added tests to check rotation invariance of detectors

This commit is contained in:
Maria Dimashova 2012-07-13 18:03:20 +00:00
parent 9706079ace
commit 30c611f1d5
2 changed files with 509 additions and 0 deletions

View File

@ -0,0 +1,254 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace std;
using namespace cv;
const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png";
static
Mat generateHomography(float angle)
{
float angleRadian = angle * CV_PI / 180.;
Mat H = Mat::eye(3, 3, CV_32FC1);
H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
H.at<float>(0,1) = -std::sin(angleRadian);
H.at<float>(1,0) = std::sin(angleRadian);
return H;
}
static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{
int diag = std::sqrt(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows);
Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
LUShift.at<float>(0,2) = -srcImage.cols/2;
LUShift.at<float>(1,2) = -srcImage.rows/2;
Mat RDShift = Mat::eye(3, 3, CV_32FC1); // right down
RDShift.at<float>(0,2) = diag/2;
RDShift.at<float>(1,2) = diag/2;
Size sz(diag, diag);
Mat srcMask(srcImage.size(), CV_8UC1, Scalar(255));
Mat H = RDShift * generateHomography(angle) * LUShift;
warpPerspective(srcImage, dstImage, H, sz);
warpPerspective(srcMask, dstMask, H, sz);
return H;
}
static
float calcIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
float c = norm(p0 - p1), sqr_c = c * c;
float sqr_r0 = r0 * r0;
float sqr_r1 = r1 * r1;
if(r0 + r1 <= c)
return 0;
float minR = std::min(r0, r1);
float maxR = std::max(r0, r1);
if(c + minR <= maxR)
return CV_PI * minR * minR;
float cos_halfA0 = (sqr_r0 + sqr_c - sqr_r1) / (2 * r0 * c);
float cos_halfA1 = (sqr_r1 + sqr_c - sqr_r0) / (2 * r1 * c);
float A0 = 2 * acos(cos_halfA0);
float A1 = 2 * acos(cos_halfA1);
return 0.5 * sqr_r0 * (A0 - sin(A0)) +
0.5 * sqr_r1 * (A1 - sin(A1));
}
static
float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
float intersectArea = calcIntersectArea(p0, r0, p1, r1);
float unionArea = CV_PI * (r0 * r0 + r1 * r1) - intersectArea;
return intersectArea / unionArea;
}
class DetectorRotatationInvarianceTest : public cvtest::BaseTest
{
public:
DetectorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minInliersRatio,
float _minAngleInliersRatio) :
featureDetector(_featureDetector), minInliersRatio(_minInliersRatio), minAngleInliersRatio(_minAngleInliersRatio)
{
CV_Assert(!featureDetector.empty());
}
protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
// Read test data
Mat image0 = imread(imageFilename), image1, mask1;
if(image0.empty())
{
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
CV_Assert(keypoints0.size() > 15);
const int maxAngle = 360, angleStep = 10;
for(int angle = 0; angle < maxAngle; angle += angleStep)
{
Mat H = rotateImage(image0, angle, image1, mask1);
vector<KeyPoint> keypoints1;
featureDetector->detect(image1, keypoints1, mask1);
vector<Point2f> points0;
KeyPoint::convert(keypoints0, points0);
Mat points0t;
perspectiveTransform(Mat(points0), points0t, H);
int inliersCount = 0;
int angleInliersCount = 0;
for(size_t m0 = 0; m0 < points0t.total(); m0++)
{
int nearestPointIndex = -1;
float maxIntersectRatio = 0.f;
const float r0 = 0.5f * keypoints0[m0].size;
for(size_t m1 = 0; m1 < keypoints1.size(); m1++)
{
float r1 = 0.5f * keypoints1[m1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(m0), r0,
keypoints1[m1].pt, r1);
if(intersectRatio > maxIntersectRatio)
{
maxIntersectRatio = intersectRatio;
nearestPointIndex = m1;
}
}
if(maxIntersectRatio > 0.5f)
{
inliersCount++;
const float maxAngleDiff = 3.f; // grad
float angle0 = keypoints0[m0].angle;
float angle1 = keypoints1[nearestPointIndex].angle;
if(angle0 == -1 || angle1 == -1)
CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
CV_Assert(angle0 >= 0.f && angle0 < 360.f);
CV_Assert(angle1 >= 0.f && angle1 < 360.f);
float rotAngle0 = angle0 + angle;
if(rotAngle0 >= 360.f)
rotAngle0 -= 360.f;
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(2. * CV_PI - angleDiff));
bool isAngleCorrect = angleDiff < maxAngleDiff;
if(isAngleCorrect)
angleInliersCount++;
}
}
float inliersRatio = static_cast<float>(inliersCount) / keypoints0.size();
if(inliersRatio < minInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect inliersRatio: curr = %f, min = %f.\n",
inliersRatio, minInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
if(inliersCount)
{
float angleInliersRatio = static_cast<float>(angleInliersCount) / inliersCount;
if(angleInliersRatio < minAngleInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
angleInliersRatio, minAngleInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
// std::cout << "inliersRatio - " << inliersRatio
// << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / inliersCount << std::endl;
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
float minInliersRatio;
float minAngleInliersRatio;
};
// Tests registration
TEST(Features2d_RotationInvariance_Detector_MSER, regression)
{
DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.MSER"), 0.52f, 0.94f);
test.safe_run();
}
TEST(Features2d_RotationInvariance_Detector_ORB, regression)
{
DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"), 0.90, 0.95);
test.safe_run();
}

View File

@ -0,0 +1,255 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace std;
using namespace cv;
const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png";
static
Mat generateHomography(float angle)
{
float angleRadian = angle * CV_PI / 180.;
Mat H = Mat::eye(3, 3, CV_32FC1);
H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
H.at<float>(0,1) = -std::sin(angleRadian);
H.at<float>(1,0) = std::sin(angleRadian);
return H;
}
static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{
int diag = std::sqrt(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows);
Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
LUShift.at<float>(0,2) = -srcImage.cols/2;
LUShift.at<float>(1,2) = -srcImage.rows/2;
Mat RDShift = Mat::eye(3, 3, CV_32FC1); // right down
RDShift.at<float>(0,2) = diag/2;
RDShift.at<float>(1,2) = diag/2;
Size sz(diag, diag);
Mat srcMask(srcImage.size(), CV_8UC1, Scalar(255));
Mat H = RDShift * generateHomography(angle) * LUShift;
warpPerspective(srcImage, dstImage, H, sz);
warpPerspective(srcMask, dstMask, H, sz);
return H;
}
static
float calcIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
float c = norm(p0 - p1), sqr_c = c * c;
float sqr_r0 = r0 * r0;
float sqr_r1 = r1 * r1;
if(r0 + r1 <= c)
return 0;
float minR = std::min(r0, r1);
float maxR = std::max(r0, r1);
if(c + minR <= maxR)
return CV_PI * minR * minR;
float cos_halfA0 = (sqr_r0 + sqr_c - sqr_r1) / (2 * r0 * c);
float cos_halfA1 = (sqr_r1 + sqr_c - sqr_r0) / (2 * r1 * c);
float A0 = 2 * acos(cos_halfA0);
float A1 = 2 * acos(cos_halfA1);
return 0.5 * sqr_r0 * (A0 - sin(A0)) +
0.5 * sqr_r1 * (A1 - sin(A1));
}
static
float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1)
{
float intersectArea = calcIntersectArea(p0, r0, p1, r1);
float unionArea = CV_PI * (r0 * r0 + r1 * r1) - intersectArea;
return intersectArea / unionArea;
}
class DetectorRotatationInvarianceTest : public cvtest::BaseTest
{
public:
DetectorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minInliersRatio,
float _minAngleInliersRatio) :
featureDetector(_featureDetector), minInliersRatio(_minInliersRatio), minAngleInliersRatio(_minAngleInliersRatio)
{
CV_Assert(!featureDetector.empty());
}
protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
// Read test data
Mat image0 = imread(imageFilename), image1, mask1;
if(image0.empty())
{
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
CV_Assert(keypoints0.size() > 15);
const int maxAngle = 360, angleStep = 10;
for(int angle = 0; angle < maxAngle; angle += angleStep)
{
Mat H = rotateImage(image0, angle, image1, mask1);
vector<KeyPoint> keypoints1;
featureDetector->detect(image1, keypoints1, mask1);
vector<Point2f> points0;
KeyPoint::convert(keypoints0, points0);
Mat points0t;
perspectiveTransform(Mat(points0), points0t, H);
int inliersCount = 0;
int angleInliersCount = 0;
for(size_t m0 = 0; m0 < points0t.total(); m0++)
{
int nearestPointIndex = -1;
float maxIntersectRatio = 0.f;
const float r0 = 0.5f * keypoints0[m0].size;
for(size_t m1 = 0; m1 < keypoints1.size(); m1++)
{
float r1 = 0.5f * keypoints1[m1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(m0), r0,
keypoints1[m1].pt, r1);
if(intersectRatio > maxIntersectRatio)
{
maxIntersectRatio = intersectRatio;
nearestPointIndex = m1;
}
}
if(maxIntersectRatio > 0.5f)
{
inliersCount++;
const float maxAngleDiff = 3.f; // grad
float angle0 = keypoints0[m0].angle;
float angle1 = keypoints1[nearestPointIndex].angle;
if(angle0 == -1 || angle1 == -1)
CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
CV_Assert(angle0 >= 0.f && angle0 < 360.f);
CV_Assert(angle1 >= 0.f && angle1 < 360.f);
float rotAngle0 = angle0 + angle;
if(rotAngle0 >= 360.f)
rotAngle0 -= 360.f;
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(2. * CV_PI - angleDiff));
bool isAngleCorrect = angleDiff < maxAngleDiff;
if(isAngleCorrect)
angleInliersCount++;
}
}
float inliersRatio = static_cast<float>(inliersCount) / keypoints0.size();
if(inliersRatio < minInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect inliersRatio: curr = %f, min = %f.\n",
inliersRatio, minInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
if(inliersCount)
{
float angleInliersRatio = static_cast<float>(angleInliersCount) / inliersCount;
if(angleInliersRatio < minAngleInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
angleInliersRatio, minAngleInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
// std::cout << "inliersRatio - " << inliersRatio
// << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / inliersCount << std::endl;
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
float minInliersRatio;
float minAngleInliersRatio;
};
// Tests registration
TEST(Features2d_RotationInvariance_Detector_SURF, regression)
{
DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"), 0.60f, 0.94f);
test.safe_run();
}
TEST(Features2d_RotationInvariance_Detector_SIFT, regression)
{
DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"), 0.76f, 0.99f);
test.safe_run();
}