mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 01:13:28 +08:00
Merge pull request #15915 from VadimLevin:dev/norm_fix
Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
This commit is contained in:
parent
4cc458eb10
commit
31289d2f32
@ -13,11 +13,14 @@
|
||||
# define Py_LIMITED_API 0x03030000
|
||||
#endif
|
||||
|
||||
#include <math.h>
|
||||
#include <cmath>
|
||||
#include <Python.h>
|
||||
#include <limits>
|
||||
|
||||
#if PY_MAJOR_VERSION < 3
|
||||
#undef CVPY_DYNAMIC_INIT
|
||||
#else
|
||||
#define CV_PYTHON_3 1
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && (_MSC_VER > 1800)
|
||||
@ -37,16 +40,17 @@
|
||||
#include "pycompat.hpp"
|
||||
#include <map>
|
||||
|
||||
#define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred())
|
||||
|
||||
|
||||
class ArgInfo
|
||||
{
|
||||
public:
|
||||
const char * name;
|
||||
const char* name;
|
||||
bool outputarg;
|
||||
// more fields may be added if necessary
|
||||
|
||||
ArgInfo(const char * name_, bool outputarg_)
|
||||
: name(name_)
|
||||
, outputarg(outputarg_) {}
|
||||
ArgInfo(const char* name_, bool outputarg_) : name(name_), outputarg(outputarg_) {}
|
||||
|
||||
private:
|
||||
ArgInfo(const ArgInfo&); // = delete
|
||||
@ -159,6 +163,135 @@ catch (const cv::Exception &e) \
|
||||
|
||||
using namespace cv;
|
||||
|
||||
|
||||
namespace {
|
||||
template<class T>
|
||||
NPY_TYPES asNumpyType()
|
||||
{
|
||||
return NPY_OBJECT;
|
||||
}
|
||||
|
||||
template<>
|
||||
NPY_TYPES asNumpyType<bool>()
|
||||
{
|
||||
return NPY_BOOL;
|
||||
}
|
||||
|
||||
#define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \
|
||||
template<> \
|
||||
NPY_TYPES asNumpyType<src>() \
|
||||
{ \
|
||||
return NPY_##dst; \
|
||||
} \
|
||||
template<> \
|
||||
NPY_TYPES asNumpyType<u##src>() \
|
||||
{ \
|
||||
return NPY_U##dst; \
|
||||
}
|
||||
|
||||
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8);
|
||||
|
||||
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16);
|
||||
|
||||
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32);
|
||||
|
||||
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64);
|
||||
|
||||
#undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION
|
||||
|
||||
template<>
|
||||
NPY_TYPES asNumpyType<float>()
|
||||
{
|
||||
return NPY_FLOAT;
|
||||
}
|
||||
|
||||
template<>
|
||||
NPY_TYPES asNumpyType<double>()
|
||||
{
|
||||
return NPY_DOUBLE;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
PyArray_Descr* getNumpyTypeDescriptor()
|
||||
{
|
||||
return PyArray_DescrFromType(asNumpyType<T>());
|
||||
}
|
||||
|
||||
template <>
|
||||
PyArray_Descr* getNumpyTypeDescriptor<size_t>()
|
||||
{
|
||||
#if SIZE_MAX == ULONG_MAX
|
||||
return PyArray_DescrFromType(NPY_ULONG);
|
||||
#elif SIZE_MAX == ULLONG_MAX
|
||||
return PyArray_DescrFromType(NPY_ULONGLONG);
|
||||
#else
|
||||
return PyArray_DescrFromType(NPY_UINT);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <class T, class U>
|
||||
bool isRepresentable(U value) {
|
||||
return (std::numeric_limits<T>::min() <= value) && (value <= std::numeric_limits<T>::max());
|
||||
}
|
||||
|
||||
template<class T>
|
||||
bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to)
|
||||
{
|
||||
return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0;
|
||||
}
|
||||
|
||||
|
||||
template<>
|
||||
bool canBeSafelyCasted<size_t>(PyObject* obj, PyArray_Descr* to)
|
||||
{
|
||||
PyArray_Descr* from = PyArray_DescrFromScalar(obj);
|
||||
if (PyArray_CanCastTo(from, to))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
// False negative scenarios:
|
||||
// - Signed input is positive so it can be safely cast to unsigned output
|
||||
// - Input has wider limits but value is representable within output limits
|
||||
// - All the above
|
||||
if (PyDataType_ISSIGNED(from))
|
||||
{
|
||||
int64_t input = 0;
|
||||
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<int64_t>());
|
||||
return (input >= 0) && isRepresentable<size_t>(static_cast<uint64_t>(input));
|
||||
}
|
||||
else
|
||||
{
|
||||
uint64_t input = 0;
|
||||
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<uint64_t>());
|
||||
return isRepresentable<size_t>(input);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<class T>
|
||||
bool parseNumpyScalar(PyObject* obj, T& value)
|
||||
{
|
||||
if (PyArray_CheckScalar(obj))
|
||||
{
|
||||
// According to the numpy documentation:
|
||||
// There are 21 statically-defined PyArray_Descr objects for the built-in data-types
|
||||
// So descriptor pointer is not owning.
|
||||
PyArray_Descr* to = getNumpyTypeDescriptor<T>();
|
||||
if (canBeSafelyCasted<T>(obj, to))
|
||||
{
|
||||
PyArray_CastScalarToCtype(obj, &value, to);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
typedef std::vector<uchar> vector_uchar;
|
||||
typedef std::vector<char> vector_char;
|
||||
typedef std::vector<int> vector_int;
|
||||
@ -268,6 +401,11 @@ NumpyAllocator g_numpyAllocator;
|
||||
|
||||
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
|
||||
|
||||
static bool isBool(PyObject* obj) CV_NOEXCEPT
|
||||
{
|
||||
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj);
|
||||
}
|
||||
|
||||
// special case, when the converter needs full ArgInfo structure
|
||||
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
|
||||
{
|
||||
@ -578,14 +716,22 @@ PyObject* pyopencv_from(const bool& value)
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info)
|
||||
{
|
||||
CV_UNUSED(info);
|
||||
if(!obj || obj == Py_None)
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
int _val = PyObject_IsTrue(obj);
|
||||
if(_val < 0)
|
||||
return false;
|
||||
value = _val > 0;
|
||||
return true;
|
||||
}
|
||||
if (isBool(obj) || PyArray_IsIntegerScalar(obj))
|
||||
{
|
||||
npy_bool npy_value = NPY_FALSE;
|
||||
const int ret_code = PyArray_BoolConverter(obj, &npy_value);
|
||||
if (ret_code >= 0)
|
||||
{
|
||||
value = (npy_value == NPY_TRUE);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
failmsg("Argument '%s' is not convertable to bool", info.name);
|
||||
return false;
|
||||
}
|
||||
|
||||
template<>
|
||||
@ -597,11 +743,62 @@ PyObject* pyopencv_from(const size_t& value)
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info)
|
||||
{
|
||||
CV_UNUSED(info);
|
||||
if(!obj || obj == Py_None)
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
value = (int)PyLong_AsUnsignedLong(obj);
|
||||
return value != (size_t)-1 || !PyErr_Occurred();
|
||||
}
|
||||
if (isBool(obj))
|
||||
{
|
||||
failmsg("Argument '%s' must be integer type, not bool", info.name);
|
||||
return false;
|
||||
}
|
||||
if (PyArray_IsIntegerScalar(obj))
|
||||
{
|
||||
if (PyLong_Check(obj))
|
||||
{
|
||||
#if defined(CV_PYTHON_3)
|
||||
value = PyLong_AsSize_t(obj);
|
||||
#else
|
||||
#if ULONG_MAX == SIZE_MAX
|
||||
value = PyLong_AsUnsignedLong(obj);
|
||||
#else
|
||||
value = PyLong_AsUnsignedLongLong(obj);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#if !defined(CV_PYTHON_3)
|
||||
// Python 2.x has PyIntObject which is not a subtype of PyLongObject
|
||||
// Overflow check here is unnecessary because object will be converted to long on the
|
||||
// interpreter side
|
||||
else if (PyInt_Check(obj))
|
||||
{
|
||||
const long res = PyInt_AsLong(obj);
|
||||
if (res < 0) {
|
||||
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
|
||||
return false;
|
||||
}
|
||||
#if ULONG_MAX == SIZE_MAX
|
||||
value = PyInt_AsUnsignedLongMask(obj);
|
||||
#else
|
||||
value = PyInt_AsUnsignedLongLongMask(obj);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
else
|
||||
{
|
||||
const bool isParsed = parseNumpyScalar<size_t>(obj, value);
|
||||
if (!isParsed) {
|
||||
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
failmsg("Argument '%s' is required to be an integer", info.name);
|
||||
return false;
|
||||
}
|
||||
return !PyErr_Occurred();
|
||||
}
|
||||
|
||||
template<>
|
||||
@ -613,16 +810,25 @@ PyObject* pyopencv_from(const int& value)
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info)
|
||||
{
|
||||
CV_UNUSED(info);
|
||||
if(!obj || obj == Py_None)
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
if(PyInt_Check(obj))
|
||||
value = (int)PyInt_AsLong(obj);
|
||||
else if(PyLong_Check(obj))
|
||||
value = (int)PyLong_AsLong(obj);
|
||||
else
|
||||
}
|
||||
if (isBool(obj))
|
||||
{
|
||||
failmsg("Argument '%s' must be integer, not bool", info.name);
|
||||
return false;
|
||||
return value != -1 || !PyErr_Occurred();
|
||||
}
|
||||
if (PyArray_IsIntegerScalar(obj))
|
||||
{
|
||||
value = PyArray_PyIntAsInt(obj);
|
||||
}
|
||||
else
|
||||
{
|
||||
failmsg("Argument '%s' is required to be an integer", info.name);
|
||||
return false;
|
||||
}
|
||||
return !CV_HAS_CONVERSION_ERROR(value);
|
||||
}
|
||||
|
||||
template<>
|
||||
@ -651,13 +857,39 @@ PyObject* pyopencv_from(const double& value)
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info)
|
||||
{
|
||||
CV_UNUSED(info);
|
||||
if(!obj || obj == Py_None)
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
if(!!PyInt_CheckExact(obj))
|
||||
value = (double)PyInt_AS_LONG(obj);
|
||||
}
|
||||
if (isBool(obj))
|
||||
{
|
||||
failmsg("Argument '%s' must be double, not bool", info.name);
|
||||
return false;
|
||||
}
|
||||
if (PyArray_IsPythonNumber(obj))
|
||||
{
|
||||
if (PyLong_Check(obj))
|
||||
{
|
||||
value = PyLong_AsDouble(obj);
|
||||
}
|
||||
else
|
||||
{
|
||||
value = PyFloat_AsDouble(obj);
|
||||
}
|
||||
}
|
||||
else if (PyArray_CheckScalar(obj))
|
||||
{
|
||||
const bool isParsed = parseNumpyScalar<double>(obj, value);
|
||||
if (!isParsed) {
|
||||
failmsg("Argument '%s' can not be safely parsed to 'double'", info.name);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
value = PyFloat_AsDouble(obj);
|
||||
{
|
||||
failmsg("Argument '%s' can not be treated as a double", info.name);
|
||||
return false;
|
||||
}
|
||||
return !PyErr_Occurred();
|
||||
}
|
||||
|
||||
@ -670,13 +902,41 @@ PyObject* pyopencv_from(const float& value)
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info)
|
||||
{
|
||||
CV_UNUSED(info);
|
||||
if(!obj || obj == Py_None)
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
if(!!PyInt_CheckExact(obj))
|
||||
value = (float)PyInt_AS_LONG(obj);
|
||||
}
|
||||
if (isBool(obj))
|
||||
{
|
||||
failmsg("Argument '%s' must be float, not bool", info.name);
|
||||
return false;
|
||||
}
|
||||
if (PyArray_IsPythonNumber(obj))
|
||||
{
|
||||
if (PyLong_Check(obj))
|
||||
{
|
||||
double res = PyLong_AsDouble(obj);
|
||||
value = static_cast<float>(res);
|
||||
}
|
||||
else
|
||||
{
|
||||
double res = PyFloat_AsDouble(obj);
|
||||
value = static_cast<float>(res);
|
||||
}
|
||||
}
|
||||
else if (PyArray_CheckScalar(obj))
|
||||
{
|
||||
const bool isParsed = parseNumpyScalar<float>(obj, value);
|
||||
if (!isParsed) {
|
||||
failmsg("Argument '%s' can not be safely parsed to 'float'", info.name);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
value = (float)PyFloat_AsDouble(obj);
|
||||
{
|
||||
failmsg("Argument '%s' can't be treated as a float", info.name);
|
||||
return false;
|
||||
}
|
||||
return !PyErr_Occurred();
|
||||
}
|
||||
|
||||
@ -1742,7 +2002,7 @@ static bool init_body(PyObject * m)
|
||||
#pragma GCC visibility push(default)
|
||||
#endif
|
||||
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
#if defined(CV_PYTHON_3)
|
||||
// === Python 3
|
||||
|
||||
static struct PyModuleDef cv2_moduledef =
|
||||
|
@ -4,12 +4,14 @@ from __future__ import print_function
|
||||
import hdr_parser, sys, re, os
|
||||
from string import Template
|
||||
from pprint import pprint
|
||||
from collections import namedtuple
|
||||
|
||||
if sys.version_info[0] >= 3:
|
||||
from io import StringIO
|
||||
else:
|
||||
from cStringIO import StringIO
|
||||
|
||||
|
||||
forbidden_arg_types = ["void*"]
|
||||
|
||||
ignored_arg_types = ["RNG*"]
|
||||
@ -172,18 +174,48 @@ gen_template_prop_init = Template("""
|
||||
gen_template_rw_prop_init = Template("""
|
||||
{(char*)"${member}", (getter)pyopencv_${name}_get_${member}, (setter)pyopencv_${name}_set_${member}, (char*)"${member}", NULL},""")
|
||||
|
||||
class FormatStrings:
|
||||
string = 's'
|
||||
unsigned_char = 'b'
|
||||
short_int = 'h'
|
||||
int = 'i'
|
||||
unsigned_int = 'I'
|
||||
long = 'l'
|
||||
unsigned_long = 'k'
|
||||
long_long = 'L'
|
||||
unsigned_long_long = 'K'
|
||||
size_t = 'n'
|
||||
float = 'f'
|
||||
double = 'd'
|
||||
object = 'O'
|
||||
|
||||
ArgTypeInfo = namedtuple('ArgTypeInfo',
|
||||
['atype', 'format_str', 'default_value',
|
||||
'strict_conversion'])
|
||||
# strict_conversion is False by default
|
||||
ArgTypeInfo.__new__.__defaults__ = (False,)
|
||||
|
||||
simple_argtype_mapping = {
|
||||
"bool": ("bool", "b", "0"),
|
||||
"size_t": ("size_t", "I", "0"),
|
||||
"int": ("int", "i", "0"),
|
||||
"float": ("float", "f", "0.f"),
|
||||
"double": ("double", "d", "0"),
|
||||
"c_string": ("char*", "s", '(char*)""')
|
||||
"bool": ArgTypeInfo("bool", FormatStrings.unsigned_char, "0", True),
|
||||
"size_t": ArgTypeInfo("size_t", FormatStrings.unsigned_long_long, "0", True),
|
||||
"int": ArgTypeInfo("int", FormatStrings.int, "0", True),
|
||||
"float": ArgTypeInfo("float", FormatStrings.float, "0.f", True),
|
||||
"double": ArgTypeInfo("double", FormatStrings.double, "0", True),
|
||||
"c_string": ArgTypeInfo("char*", FormatStrings.string, '(char*)""')
|
||||
}
|
||||
|
||||
|
||||
def normalize_class_name(name):
|
||||
return re.sub(r"^cv\.", "", name).replace(".", "_")
|
||||
|
||||
|
||||
def get_type_format_string(arg_type_info):
|
||||
if arg_type_info.strict_conversion:
|
||||
return FormatStrings.object
|
||||
else:
|
||||
return arg_type_info.format_str
|
||||
|
||||
|
||||
class ClassProp(object):
|
||||
def __init__(self, decl):
|
||||
self.tp = decl[0].replace("*", "_ptr")
|
||||
@ -576,7 +608,7 @@ class FuncInfo(object):
|
||||
fullname = selfinfo.wname + "." + fullname
|
||||
|
||||
all_code_variants = []
|
||||
declno = -1
|
||||
|
||||
for v in self.variants:
|
||||
code_decl = ""
|
||||
code_ret = ""
|
||||
@ -584,7 +616,6 @@ class FuncInfo(object):
|
||||
|
||||
code_args = "("
|
||||
all_cargs = []
|
||||
parse_arglist = []
|
||||
|
||||
if v.isphantom and ismethod and not self.is_static:
|
||||
code_args += "_self_"
|
||||
@ -617,22 +648,22 @@ class FuncInfo(object):
|
||||
if any(tp in codegen.enums.keys() for tp in tp_candidates):
|
||||
defval0 = "static_cast<%s>(%d)" % (a.tp, 0)
|
||||
|
||||
amapping = simple_argtype_mapping.get(tp, (tp, "O", defval0))
|
||||
arg_type_info = simple_argtype_mapping.get(tp, ArgTypeInfo(tp, FormatStrings.object, defval0, True))
|
||||
parse_name = a.name
|
||||
if a.py_inputarg:
|
||||
if amapping[1] == "O":
|
||||
if arg_type_info.strict_conversion:
|
||||
code_decl += " PyObject* pyobj_%s = NULL;\n" % (a.name,)
|
||||
parse_name = "pyobj_" + a.name
|
||||
if a.tp == 'char':
|
||||
code_cvt_list.append("convert_to_char(pyobj_%s, &%s, %s)"% (a.name, a.name, a.crepr()))
|
||||
code_cvt_list.append("convert_to_char(pyobj_%s, &%s, %s)" % (a.name, a.name, a.crepr()))
|
||||
else:
|
||||
code_cvt_list.append("pyopencv_to(pyobj_%s, %s, %s)" % (a.name, a.name, a.crepr()))
|
||||
|
||||
all_cargs.append([amapping, parse_name])
|
||||
all_cargs.append([arg_type_info, parse_name])
|
||||
|
||||
defval = a.defval
|
||||
if not defval:
|
||||
defval = amapping[2]
|
||||
defval = arg_type_info.default_value
|
||||
else:
|
||||
if "UMat" in tp:
|
||||
if "Mat" in defval and "UMat" not in defval:
|
||||
@ -641,14 +672,14 @@ class FuncInfo(object):
|
||||
if "Mat" in defval and "GpuMat" not in defval:
|
||||
defval = defval.replace("Mat", "cuda::GpuMat")
|
||||
# "tp arg = tp();" is equivalent to "tp arg;" in the case of complex types
|
||||
if defval == tp + "()" and amapping[1] == "O":
|
||||
if defval == tp + "()" and arg_type_info.format_str == FormatStrings.object:
|
||||
defval = ""
|
||||
if a.outputarg and not a.inputarg:
|
||||
defval = ""
|
||||
if defval:
|
||||
code_decl += " %s %s=%s;\n" % (amapping[0], a.name, defval)
|
||||
code_decl += " %s %s=%s;\n" % (arg_type_info.atype, a.name, defval)
|
||||
else:
|
||||
code_decl += " %s %s;\n" % (amapping[0], a.name)
|
||||
code_decl += " %s %s;\n" % (arg_type_info.atype, a.name)
|
||||
|
||||
if not code_args.endswith("("):
|
||||
code_args += ", "
|
||||
@ -690,12 +721,16 @@ class FuncInfo(object):
|
||||
if v.rettype:
|
||||
tp = v.rettype
|
||||
tp1 = tp.replace("*", "_ptr")
|
||||
amapping = simple_argtype_mapping.get(tp, (tp, "O", "0"))
|
||||
all_cargs.append(amapping)
|
||||
default_info = ArgTypeInfo(tp, FormatStrings.object, "0")
|
||||
arg_type_info = simple_argtype_mapping.get(tp, default_info)
|
||||
all_cargs.append(arg_type_info)
|
||||
|
||||
if v.args and v.py_arglist:
|
||||
# form the format spec for PyArg_ParseTupleAndKeywords
|
||||
fmtspec = "".join([all_cargs[argno][0][1] for aname, argno in v.py_arglist])
|
||||
fmtspec = "".join([
|
||||
get_type_format_string(all_cargs[argno][0])
|
||||
for aname, argno in v.py_arglist
|
||||
])
|
||||
if v.py_noptargs > 0:
|
||||
fmtspec = fmtspec[:-v.py_noptargs] + "|" + fmtspec[-v.py_noptargs:]
|
||||
fmtspec += ":" + fullname
|
||||
@ -723,10 +758,6 @@ class FuncInfo(object):
|
||||
else:
|
||||
# there is more than 1 return parameter; form the tuple out of them
|
||||
fmtspec = "N"*len(v.py_outlist)
|
||||
backcvt_arg_list = []
|
||||
for aname, argno in v.py_outlist:
|
||||
amapping = all_cargs[argno][0]
|
||||
backcvt_arg_list.append("%s(%s)" % (amapping[2], aname))
|
||||
code_ret = "return Py_BuildValue(\"(%s)\", %s)" % \
|
||||
(fmtspec, ", ".join(["pyopencv_from(" + aname + ")" for aname, argno in v.py_outlist]))
|
||||
|
||||
|
@ -136,13 +136,12 @@ class Arguments(NewOpenCVTests):
|
||||
msg=get_conversion_error_msg(convertible_false, 'bool: false', actual))
|
||||
|
||||
def test_parse_to_bool_not_convertible(self):
|
||||
for not_convertible in (1.2, np.float(2.3), 's', 'str', (1, 2), [1, 2], complex(1, 1), None,
|
||||
for not_convertible in (1.2, np.float(2.3), 's', 'str', (1, 2), [1, 2], complex(1, 1),
|
||||
complex(imag=2), complex(1.1), np.array([1, 0], dtype=np.bool)):
|
||||
with self.assertRaises((TypeError, OverflowError),
|
||||
msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpBool(not_convertible)
|
||||
|
||||
@unittest.skip('Wrong conversion behavior')
|
||||
def test_parse_to_bool_convertible_extra(self):
|
||||
try_to_convert = partial(self._try_to_convert, cv.utils.dumpBool)
|
||||
_, max_size_t = get_limits(ctypes.c_size_t)
|
||||
@ -151,7 +150,6 @@ class Arguments(NewOpenCVTests):
|
||||
self.assertEqual('bool: true', actual,
|
||||
msg=get_conversion_error_msg(convertible_true, 'bool: true', actual))
|
||||
|
||||
@unittest.skip('Wrong conversion behavior')
|
||||
def test_parse_to_bool_not_convertible_extra(self):
|
||||
for not_convertible in (np.array([False]), np.array([True], dtype=np.bool)):
|
||||
with self.assertRaises((TypeError, OverflowError),
|
||||
@ -172,12 +170,11 @@ class Arguments(NewOpenCVTests):
|
||||
min_int, max_int = get_limits(ctypes.c_int)
|
||||
for not_convertible in (1.2, np.float(4), float(3), np.double(45), 's', 'str',
|
||||
np.array([1, 2]), (1,), [1, 2], min_int - 1, max_int + 1,
|
||||
complex(1, 1), complex(imag=2), complex(1.1), None):
|
||||
complex(1, 1), complex(imag=2), complex(1.1)):
|
||||
with self.assertRaises((TypeError, OverflowError, ValueError),
|
||||
msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpInt(not_convertible)
|
||||
|
||||
@unittest.skip('Wrong conversion behavior')
|
||||
def test_parse_to_int_not_convertible_extra(self):
|
||||
for not_convertible in (np.bool_(True), True, False, np.float32(2.3),
|
||||
np.array([3, ], dtype=int), np.array([-2, ], dtype=np.int32),
|
||||
@ -189,7 +186,7 @@ class Arguments(NewOpenCVTests):
|
||||
def test_parse_to_size_t_convertible(self):
|
||||
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
|
||||
_, max_uint = get_limits(ctypes.c_uint)
|
||||
for convertible in (2, True, False, max_uint, (12), np.uint8(34), np.int8(12), np.int16(23),
|
||||
for convertible in (2, max_uint, (12), np.uint8(34), np.int8(12), np.int16(23),
|
||||
np.int32(123), np.int64(344), np.uint64(3), np.uint16(2), np.uint32(5),
|
||||
np.uint(44)):
|
||||
expected = 'size_t: {0:d}'.format(convertible).lower()
|
||||
@ -198,14 +195,15 @@ class Arguments(NewOpenCVTests):
|
||||
msg=get_conversion_error_msg(convertible, expected, actual))
|
||||
|
||||
def test_parse_to_size_t_not_convertible(self):
|
||||
for not_convertible in (1.2, np.float(4), float(3), np.double(45), 's', 'str',
|
||||
np.array([1, 2]), (1,), [1, 2], np.float64(6), complex(1, 1),
|
||||
complex(imag=2), complex(1.1), None):
|
||||
min_long, _ = get_limits(ctypes.c_long)
|
||||
for not_convertible in (1.2, True, False, np.bool_(True), np.float(4), float(3),
|
||||
np.double(45), 's', 'str', np.array([1, 2]), (1,), [1, 2],
|
||||
np.float64(6), complex(1, 1), complex(imag=2), complex(1.1),
|
||||
-1, min_long, np.int8(-35)):
|
||||
with self.assertRaises((TypeError, OverflowError),
|
||||
msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpSizeT(not_convertible)
|
||||
|
||||
@unittest.skip('Wrong conversion behavior')
|
||||
def test_parse_to_size_t_convertible_extra(self):
|
||||
try_to_convert = partial(self._try_to_convert, cv.utils.dumpSizeT)
|
||||
_, max_size_t = get_limits(ctypes.c_size_t)
|
||||
@ -215,7 +213,6 @@ class Arguments(NewOpenCVTests):
|
||||
self.assertEqual(expected, actual,
|
||||
msg=get_conversion_error_msg(convertible, expected, actual))
|
||||
|
||||
@unittest.skip('Wrong conversion behavior')
|
||||
def test_parse_to_size_t_not_convertible_extra(self):
|
||||
for not_convertible in (np.bool_(True), True, False, np.array([123, ], dtype=np.uint8),):
|
||||
with self.assertRaises((TypeError, OverflowError),
|
||||
@ -251,13 +248,12 @@ class Arguments(NewOpenCVTests):
|
||||
msg=get_conversion_error_msg(inf, expected, actual))
|
||||
|
||||
def test_parse_to_float_not_convertible(self):
|
||||
for not_convertible in ('s', 'str', (12,), [1, 2], None, np.array([1, 2], dtype=np.float),
|
||||
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=np.float),
|
||||
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
|
||||
complex(1.1)):
|
||||
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpFloat(not_convertible)
|
||||
|
||||
@unittest.skip('Wrong conversion behavior')
|
||||
def test_parse_to_float_not_convertible_extra(self):
|
||||
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
|
||||
np.array([1., ]), np.array([False]),
|
||||
@ -289,13 +285,12 @@ class Arguments(NewOpenCVTests):
|
||||
"Actual: {}".format(type(nan).__name__, actual))
|
||||
|
||||
def test_parse_to_double_not_convertible(self):
|
||||
for not_convertible in ('s', 'str', (12,), [1, 2], None, np.array([1, 2], dtype=np.float),
|
||||
for not_convertible in ('s', 'str', (12,), [1, 2], np.array([1, 2], dtype=np.float),
|
||||
np.array([1, 2], dtype=np.double), complex(1, 1), complex(imag=2),
|
||||
complex(1.1)):
|
||||
with self.assertRaises((TypeError), msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpDouble(not_convertible)
|
||||
|
||||
@unittest.skip('Wrong conversion behavior')
|
||||
def test_parse_to_double_not_convertible_extra(self):
|
||||
for not_convertible in (np.bool_(False), True, False, np.array([123, ], dtype=int),
|
||||
np.array([1., ]), np.array([False]),
|
||||
|
173
modules/python/test/test_norm.py
Normal file
173
modules/python/test/test_norm.py
Normal file
@ -0,0 +1,173 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from itertools import product
|
||||
from functools import reduce
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
|
||||
def norm_inf(x, y=None):
|
||||
def norm(vec):
|
||||
return np.linalg.norm(vec.flatten(), np.inf)
|
||||
|
||||
x = x.astype(np.float64)
|
||||
return norm(x) if y is None else norm(x - y.astype(np.float64))
|
||||
|
||||
|
||||
def norm_l1(x, y=None):
|
||||
def norm(vec):
|
||||
return np.linalg.norm(vec.flatten(), 1)
|
||||
|
||||
x = x.astype(np.float64)
|
||||
return norm(x) if y is None else norm(x - y.astype(np.float64))
|
||||
|
||||
|
||||
def norm_l2(x, y=None):
|
||||
def norm(vec):
|
||||
return np.linalg.norm(vec.flatten())
|
||||
|
||||
x = x.astype(np.float64)
|
||||
return norm(x) if y is None else norm(x - y.astype(np.float64))
|
||||
|
||||
|
||||
def norm_l2sqr(x, y=None):
|
||||
def norm(vec):
|
||||
return np.square(vec).sum()
|
||||
|
||||
x = x.astype(np.float64)
|
||||
return norm(x) if y is None else norm(x - y.astype(np.float64))
|
||||
|
||||
|
||||
def norm_hamming(x, y=None):
|
||||
def norm(vec):
|
||||
return sum(bin(i).count('1') for i in vec.flatten())
|
||||
|
||||
return norm(x) if y is None else norm(np.bitwise_xor(x, y))
|
||||
|
||||
|
||||
def norm_hamming2(x, y=None):
|
||||
def norm(vec):
|
||||
def element_norm(element):
|
||||
binary_str = bin(element).split('b')[-1]
|
||||
if len(binary_str) % 2 == 1:
|
||||
binary_str = '0' + binary_str
|
||||
gen = filter(lambda p: p != '00',
|
||||
(binary_str[i:i+2]
|
||||
for i in range(0, len(binary_str), 2)))
|
||||
return sum(1 for _ in gen)
|
||||
|
||||
return sum(element_norm(element) for element in vec.flatten())
|
||||
|
||||
return norm(x) if y is None else norm(np.bitwise_xor(x, y))
|
||||
|
||||
|
||||
norm_type_under_test = {
|
||||
cv.NORM_INF: norm_inf,
|
||||
cv.NORM_L1: norm_l1,
|
||||
cv.NORM_L2: norm_l2,
|
||||
cv.NORM_L2SQR: norm_l2sqr,
|
||||
cv.NORM_HAMMING: norm_hamming,
|
||||
cv.NORM_HAMMING2: norm_hamming2
|
||||
}
|
||||
|
||||
norm_name = {
|
||||
cv.NORM_INF: 'inf',
|
||||
cv.NORM_L1: 'L1',
|
||||
cv.NORM_L2: 'L2',
|
||||
cv.NORM_L2SQR: 'L2SQR',
|
||||
cv.NORM_HAMMING: 'Hamming',
|
||||
cv.NORM_HAMMING2: 'Hamming2'
|
||||
}
|
||||
|
||||
|
||||
def get_element_types(norm_type):
|
||||
if norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
|
||||
return (np.uint8,)
|
||||
else:
|
||||
return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32,
|
||||
np.float64)
|
||||
|
||||
|
||||
def generate_vector(shape, dtype):
|
||||
if np.issubdtype(dtype, np.integer):
|
||||
return np.random.randint(0, 100, shape).astype(dtype)
|
||||
else:
|
||||
return np.random.normal(10., 12.5, shape).astype(dtype)
|
||||
|
||||
|
||||
shapes = (1, 2, 3, 5, 7, 16, (1, 1), (2, 2), (3, 5), (1, 7))
|
||||
|
||||
|
||||
class norm_test(NewOpenCVTests):
|
||||
|
||||
def test_norm_for_one_array(self):
|
||||
np.random.seed(123)
|
||||
for norm_type, norm in norm_type_under_test.items():
|
||||
element_types = get_element_types(norm_type)
|
||||
for shape, element_type in product(shapes, element_types):
|
||||
array = generate_vector(shape, element_type)
|
||||
expected = norm(array)
|
||||
actual = cv.norm(array, norm_type)
|
||||
self.assertAlmostEqual(
|
||||
expected, actual, places=2,
|
||||
msg='Array {0} of {1} and norm {2}'.format(
|
||||
array, element_type.__name__, norm_name[norm_type]
|
||||
)
|
||||
)
|
||||
|
||||
def test_norm_for_two_arrays(self):
|
||||
np.random.seed(456)
|
||||
for norm_type, norm in norm_type_under_test.items():
|
||||
element_types = get_element_types(norm_type)
|
||||
for shape, element_type in product(shapes, element_types):
|
||||
first = generate_vector(shape, element_type)
|
||||
second = generate_vector(shape, element_type)
|
||||
expected = norm(first, second)
|
||||
actual = cv.norm(first, second, norm_type)
|
||||
self.assertAlmostEqual(
|
||||
expected, actual, places=2,
|
||||
msg='Arrays {0} {1} of type {2} and norm {3}'.format(
|
||||
first, second, element_type.__name__,
|
||||
norm_name[norm_type]
|
||||
)
|
||||
)
|
||||
|
||||
def test_norm_fails_for_wrong_type(self):
|
||||
for norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
|
||||
with self.assertRaises(Exception,
|
||||
msg='Type is not checked {0}'.format(
|
||||
norm_name[norm_type]
|
||||
)):
|
||||
cv.norm(np.array([1, 2], dtype=np.int32), norm_type)
|
||||
|
||||
def test_norm_fails_for_array_and_scalar(self):
|
||||
for norm_type in norm_type_under_test:
|
||||
with self.assertRaises(Exception,
|
||||
msg='Exception is not thrown for {0}'.format(
|
||||
norm_name[norm_type]
|
||||
)):
|
||||
cv.norm(np.array([1, 2], dtype=np.uint8), 123, norm_type)
|
||||
|
||||
def test_norm_fails_for_scalar_and_array(self):
|
||||
for norm_type in norm_type_under_test:
|
||||
with self.assertRaises(Exception,
|
||||
msg='Exception is not thrown for {0}'.format(
|
||||
norm_name[norm_type]
|
||||
)):
|
||||
cv.norm(4, np.array([1, 2], dtype=np.uint8), norm_type)
|
||||
|
||||
def test_norm_fails_for_array_and_norm_type_as_scalar(self):
|
||||
for norm_type in norm_type_under_test:
|
||||
with self.assertRaises(Exception,
|
||||
msg='Exception is not thrown for {0}'.format(
|
||||
norm_name[norm_type]
|
||||
)):
|
||||
cv.norm(np.array([3, 4, 5], dtype=np.uint8),
|
||||
norm_type, normType=norm_type)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
Loading…
Reference in New Issue
Block a user