Merge pull request #18211 from pemmanuelviel:pev--handle-dna-vectors

* DNA-mode: update miniflann to handle DNA

* DNA-mode: update hierarchical kmeans to handle DNA sequences
This commit is contained in:
pemmanuelviel 2020-09-01 22:38:21 +02:00 committed by GitHub
parent 698b2bf729
commit 31dc3e9256
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 244 additions and 3 deletions

View File

@ -50,6 +50,9 @@
#include "logger.h"
#define BITS_PER_CHAR 8
#define BITS_PER_BASE 2 // for DNA/RNA sequences
#define BASE_PER_CHAR (BITS_PER_CHAR/BITS_PER_BASE)
#define HISTOS_PER_BASE (1<<BITS_PER_BASE)
namespace cvflann
@ -825,6 +828,73 @@ private:
}
void computeDnaNodeStatistics(KMeansNodePtr node, int* indices,
unsigned int indices_length)
{
const unsigned int histos_veclen = static_cast<unsigned int>(
veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
unsigned long long variance = 0ull;
unsigned int* histograms = new unsigned int[histos_veclen];
memset(histograms, 0, sizeof(unsigned int)*histos_veclen);
for (unsigned int i=0; i<indices_length; ++i) {
variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
unsigned char* vec = (unsigned char*)dataset_[indices[i]];
for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
histograms[k + ((vec[l]) & 0x03)]++;
histograms[k + 4 + ((vec[l]>>2) & 0x03)]++;
histograms[k + 8 + ((vec[l]>>4) & 0x03)]++;
histograms[k +12 + ((vec[l]>>6) & 0x03)]++;
}
}
CentersType* mean = new CentersType[veclen_];
memoryCounter_ += int(veclen_*sizeof(CentersType));
unsigned char* char_mean = (unsigned char*)mean;
unsigned int* h = histograms;
for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
char_mean[l] = (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10
: h[k] > h[k+3] ? 0x00 : 0x11
: h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
: h[k+1] > h[k+3] ? 0x01 : 0x11)
| (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000
: h[k+4] > h[k+7] ? 0x00 : 0x1100
: h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
: h[k+5] > h[k+7] ? 0x0100 : 0x1100)
| (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000
: h[k+8] >h[k+11] ? 0x00 : 0x110000
: h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
: h[k+9] >h[k+11] ? 0x010000 : 0x110000)
| (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000
: h[k+12] >h[k+15] ? 0x00 : 0x11000000
: h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
: h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
}
variance = static_cast<unsigned long long>(
0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
variance -= static_cast<unsigned long long>(
ensureSquareDistance<Distance>(
distance_(mean, ZeroIterator<ElementType>(), veclen_)));
DistanceType radius = 0;
for (unsigned int i=0; i<indices_length; ++i) {
DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
if (tmp>radius) {
radius = tmp;
}
}
node->variance = static_cast<DistanceType>(variance);
node->radius = radius;
node->pivot = mean;
delete[] histograms;
}
template<typename DistType>
void computeNodeStatistics(KMeansNodePtr node, int* indices,
unsigned int indices_length,
@ -858,6 +928,22 @@ private:
computeBitfieldNodeStatistics(node, indices, indices_length);
}
void computeNodeStatistics(KMeansNodePtr node, int* indices,
unsigned int indices_length,
const cvflann::DNAmmingLUT* identifier)
{
(void)identifier;
computeDnaNodeStatistics(node, indices, indices_length);
}
void computeNodeStatistics(KMeansNodePtr node, int* indices,
unsigned int indices_length,
const cvflann::DNAmming2<unsigned char>* identifier)
{
(void)identifier;
computeDnaNodeStatistics(node, indices, indices_length);
}
void refineClustering(int* indices, int indices_length, int branching, CentersType** centers,
std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
@ -1051,6 +1137,112 @@ private:
}
void refineDnaClustering(int* indices, int indices_length, int branching, CentersType** centers,
std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
{
for (int i=0; i<branching; ++i) {
centers[i] = new CentersType[veclen_];
memoryCounter_ += (int)(veclen_*sizeof(CentersType));
}
const unsigned int histos_veclen = static_cast<unsigned int>(
veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
cv::AutoBuffer<unsigned int> histos_buf(branching*histos_veclen);
Matrix<unsigned int> histos(histos_buf.data(), branching, histos_veclen);
bool converged = false;
int iteration = 0;
while (!converged && iteration<iterations_) {
converged = true;
iteration++;
// compute the new cluster centers
for (int i=0; i<branching; ++i) {
memset(histos[i],0,sizeof(unsigned int)*histos_veclen);
radiuses[i] = 0;
}
for (int i=0; i<indices_length; ++i) {
unsigned char* vec = (unsigned char*)dataset_[indices[i]];
unsigned int* h = histos[belongs_to[i]];
for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
h[k + ((vec[l]) & 0x03)]++;
h[k + 4 + ((vec[l]>>2) & 0x03)]++;
h[k + 8 + ((vec[l]>>4) & 0x03)]++;
h[k +12 + ((vec[l]>>6) & 0x03)]++;
}
}
for (int i=0; i<branching; ++i) {
unsigned int* h = histos[i];
unsigned char* charCenter = (unsigned char*)centers[i];
for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
charCenter[l]= (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10
: h[k] > h[k+3] ? 0x00 : 0x11
: h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
: h[k+1] > h[k+3] ? 0x01 : 0x11)
| (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000
: h[k+4] > h[k+7] ? 0x00 : 0x1100
: h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
: h[k+5] > h[k+7] ? 0x0100 : 0x1100)
| (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000
: h[k+8] >h[k+11] ? 0x00 : 0x110000
: h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
: h[k+9] >h[k+11] ? 0x010000 : 0x110000)
| (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000
: h[k+12] >h[k+15] ? 0x00 : 0x11000000
: h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
: h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
}
}
std::vector<int> new_centroids(indices_length);
std::vector<DistanceType> dists(indices_length);
// reassign points to clusters
KMeansDistanceComputer<ElementType**> invoker(
distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
parallel_for_(cv::Range(0, (int)indices_length), invoker);
for (int i=0; i < indices_length; ++i) {
DistanceType dist(dists[i]);
int new_centroid(new_centroids[i]);
if (dist > radiuses[new_centroid]) {
radiuses[new_centroid] = dist;
}
if (new_centroid != belongs_to[i]) {
count[belongs_to[i]]--;
count[new_centroid]++;
belongs_to[i] = new_centroid;
converged = false;
}
}
for (int i=0; i<branching; ++i) {
// if one cluster converges to an empty cluster,
// move an element into that cluster
if (count[i]==0) {
int j = (i+1)%branching;
while (count[j]<=1) {
j = (j+1)%branching;
}
for (int k=0; k<indices_length; ++k) {
if (belongs_to[k]==j) {
// for cluster j, we move the furthest element from the center to the empty cluster i
if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
belongs_to[k] = i;
count[j]--;
count[i]++;
break;
}
}
}
converged = false;
}
}
}
}
void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length,
int branching, int level, CentersType** centers,
std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
@ -1150,7 +1342,7 @@ private:
/**
* The methods responsible with doing the recursive hierarchical clustering on
* binary vectors.
* As some might have heared that KMeans on binary data doesn't make sense,
* As some might have heard that KMeans on binary data doesn't make sense,
* it's worth a little explanation why it actually fairly works. As
* with the Hierarchical Clustering algortihm, we seed several centers for the
* current node by picking some of its points. Then in a first pass each point
@ -1233,6 +1425,34 @@ private:
}
void refineAndSplitClustering(
KMeansNodePtr node, int* indices, int indices_length, int branching,
int level, CentersType** centers, std::vector<DistanceType>& radiuses,
int* belongs_to, int* count, const cvflann::DNAmmingLUT* identifier)
{
(void)identifier;
refineDnaClustering(
indices, indices_length, branching, centers, radiuses, belongs_to, count);
computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
level, centers, radiuses, belongs_to, count);
}
void refineAndSplitClustering(
KMeansNodePtr node, int* indices, int indices_length, int branching,
int level, CentersType** centers, std::vector<DistanceType>& radiuses,
int* belongs_to, int* count, const cvflann::DNAmming2<unsigned char>* identifier)
{
(void)identifier;
refineDnaClustering(
indices, indices_length, branching, centers, radiuses, belongs_to, count);
computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
level, centers, radiuses, belongs_to, count);
}
/**
* The method responsible with actually doing the recursive hierarchical
* clustering

View File

@ -345,6 +345,7 @@ typedef ::cvflann::Hamming<uchar> HammingDistance;
#else
typedef ::cvflann::HammingLUT HammingDistance;
#endif
typedef ::cvflann::DNAmming2<uchar> DNAmmingDistance;
Index::Index()
{
@ -397,6 +398,9 @@ void Index::build(InputArray _data, const IndexParams& params, flann_distance_t
buildIndex< ::cvflann::L1<float> >(index, data, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
buildIndex< DNAmmingDistance >(index, data, params);
break;
case FLANN_DIST_MAX:
buildIndex< ::cvflann::MaxDistance<float> >(index, data, params);
break;
@ -452,6 +456,9 @@ void Index::release()
deleteIndex< ::cvflann::L1<float> >(index);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
deleteIndex< DNAmmingDistance >(index);
break;
case FLANN_DIST_MAX:
deleteIndex< ::cvflann::MaxDistance<float> >(index);
break;
@ -573,7 +580,8 @@ void Index::knnSearch(InputArray _query, OutputArray _indices,
CV_INSTRUMENT_REGION();
Mat query = _query.getMat(), indices, dists;
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F;
int dtype = (distType == FLANN_DIST_HAMMING)
|| (distType == FLANN_DIST_DNAMMING) ? CV_32S : CV_32F;
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype );
@ -589,6 +597,9 @@ void Index::knnSearch(InputArray _query, OutputArray _indices,
runKnnSearch< ::cvflann::L1<float> >(index, query, indices, dists, knn, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
runKnnSearch<DNAmmingDistance>(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_MAX:
runKnnSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, knn, params);
break;
@ -617,7 +628,8 @@ int Index::radiusSearch(InputArray _query, OutputArray _indices,
CV_INSTRUMENT_REGION();
Mat query = _query.getMat(), indices, dists;
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F;
int dtype = (distType == FLANN_DIST_HAMMING)
|| (distType == FLANN_DIST_DNAMMING) ? CV_32S : CV_32F;
CV_Assert( maxResults > 0 );
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype );
@ -634,6 +646,8 @@ int Index::radiusSearch(InputArray _query, OutputArray _indices,
case FLANN_DIST_L1:
return runRadiusSearch< ::cvflann::L1<float> >(index, query, indices, dists, radius, params);
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
return runRadiusSearch< DNAmmingDistance >(index, query, indices, dists, radius, params);
case FLANN_DIST_MAX:
return runRadiusSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_HIST_INTERSECT:
@ -697,6 +711,9 @@ void Index::save(const String& filename) const
saveIndex< ::cvflann::L1<float> >(this, index, fout);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
saveIndex< DNAmmingDistance >(this, index, fout);
break;
case FLANN_DIST_MAX:
saveIndex< ::cvflann::MaxDistance<float> >(this, index, fout);
break;
@ -778,6 +795,7 @@ bool Index::load(InputArray _data, const String& filename)
distType = (flann_distance_t)idistType;
if( !((distType == FLANN_DIST_HAMMING && featureType == CV_8U) ||
(distType == FLANN_DIST_DNAMMING && featureType == CV_8U) ||
(distType != FLANN_DIST_HAMMING && featureType == CV_32F)) )
{
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo);
@ -797,6 +815,9 @@ bool Index::load(InputArray _data, const String& filename)
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
loadIndex< DNAmmingDistance >(this, index, data, fin);
break;
case FLANN_DIST_MAX:
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
break;