Java: removed usages of Ptr<T>::addref().

Now the features2d class wrappers use composition instead of inheritance.
This commit is contained in:
Roman Donchenko 2013-08-13 19:12:25 +04:00
parent 2a2c21bb63
commit 2f942efdf7

View File

@ -11,15 +11,17 @@
namespace cv
{
class CV_EXPORTS_AS(FeatureDetector) javaFeatureDetector : public FeatureDetector
class CV_EXPORTS_AS(FeatureDetector) javaFeatureDetector
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP void detect( const Mat& image, CV_OUT std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
CV_WRAP void detect( const std::vector<Mat>& images, CV_OUT std::vector<std::vector<KeyPoint> >& keypoints, const std::vector<Mat>& masks=std::vector<Mat>() ) const;
CV_WRAP virtual bool empty() const;
#endif
CV_WRAP void detect( const Mat& image, CV_OUT std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const
{ return wrapped->detect(image, keypoints, mask); }
CV_WRAP void detect( const std::vector<Mat>& images, CV_OUT std::vector<std::vector<KeyPoint> >& keypoints, const std::vector<Mat>& masks=std::vector<Mat>() ) const
{ return wrapped->detect(images, keypoints, masks); }
CV_WRAP bool empty() const
{ return wrapped->empty(); }
enum
{
@ -141,52 +143,74 @@ public:
break;
}
Ptr<FeatureDetector> detector = FeatureDetector::create(name);
detector.addref();
return (javaFeatureDetector*)((FeatureDetector*) detector);
return new javaFeatureDetector(FeatureDetector::create(name));
}
CV_WRAP void write( const String& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((FeatureDetector*)this)->write(fs);
fs.release();
wrapped->write(fs);
}
CV_WRAP void read( const String& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((FeatureDetector*)this)->read(fs.root());
fs.release();
wrapped->read(fs.root());
}
private:
javaFeatureDetector(Ptr<FeatureDetector> _wrapped) : wrapped(_wrapped)
{}
Ptr<FeatureDetector> wrapped;
};
class CV_EXPORTS_AS(DescriptorMatcher) javaDescriptorMatcher : public DescriptorMatcher
class CV_EXPORTS_AS(DescriptorMatcher) javaDescriptorMatcher
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP virtual bool isMaskSupported() const;
CV_WRAP virtual void add( const std::vector<Mat>& descriptors );
CV_WRAP const std::vector<Mat>& getTrainDescriptors() const;
CV_WRAP virtual void clear();
CV_WRAP virtual bool empty() const;
CV_WRAP virtual void train();
CV_WRAP bool isMaskSupported() const
{ return wrapped->isMaskSupported(); }
CV_WRAP void add( const std::vector<Mat>& descriptors )
{ return wrapped->add(descriptors); }
CV_WRAP const std::vector<Mat>& getTrainDescriptors() const
{ return wrapped->getTrainDescriptors(); }
CV_WRAP void clear()
{ return wrapped->clear(); }
CV_WRAP bool empty() const
{ return wrapped->empty(); }
CV_WRAP void train()
{ return wrapped->train(); }
CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const;
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const
{ return wrapped->match(queryDescriptors, trainDescriptors, matches, mask); }
CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
const Mat& mask=Mat(), bool compactResult=false ) const
{ return wrapped->knnMatch(queryDescriptors, trainDescriptors, matches, k, mask, compactResult); }
CV_WRAP void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
const Mat& mask=Mat(), bool compactResult=false ) const
{ return wrapped->radiusMatch(queryDescriptors, trainDescriptors, matches, maxDistance, mask, compactResult); }
CV_WRAP void match( const Mat& queryDescriptors, CV_OUT std::vector<DMatch>& matches,
const std::vector<Mat>& masks=std::vector<Mat>() );
const std::vector<Mat>& masks=std::vector<Mat>() )
{ return wrapped->match(queryDescriptors, matches, masks); }
CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
{ return wrapped->knnMatch(queryDescriptors, matches, k, masks, compactResult); }
CV_WRAP void radiusMatch( const Mat& queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
#endif
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
{ return wrapped->radiusMatch(queryDescriptors, matches, maxDistance, masks, compactResult); }
enum
{
@ -200,9 +224,7 @@ public:
CV_WRAP_AS(clone) javaDescriptorMatcher* jclone( bool emptyTrainData=false ) const
{
Ptr<DescriptorMatcher> matcher = this->clone(emptyTrainData);
matcher.addref();
return (javaDescriptorMatcher*)((DescriptorMatcher*) matcher);
return new javaDescriptorMatcher(wrapped->clone(emptyTrainData));
}
//supported: FlannBased, BruteForce, BruteForce-L1, BruteForce-Hamming, BruteForce-HammingLUT
@ -235,38 +257,45 @@ public:
break;
}
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(name);
matcher.addref();
return (javaDescriptorMatcher*)((DescriptorMatcher*) matcher);
return new javaDescriptorMatcher(DescriptorMatcher::create(name));
}
CV_WRAP void write( const String& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((DescriptorMatcher*)this)->write(fs);
fs.release();
wrapped->write(fs);
}
CV_WRAP void read( const String& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((DescriptorMatcher*)this)->read(fs.root());
fs.release();
wrapped->read(fs.root());
}
private:
javaDescriptorMatcher(Ptr<DescriptorMatcher> _wrapped) : wrapped(_wrapped)
{}
Ptr<DescriptorMatcher> wrapped;
};
class CV_EXPORTS_AS(DescriptorExtractor) javaDescriptorExtractor : public DescriptorExtractor
class CV_EXPORTS_AS(DescriptorExtractor) javaDescriptorExtractor
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP void compute( const Mat& image, CV_IN_OUT std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
CV_WRAP void compute( const std::vector<Mat>& images, CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints, CV_OUT std::vector<Mat>& descriptors ) const;
CV_WRAP virtual int descriptorSize() const;
CV_WRAP virtual int descriptorType() const;
CV_WRAP void compute( const Mat& image, CV_IN_OUT std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
{ return wrapped->compute(image, keypoints, descriptors); }
CV_WRAP virtual bool empty() const;
#endif
CV_WRAP void compute( const std::vector<Mat>& images, CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints, CV_OUT std::vector<Mat>& descriptors ) const
{ return wrapped->compute(images, keypoints, descriptors); }
CV_WRAP int descriptorSize() const
{ return wrapped->descriptorSize(); }
CV_WRAP int descriptorType() const
{ return wrapped->descriptorType(); }
CV_WRAP bool empty() const
{ return wrapped->empty(); }
enum
{
@ -327,62 +356,93 @@ public:
break;
}
Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create(name);
extractor.addref();
return (javaDescriptorExtractor*)((DescriptorExtractor*) extractor);
return new javaDescriptorExtractor(DescriptorExtractor::create(name));
}
CV_WRAP void write( const String& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((DescriptorExtractor*)this)->write(fs);
fs.release();
wrapped->write(fs);
}
CV_WRAP void read( const String& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((DescriptorExtractor*)this)->read(fs.root());
fs.release();
wrapped->read(fs.root());
}
private:
javaDescriptorExtractor(Ptr<DescriptorExtractor> _wrapped) : wrapped(_wrapped)
{}
Ptr<DescriptorExtractor> wrapped;
};
class CV_EXPORTS_AS(GenericDescriptorMatcher) javaGenericDescriptorMatcher : public GenericDescriptorMatcher
class CV_EXPORTS_AS(GenericDescriptorMatcher) javaGenericDescriptorMatcher
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP virtual void add( const std::vector<Mat>& images,
std::vector<std::vector<KeyPoint> >& keypoints );
CV_WRAP const std::vector<Mat>& getTrainImages() const;
CV_WRAP const std::vector<std::vector<KeyPoint> >& getTrainKeypoints() const;
CV_WRAP virtual void clear();
CV_WRAP virtual bool isMaskSupported();
CV_WRAP virtual void train();
CV_WRAP void add( const std::vector<Mat>& images,
std::vector<std::vector<KeyPoint> >& keypoints )
{ return wrapped->add(images, keypoints); }
CV_WRAP const std::vector<Mat>& getTrainImages() const
{ return wrapped->getTrainImages(); }
CV_WRAP const std::vector<std::vector<KeyPoint> >& getTrainKeypoints() const
{ return wrapped->getTrainKeypoints(); }
CV_WRAP void clear()
{ return wrapped->clear(); }
CV_WRAP bool isMaskSupported()
{ return wrapped->isMaskSupported(); }
CV_WRAP void train()
{ return wrapped->train(); }
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints ) const;
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT std::vector<KeyPoint>& queryKeypoints );
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints ) const
{ return wrapped->classify(queryImage, queryKeypoints, trainImage, trainKeypoints); }
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT std::vector<KeyPoint>& queryKeypoints )
{ return wrapped->classify(queryImage, queryKeypoints); }
CV_WRAP void match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const;
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const
{ return wrapped->match(queryImage, queryKeypoints, trainImage, trainKeypoints, matches, mask); }
CV_WRAP void knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
const Mat& mask=Mat(), bool compactResult=false ) const
{ return wrapped->knnMatch(queryImage, queryKeypoints, trainImage, trainKeypoints,
matches, k, mask, compactResult); }
CV_WRAP void radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
const Mat& mask=Mat(), bool compactResult=false ) const
{ return wrapped->radiusMatch(queryImage, queryKeypoints, trainImage, trainKeypoints,
matches, maxDistance, mask, compactResult); }
CV_WRAP void match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
CV_OUT std::vector<DMatch>& matches, const std::vector<Mat>& masks=std::vector<Mat>() );
CV_OUT std::vector<DMatch>& matches, const std::vector<Mat>& masks=std::vector<Mat>() )
{ return wrapped->match(queryImage, queryKeypoints, matches, masks); }
CV_WRAP void knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
{ return wrapped->knnMatch(queryImage, queryKeypoints, matches, k, masks, compactResult); }
CV_WRAP void radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
CV_WRAP virtual bool empty() const;
#endif
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
{ return wrapped->radiusMatch(queryImage, queryKeypoints, matches, maxDistance, masks, compactResult); }
CV_WRAP bool empty() const
{ return wrapped->empty(); }
enum
{
@ -392,9 +452,7 @@ public:
CV_WRAP_AS(clone) javaGenericDescriptorMatcher* jclone( bool emptyTrainData=false ) const
{
Ptr<GenericDescriptorMatcher> matcher = this->clone(emptyTrainData);
matcher.addref();
return (javaGenericDescriptorMatcher*)((GenericDescriptorMatcher*) matcher);
return new javaGenericDescriptorMatcher(wrapped->clone(emptyTrainData));
}
//supported: OneWay, Fern
@ -416,24 +474,26 @@ public:
break;
}
Ptr<GenericDescriptorMatcher> matcher = GenericDescriptorMatcher::create(name);
matcher.addref();
return (javaGenericDescriptorMatcher*)((GenericDescriptorMatcher*) matcher);
return new javaGenericDescriptorMatcher(GenericDescriptorMatcher::create(name));
}
CV_WRAP void write( const String& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((GenericDescriptorMatcher*)this)->write(fs);
fs.release();
wrapped->write(fs);
}
CV_WRAP void read( const String& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((GenericDescriptorMatcher*)this)->read(fs.root());
fs.release();
wrapped->read(fs.root());
}
private:
javaGenericDescriptorMatcher(Ptr<GenericDescriptorMatcher> _wrapped) : wrapped(_wrapped)
{}
Ptr<GenericDescriptorMatcher> wrapped;
};
#if 0