mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #17384 from dkurt:efficientdet
This commit is contained in:
commit
319db07b6b
@ -235,6 +235,17 @@ PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
|
||||
Mat(cv::Size(800, 600), CV_32FC3));
|
||||
}
|
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, EfficientDet)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE || target != DNN_TARGET_CPU)
|
||||
throw SkipTestException("");
|
||||
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
||||
resize(sample, sample, Size(512, 512));
|
||||
Mat inp;
|
||||
sample.convertTo(inp, CV_32FC3, 1.0/255);
|
||||
processNet("dnn/efficientdet-d0.pb", "dnn/efficientdet-d0.pbtxt", "", inp);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets());
|
||||
|
||||
} // namespace
|
||||
|
@ -1542,22 +1542,32 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
}
|
||||
else if (type == "Mul")
|
||||
else if (type == "Mul" || type == "RealDiv")
|
||||
{
|
||||
bool haveConst = false;
|
||||
for(int ii = 0; !haveConst && ii < layer.input_size(); ++ii)
|
||||
int constId = -1;
|
||||
for(int ii = 0; ii < layer.input_size(); ++ii)
|
||||
{
|
||||
Pin input = parsePin(layer.input(ii));
|
||||
haveConst = value_id.find(input.name) != value_id.end();
|
||||
if (value_id.find(input.name) != value_id.end())
|
||||
{
|
||||
constId = ii;
|
||||
break;
|
||||
}
|
||||
}
|
||||
CV_Assert(!haveConst || layer.input_size() == 2);
|
||||
CV_Assert((constId != -1) || (layer.input_size() == 2));
|
||||
|
||||
if (haveConst)
|
||||
if (constId != -1)
|
||||
{
|
||||
// Multiplication by constant.
|
||||
CV_Assert(layer.input_size() == 2);
|
||||
Mat scaleMat = getTensorContent(getConstBlob(layer, value_id));
|
||||
CV_Assert(scaleMat.type() == CV_32FC1);
|
||||
if (type == "RealDiv")
|
||||
{
|
||||
if (constId == 0)
|
||||
CV_Error(Error::StsNotImplemented, "Division of constant over variable");
|
||||
scaleMat = 1.0f / scaleMat;
|
||||
}
|
||||
|
||||
int id;
|
||||
if (scaleMat.total() == 1) // is a scalar.
|
||||
@ -1659,11 +1669,15 @@ void TFImporter::populateNet(Net dstNet)
|
||||
int id;
|
||||
if (equalInpShapes || netInputShapes.empty())
|
||||
{
|
||||
layerParams.set("operation", "prod");
|
||||
layerParams.set("operation", type == "RealDiv" ? "div" : "prod");
|
||||
id = dstNet.addLayer(name, "Eltwise", layerParams);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (type == "RealDiv")
|
||||
CV_Error(Error::StsNotImplemented, "Division of non equal tensors");
|
||||
id = dstNet.addLayer(name, "Scale", layerParams);
|
||||
}
|
||||
|
||||
layer_id[name] = id;
|
||||
|
||||
|
@ -1128,4 +1128,37 @@ TEST_P(Test_TensorFlow_nets, Mask_RCNN)
|
||||
expectNoFallbacks(net);
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_nets, EfficientDet)
|
||||
{
|
||||
if (target != DNN_TARGET_CPU)
|
||||
{
|
||||
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
||||
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL);
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
||||
}
|
||||
checkBackend();
|
||||
std::string proto = findDataFile("dnn/efficientdet-d0.pbtxt");
|
||||
std::string model = findDataFile("dnn/efficientdet-d0.pb");
|
||||
|
||||
Net net = readNetFromTensorflow(model, proto);
|
||||
Mat img = imread(findDataFile("dnn/dog416.png"));
|
||||
Mat blob = blobFromImage(img, 1.0/255, Size(512, 512), Scalar(123.675, 116.28, 103.53));
|
||||
|
||||
net.setPreferableBackend(backend);
|
||||
net.setPreferableTarget(target);
|
||||
net.setInput(blob);
|
||||
// Output has shape 1x1xNx7 where N - number of detections.
|
||||
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
|
||||
Mat out = net.forward();
|
||||
|
||||
// References are from test for TensorFlow model.
|
||||
Mat ref = (Mat_<float>(3, 7) << 0, 1, 0.8437444, 0.153996080160141, 0.20534580945968628, 0.7463544607162476, 0.7414066195487976,
|
||||
0, 17, 0.8245924, 0.16657517850399017, 0.3996818959712982, 0.4111558794975281, 0.9306337833404541,
|
||||
0, 7, 0.8039304, 0.6118435263633728, 0.13175517320632935, 0.9065558314323425, 0.2943994700908661);
|
||||
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 1e-5;
|
||||
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 2e-3 : 1e-4;
|
||||
normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
|
||||
expectNoFallbacksFromIE(net);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -269,7 +269,7 @@ def parseTextGraph(filePath):
|
||||
def removeIdentity(graph_def):
|
||||
identities = {}
|
||||
for node in graph_def.node:
|
||||
if node.op == 'Identity':
|
||||
if node.op == 'Identity' or node.op == 'IdentityN':
|
||||
identities[node.name] = node.input[0]
|
||||
graph_def.node.remove(node)
|
||||
|
||||
|
236
samples/dnn/tf_text_graph_efficientdet.py
Normal file
236
samples/dnn/tf_text_graph_efficientdet.py
Normal file
@ -0,0 +1,236 @@
|
||||
# This file is a part of OpenCV project.
|
||||
# It is a subject to the license terms in the LICENSE file found in the top-level directory
|
||||
# of this distribution and at http://opencv.org/license.html.
|
||||
#
|
||||
# Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
# Third party copyrights are property of their respective owners.
|
||||
#
|
||||
# Use this script to get the text graph representation (.pbtxt) of EfficientDet
|
||||
# deep learning network trained in https://github.com/google/automl.
|
||||
# Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function.
|
||||
# See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
|
||||
import argparse
|
||||
import re
|
||||
from math import sqrt
|
||||
from tf_text_graph_common import *
|
||||
|
||||
|
||||
class AnchorGenerator:
|
||||
def __init__(self, min_level, aspect_ratios, num_scales, anchor_scale):
|
||||
self.min_level = min_level
|
||||
self.aspect_ratios = aspect_ratios
|
||||
self.anchor_scale = anchor_scale
|
||||
self.scales = [2**(float(s) / num_scales) for s in range(num_scales)]
|
||||
|
||||
def get(self, layer_id):
|
||||
widths = []
|
||||
heights = []
|
||||
for s in self.scales:
|
||||
for a in self.aspect_ratios:
|
||||
base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale
|
||||
heights.append(base_anchor_size * s * a[1])
|
||||
widths.append(base_anchor_size * s * a[0])
|
||||
return widths, heights
|
||||
|
||||
|
||||
def createGraph(modelPath, outputPath, min_level, aspect_ratios, num_scales,
|
||||
anchor_scale, num_classes, image_width, image_height):
|
||||
print('Min level: %d' % min_level)
|
||||
print('Anchor scale: %f' % anchor_scale)
|
||||
print('Num scales: %d' % num_scales)
|
||||
print('Aspect ratios: %s' % str(aspect_ratios))
|
||||
print('Number of classes: %d' % num_classes)
|
||||
print('Input image size: %dx%d' % (image_width, image_height))
|
||||
|
||||
# Read the graph.
|
||||
_inpNames = ['image_arrays']
|
||||
outNames = ['detections']
|
||||
|
||||
writeTextGraph(modelPath, outputPath, outNames)
|
||||
graph_def = parseTextGraph(outputPath)
|
||||
|
||||
def getUnconnectedNodes():
|
||||
unconnected = []
|
||||
for node in graph_def.node:
|
||||
if node.op == 'Const':
|
||||
continue
|
||||
unconnected.append(node.name)
|
||||
for inp in node.input:
|
||||
if inp in unconnected:
|
||||
unconnected.remove(inp)
|
||||
return unconnected
|
||||
|
||||
|
||||
nodesToKeep = ['truediv'] # Keep preprocessing nodes
|
||||
|
||||
removeIdentity(graph_def)
|
||||
|
||||
scopesToKeep = ('image_arrays', 'efficientnet', 'resample_p6', 'resample_p7',
|
||||
'fpn_cells', 'class_net', 'box_net', 'Reshape', 'concat')
|
||||
|
||||
addConstNode('scale_w', [2.0], graph_def)
|
||||
addConstNode('scale_h', [2.0], graph_def)
|
||||
nodesToKeep += ['scale_w', 'scale_h']
|
||||
|
||||
for node in graph_def.node:
|
||||
if re.match('efficientnet-(.*)/blocks_\d+/se/mul_1', node.name):
|
||||
node.input[0], node.input[1] = node.input[1], node.input[0]
|
||||
|
||||
if re.match('fpn_cells/cell_\d+/fnode\d+/resample(.*)/nearest_upsampling/Reshape_1$', node.name):
|
||||
node.op = 'ResizeNearestNeighbor'
|
||||
node.input[1] = 'scale_w'
|
||||
node.input.append('scale_h')
|
||||
|
||||
for inpNode in graph_def.node:
|
||||
if inpNode.name == node.name[:node.name.rfind('_')]:
|
||||
node.input[0] = inpNode.input[0]
|
||||
|
||||
if re.match('box_net/box-predict(_\d)*/separable_conv2d$', node.name):
|
||||
node.addAttr('loc_pred_transposed', True)
|
||||
|
||||
# Replace RealDiv to Mul with inversed scale for compatibility
|
||||
if node.op == 'RealDiv':
|
||||
for inpNode in graph_def.node:
|
||||
if inpNode.name != node.input[1] or not 'value' in inpNode.attr:
|
||||
continue
|
||||
|
||||
tensor = inpNode.attr['value']['tensor'][0]
|
||||
if not 'float_val' in tensor:
|
||||
continue
|
||||
scale = float(inpNode.attr['value']['tensor'][0]['float_val'][0])
|
||||
|
||||
addConstNode(inpNode.name + '/inv', [1.0 / scale], graph_def)
|
||||
nodesToKeep.append(inpNode.name + '/inv')
|
||||
node.input[1] = inpNode.name + '/inv'
|
||||
node.op = 'Mul'
|
||||
break
|
||||
|
||||
|
||||
def to_remove(name, op):
|
||||
if name in nodesToKeep:
|
||||
return False
|
||||
return op == 'Const' or not name.startswith(scopesToKeep)
|
||||
|
||||
removeUnusedNodesAndAttrs(to_remove, graph_def)
|
||||
|
||||
# Attach unconnected preprocessing
|
||||
assert(graph_def.node[1].name == 'truediv' and graph_def.node[1].op == 'RealDiv')
|
||||
graph_def.node[1].input.insert(0, 'image_arrays')
|
||||
graph_def.node[2].input.insert(0, 'truediv')
|
||||
|
||||
priors_generator = AnchorGenerator(min_level, aspect_ratios, num_scales, anchor_scale)
|
||||
priorBoxes = []
|
||||
for i in range(5):
|
||||
inpName = ''
|
||||
for node in graph_def.node:
|
||||
if node.name == 'Reshape_%d' % (i * 2 + 1):
|
||||
inpName = node.input[0]
|
||||
break
|
||||
|
||||
priorBox = NodeDef()
|
||||
priorBox.name = 'PriorBox_%d' % i
|
||||
priorBox.op = 'PriorBox'
|
||||
priorBox.input.append(inpName)
|
||||
priorBox.input.append(graph_def.node[0].name) # image_tensor
|
||||
|
||||
priorBox.addAttr('flip', False)
|
||||
priorBox.addAttr('clip', False)
|
||||
|
||||
widths, heights = priors_generator.get(i)
|
||||
|
||||
priorBox.addAttr('width', widths)
|
||||
priorBox.addAttr('height', heights)
|
||||
priorBox.addAttr('variance', [1.0, 1.0, 1.0, 1.0])
|
||||
|
||||
graph_def.node.extend([priorBox])
|
||||
priorBoxes.append(priorBox.name)
|
||||
|
||||
addConstNode('concat/axis_flatten', [-1], graph_def)
|
||||
|
||||
def addConcatNode(name, inputs, axisNodeName):
|
||||
concat = NodeDef()
|
||||
concat.name = name
|
||||
concat.op = 'ConcatV2'
|
||||
for inp in inputs:
|
||||
concat.input.append(inp)
|
||||
concat.input.append(axisNodeName)
|
||||
graph_def.node.extend([concat])
|
||||
|
||||
addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten')
|
||||
|
||||
sigmoid = NodeDef()
|
||||
sigmoid.name = 'concat/sigmoid'
|
||||
sigmoid.op = 'Sigmoid'
|
||||
sigmoid.input.append('concat')
|
||||
graph_def.node.extend([sigmoid])
|
||||
|
||||
addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def)
|
||||
addFlatten('concat_1', 'concat_1/Flatten', graph_def)
|
||||
|
||||
detectionOut = NodeDef()
|
||||
detectionOut.name = 'detection_out'
|
||||
detectionOut.op = 'DetectionOutput'
|
||||
|
||||
detectionOut.input.append('concat_1/Flatten')
|
||||
detectionOut.input.append(sigmoid.name + '/Flatten')
|
||||
detectionOut.input.append('PriorBox/concat')
|
||||
|
||||
detectionOut.addAttr('num_classes', num_classes)
|
||||
detectionOut.addAttr('share_location', True)
|
||||
detectionOut.addAttr('background_label_id', num_classes + 1)
|
||||
detectionOut.addAttr('nms_threshold', 0.6)
|
||||
detectionOut.addAttr('confidence_threshold', 0.2)
|
||||
detectionOut.addAttr('top_k', 100)
|
||||
detectionOut.addAttr('keep_top_k', 100)
|
||||
detectionOut.addAttr('code_type', "CENTER_SIZE")
|
||||
graph_def.node.extend([detectionOut])
|
||||
|
||||
graph_def.node[0].attr['shape'] = {
|
||||
'shape': {
|
||||
'dim': [
|
||||
{'size': -1},
|
||||
{'size': image_height},
|
||||
{'size': image_width},
|
||||
{'size': 3}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
while True:
|
||||
unconnectedNodes = getUnconnectedNodes()
|
||||
unconnectedNodes.remove(detectionOut.name)
|
||||
if not unconnectedNodes:
|
||||
break
|
||||
|
||||
for name in unconnectedNodes:
|
||||
for i in range(len(graph_def.node)):
|
||||
if graph_def.node[i].name == name:
|
||||
del graph_def.node[i]
|
||||
break
|
||||
|
||||
# Save as text
|
||||
graph_def.save(outputPath)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
|
||||
'SSD model from TensorFlow Object Detection API. '
|
||||
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
|
||||
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
|
||||
parser.add_argument('--output', required=True, help='Path to output text graph.')
|
||||
parser.add_argument('--min_level', default=3, type=int, help='Parameter from training config')
|
||||
parser.add_argument('--num_scales', default=3, type=int, help='Parameter from training config')
|
||||
parser.add_argument('--anchor_scale', default=4.0, type=float, help='Parameter from training config')
|
||||
parser.add_argument('--aspect_ratios', default=[1.0, 1.0, 1.4, 0.7, 0.7, 1.4],
|
||||
nargs='+', type=float, help='Parameter from training config')
|
||||
parser.add_argument('--num_classes', default=90, type=int, help='Number of classes to detect')
|
||||
parser.add_argument('--width', default=512, type=int, help='Network input width')
|
||||
parser.add_argument('--height', default=512, type=int, help='Network input height')
|
||||
args = parser.parse_args()
|
||||
|
||||
ar = args.aspect_ratios
|
||||
assert(len(ar) % 2 == 0)
|
||||
ar = list(zip(ar[::2], ar[1::2]))
|
||||
|
||||
createGraph(args.input, args.output, args.min_level, ar, args.num_scales,
|
||||
args.anchor_scale, args.num_classes, args.width, args.height)
|
Loading…
Reference in New Issue
Block a user