Vec3b>(img.rows-1, 0) [0] );
EXPECT_EQ( 0xC1, img.at<Vec3b>(img.rows-1, 0) [1] );
EXPECT_EQ( 0xC0, img.at<Vec3b>(img.rows-1, 0) [2] );
EXPECT_EQ( 0xD2, img.at<Vec3b>(img.rows-1, img.cols-1)[0] );
EXPECT_EQ( 0xD1, img.at<Vec3b>(img.rows-1, img.cols-1)[1] );
EXPECT_EQ( 0xD0, img.at<Vec3b>(img.rows-1, img.cols-1)[2] );
break;
// RGBA TO BGRA
case MAKE_FLAG(CV_8UC4, CV_8UC4):
case MAKE_FLAG(CV_16UC4, CV_8UC4):
EXPECT_EQ( 0xA2, img.at<Vec4b>(0, 0) [0] );
EXPECT_EQ( 0xA1, img.at<Vec4b>(0, 0) [1] );
EXPECT_EQ( 0xA0, img.at<Vec4b>(0, 0) [2] );
EXPECT_EQ( 0xA3, img.at<Vec4b>(0, 0) [3] );
EXPECT_EQ( 0xB2, img.at<Vec4b>(0, img.cols-1)[0] );
EXPECT_EQ( 0xB1, img.at<Vec4b>(0, img.cols-1)[1] );
EXPECT_EQ( 0xB0, img.at<Vec4b>(0, img.cols-1)[2] );
EXPECT_EQ( 0xB3, img.at<Vec4b>(0, img.cols-1)[3] );
EXPECT_EQ( 0xC2, img.at<Vec4b>(img.rows-1, 0) [0] );
EXPECT_EQ( 0xC1, img.at<Vec4b>(img.rows-1, 0) [1] );
EXPECT_EQ( 0xC0, img.at<Vec4b>(img.rows-1, 0) [2] );
EXPECT_EQ( 0xC3, img.at<Vec4b>(img.rows-1, 0) [3] );
EXPECT_EQ( 0xD2, img.at<Vec4b>(img.rows-1, img.cols-1)[0] );
EXPECT_EQ( 0xD1, img.at<Vec4b>(img.rows-1, img.cols-1)[1] );
EXPECT_EQ( 0xD0, img.at<Vec4b>(img.rows-1, img.cols-1)[2] );
EXPECT_EQ( 0xD3, img.at<Vec4b>(img.rows-1, img.cols-1)[3] );
break;
// RGB/RGBA to GRAY
case MAKE_FLAG(CV_8UC3, CV_8UC1):
case MAKE_FLAG(CV_8UC4, CV_8UC1):
case MAKE_FLAG(CV_16UC3, CV_8UC1):
case MAKE_FLAG(CV_16UC4, CV_8UC1):
EXPECT_LE( 0xA0, img.at<uchar>(0, 0) );
EXPECT_GE( 0xA2, img.at<uchar>(0, 0) );
EXPECT_LE( 0xB0, img.at<uchar>(0, img.cols-1) );
EXPECT_GE( 0xB2, img.at<uchar>(0, img.cols-1) );
EXPECT_LE( 0xC0, img.at<uchar>(img.rows-1, 0) );
EXPECT_GE( 0xC2, img.at<uchar>(img.rows-1, 0) );
EXPECT_LE( 0xD0, img.at<uchar>(img.rows-1, img.cols-1) );
EXPECT_GE( 0xD2, img.at<uchar>(img.rows-1, img.cols-1) );
break;
// GRAY to BGR
case MAKE_FLAG(CV_8UC1, CV_8UC3):
case MAKE_FLAG(CV_16UC1, CV_8UC3):
EXPECT_EQ( 0xA0, img.at<Vec3b>(0, 0) [0] );
EXPECT_EQ( 0xB0, img.at<Vec3b>(0, img.cols-1)[0] );
EXPECT_EQ( 0xC0, img.at<Vec3b>(img.rows-1, 0) [0] );
EXPECT_EQ( 0xD0, img.at<Vec3b>(img.rows-1, img.cols-1)[0] );
// R==G==B
EXPECT_EQ( img.at<Vec3b>(0, 0) [0], img.at<Vec3b>(0, 0) [1] );
EXPECT_EQ( img.at<Vec3b>(0, 0) [0], img.at<Vec3b>(0, 0) [2] );
EXPECT_EQ( img.at<Vec3b>(0, img.cols-1) [0], img.at<Vec3b>(0, img.cols-1)[1] );
EXPECT_EQ( img.at<Vec3b>(0, img.cols-1) [0], img.at<Vec3b>(0, img.cols-1)[2] );
EXPECT_EQ( img.at<Vec3b>(img.rows-1, 0) [0], img.at<Vec3b>(img.rows-1, 0) [1] );
EXPECT_EQ( img.at<Vec3b>(img.rows-1, 0) [0], img.at<Vec3b>(img.rows-1, 0) [2] );
EXPECT_EQ( img.at<Vec3b>(img.rows-1, img.cols-1) [0], img.at<Vec3b>(img.rows-1, img.cols-1)[1] );
EXPECT_EQ( img.at<Vec3b>(img.rows-1, img.cols-1) [0], img.at<Vec3b>(img.rows-1, img.cols-1)[2] );
break;
// GRAY TO GRAY
case MAKE_FLAG(CV_16UC1, CV_16UC1):
EXPECT_EQ( 0xA090, img.at<ushort>(0, 0) );
EXPECT_EQ( 0xB080, img.at<ushort>(0, img.cols-1) );
EXPECT_EQ( 0xC070, img.at<ushort>(img.rows-1, 0) );
EXPECT_EQ( 0xD060, img.at<ushort>(img.rows-1, img.cols-1) );
break;
// RGB/RGBA TO BGR
case MAKE_FLAG(CV_16UC3, CV_16UC3):
case MAKE_FLAG(CV_16UC4, CV_16UC3):
EXPECT_EQ( 0xA292, img.at<Vec3w>(0, 0) [0] );
EXPECT_EQ( 0xA191, img.at<Vec3w>(0, 0) [1] );
EXPECT_EQ( 0xA090, img.at<Vec3w>(0, 0) [2] );
EXPECT_EQ( 0xB282, img.at<Vec3w>(0, img.cols-1)[0] );
EXPECT_EQ( 0xB181, img.at<Vec3w>(0, img.cols-1)[1] );
EXPECT_EQ( 0xB080, img.at<Vec3w>(0, img.cols-1)[2] );
EXPECT_EQ( 0xC272, img.at<Vec3w>(img.rows-1, 0) [0] );
EXPECT_EQ( 0xC171, img.at<Vec3w>(img.rows-1, 0) [1] );
EXPECT_EQ( 0xC070, img.at<Vec3w>(img.rows-1, 0) [2] );
EXPECT_EQ( 0xD262, img.at<Vec3w>(img.rows-1, img.cols-1)[0] );
EXPECT_EQ( 0xD161, img.at<Vec3w>(img.rows-1, img.cols-1)[1] );
EXPECT_EQ( 0xD060, img.at<Vec3w>(img.rows-1, img.cols-1)[2] );
break;
// RGBA TO RGBA
case MAKE_FLAG(CV_16UC4, CV_16UC4):
EXPECT_EQ( 0xA292, img.at<Vec4w>(0, 0) [0] );
EXPECT_EQ( 0xA191, img.at<Vec4w>(0, 0) [1] );
EXPECT_EQ( 0xA090, img.at<Vec4w>(0, 0) [2] );
EXPECT_EQ( 0xA393, img.at<Vec4w>(0, 0) [3] );
EXPECT_EQ( 0xB282, img.at<Vec4w>(0, img.cols-1)[0] );
EXPECT_EQ( 0xB181, img.at<Vec4w>(0, img.cols-1)[1] );
EXPECT_EQ( 0xB080, img.at<Vec4w>(0, img.cols-1)[2] );
EXPECT_EQ( 0xB383, img.at<Vec4w>(0, img.cols-1)[3] );
EXPECT_EQ( 0xC272, img.at<Vec4w>(img.rows-1, 0) [0] );
EXPECT_EQ( 0xC171, img.at<Vec4w>(img.rows-1, 0) [1] );
EXPECT_EQ( 0xC070, img.at<Vec4w>(img.rows-1, 0) [2] );
EXPECT_EQ( 0xC373, img.at<Vec4w>(img.rows-1, 0) [3] );
EXPECT_EQ( 0xD262, img.at<Vec4w>(img.rows-1,img.cols-1) [0] );
EXPECT_EQ( 0xD161, img.at<Vec4w>(img.rows-1,img.cols-1) [1] );
EXPECT_EQ( 0xD060, img.at<Vec4w>(img.rows-1,img.cols-1) [2] );
EXPECT_EQ( 0xD363, img.at<Vec4w>(img.rows-1,img.cols-1) [3] );
break;
// RGB/RGBA to GRAY
case MAKE_FLAG(CV_16UC3, CV_16UC1):
case MAKE_FLAG(CV_16UC4, CV_16UC1):
EXPECT_LE( 0xA090, img.at<ushort>(0, 0) );
EXPECT_GE( 0xA292, img.at<ushort>(0, 0) );
EXPECT_LE( 0xB080, img.at<ushort>(0, img.cols-1) );
EXPECT_GE( 0xB282, img.at<ushort>(0, img.cols-1) );
EXPECT_LE( 0xC070, img.at<ushort>(img.rows-1, 0) );
EXPECT_GE( 0xC272, img.at<ushort>(img.rows-1, 0) );
EXPECT_LE( 0xD060, img.at<ushort>(img.rows-1, img.cols-1) );
EXPECT_GE( 0xD262, img.at<ushort>(img.rows-1, img.cols-1) );
break;
// GRAY to RGB
case MAKE_FLAG(CV_16UC1, CV_16UC3):
EXPECT_EQ( 0xA090, img.at<Vec3w>(0, 0) [0] );
EXPECT_EQ( 0xB080, img.at<Vec3w>(0, img.cols-1)[0] );
EXPECT_EQ( 0xC070, img.at<Vec3w>(img.rows-1, 0) [0] );
EXPECT_EQ( 0xD060, img.at<Vec3w>(img.rows-1, img.cols-1)[0] );
// R==G==B
EXPECT_EQ( img.at<Vec3w>(0, 0) [0], img.at<Vec3w>(0, 0) [1] );
EXPECT_EQ( img.at<Vec3w>(0, 0) [0], img.at<Vec3w>(0, 0) [2] );
EXPECT_EQ( img.at<Vec3w>(0, img.cols-1) [0], img.at<Vec3w>(0, img.cols-1)[1] );
EXPECT_EQ( img.at<Vec3w>(0, img.cols-1) [0], img.at<Vec3w>(0, img.cols-1)[2] );
EXPECT_EQ( img.at<Vec3w>(img.rows-1, 0) [0], img.at<Vec3w>(img.rows-1, 0) [1] );
EXPECT_EQ( img.at<Vec3w>(img.rows-1, 0) [0], img.at<Vec3w>(img.rows-1, 0) [2] );
EXPECT_EQ( img.at<Vec3w>(img.rows-1, img.cols-1) [0], img.at<Vec3w>(img.rows-1, img.cols-1)[1] );
EXPECT_EQ( img.at<Vec3w>(img.rows-1, img.cols-1) [0], img.at<Vec3w>(img.rows-1, img.cols-1)[2] );
break;
// No supported.
// (1) 8bit to 16bit
case MAKE_FLAG(CV_8UC1, CV_16UC1):
case MAKE_FLAG(CV_8UC1, CV_16UC3):
case MAKE_FLAG(CV_8UC1, CV_16UC4):
case MAKE_FLAG(CV_8UC3, CV_16UC1):
case MAKE_FLAG(CV_8UC3, CV_16UC3):
case MAKE_FLAG(CV_8UC3, CV_16UC4):
case MAKE_FLAG(CV_8UC4, CV_16UC1):
case MAKE_FLAG(CV_8UC4, CV_16UC3):
case MAKE_FLAG(CV_8UC4, CV_16UC4):
// (2) GRAY/RGB TO RGBA
case MAKE_FLAG(CV_8UC1, CV_8UC4):
case MAKE_FLAG(CV_8UC3, CV_8UC4):
case MAKE_FLAG(CV_16UC1, CV_8UC4):
case MAKE_FLAG(CV_16UC3, CV_8UC4):
case MAKE_FLAG(CV_16UC1, CV_16UC4):
case MAKE_FLAG(CV_16UC3, CV_16UC4):
default:
FAIL() << cv::format("Unknown test pattern: from = %d ( %d, %d) to = %d ( %d, %d )",
mat_type, (int)CV_MAT_CN(mat_type ), ( CV_MAT_DEPTH(mat_type )==CV_16U)?16:8,
img.type(), (int)CV_MAT_CN(img.type() ), ( CV_MAT_DEPTH(img.type() )==CV_16U)?16:8);
break;
}
#undef MAKE_FLAG
}
// Basic Test
const Bufsize_and_Type Imgcodecs_Tiff_decode_Huge_list_basic[] =
{
make_tuple<uint64_t, tuple<string,int>,ImreadMixModes>( 1073479680ull, make_tuple<string,int>("CV_8UC1", CV_8UC1), IMREAD_MIX_COLOR ),
make_tuple<uint64_t, tuple<string,int>,ImreadMixModes>( 2147483648ull, make_tuple<string,int>("CV_16UC4", CV_16UC4), IMREAD_MIX_COLOR ),
};
INSTANTIATE_TEST_CASE_P(Imgcodecs_Tiff, Imgcodecs_Tiff_decode_Huge,
testing::ValuesIn( Imgcodecs_Tiff_decode_Huge_list_basic )
);
// Full Test
/**
* Test lists for combination of IMREAD_*.
*/
const ImreadMixModes all_modes_Huge_Full[] =
{
IMREAD_MIX_UNCHANGED,
IMREAD_MIX_GRAYSCALE,
IMREAD_MIX_GRAYSCALE_ANYDEPTH,
IMREAD_MIX_GRAYSCALE_ANYCOLOR,
IMREAD_MIX_GRAYSCALE_ANYDEPTH_ANYCOLOR,
IMREAD_MIX_COLOR,
IMREAD_MIX_COLOR_ANYDEPTH,
IMREAD_MIX_COLOR_ANYCOLOR,
IMREAD_MIX_COLOR_ANYDEPTH_ANYCOLOR,
};
const uint64_t huge_buffer_sizes_decode_Full[] =
{
1048576ull, // 1 * 1024 * 1024
1073479680ull, // 1024 * 1024 * 1024 - 32768 * 4 * 2
1073741824ull, // 1024 * 1024 * 1024
2147483648ull, // 2048 * 1024 * 1024
};
const tuple<string, int> mat_types_Full[] =
{
make_tuple<string, int>("CV_8UC1", CV_8UC1), // 8bit GRAY
make_tuple<string, int>("CV_8UC3", CV_8UC3), // 24bit RGB
make_tuple<string, int>("CV_8UC4", CV_8UC4), // 32bit RGBA
make_tuple<string, int>("CV_16UC1", CV_16UC1), // 16bit GRAY
make_tuple<string, int>("CV_16UC3", CV_16UC3), // 48bit RGB
make_tuple<string, int>("CV_16UC4", CV_16UC4), // 64bit RGBA
};
INSTANTIATE_TEST_CASE_P(DISABLED_Imgcodecs_Tiff_Full, Imgcodecs_Tiff_decode_Huge,
testing::Combine(
testing::ValuesIn(huge_buffer_sizes_decode_Full),
testing::ValuesIn(mat_types_Full),
testing::ValuesIn(all_modes_Huge_Full)
)
);
//==================================================================================================
TEST(Imgcodecs_Tiff, write_read_16bit_big_little_endian)
{
// see issue #2601 "16-bit Grayscale TIFF Load Failures Due to Buffer Underflow and Endianness"