mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
FIx misc. source and comment typos
Found via `codespell -q 3 -S ./3rdparty,./modules -L amin,ang,atleast,dof,endwhile,hist,uint`
This commit is contained in:
parent
dbf8e22fad
commit
32aba5e64b
@ -895,7 +895,7 @@ void icvGetNextFromBackgroundData( CvBackgroundData* data,
|
||||
* #pragma omp parallel
|
||||
* {
|
||||
* ...
|
||||
* icvGetBackgourndImage( cvbgdata, cvbgreader, img );
|
||||
* icvGetBackgroundImage( cvbgdata, cvbgreader, img );
|
||||
* ...
|
||||
* }
|
||||
* ...
|
||||
@ -990,7 +990,7 @@ static int icvInitBackgroundReaders( const char* filename, Size winsize )
|
||||
/*
|
||||
* icvDestroyBackgroundReaders
|
||||
*
|
||||
* Finish backgournd reading process
|
||||
* Finish background reading process
|
||||
*/
|
||||
static
|
||||
void icvDestroyBackgroundReaders()
|
||||
|
@ -136,7 +136,7 @@ macro(cuda_execute_process status command)
|
||||
# copy and paste a runnable command line.
|
||||
set(cuda_execute_process_string)
|
||||
foreach(arg ${ARGN})
|
||||
# If there are quotes, excape them, so they come through.
|
||||
# If there are quotes, escape them, so they come through.
|
||||
string(REPLACE "\"" "\\\"" arg ${arg})
|
||||
# Args with spaces need quotes around them to get them to be parsed as a single argument.
|
||||
if(arg MATCHES " ")
|
||||
|
@ -854,7 +854,7 @@ macro(__ocv_add_dispatched_file filename target_src_var src_directory dst_direct
|
||||
|
||||
if(";${CPU_DISPATCH_FINAL};" MATCHES "${OPT}" OR __CPU_DISPATCH_INCLUDE_ALL)
|
||||
if(EXISTS "${src_directory}/${filename}.${OPT_LOWER}.cpp")
|
||||
message(STATUS "Using overrided ${OPT} source: ${src_directory}/${filename}.${OPT_LOWER}.cpp")
|
||||
message(STATUS "Using overridden ${OPT} source: ${src_directory}/${filename}.${OPT_LOWER}.cpp")
|
||||
else()
|
||||
list(APPEND ${target_src_var} "${__file}")
|
||||
endif()
|
||||
|
@ -27,7 +27,7 @@ if(ANT_EXECUTABLE)
|
||||
unset(ANT_EXECUTABLE CACHE)
|
||||
else()
|
||||
string(REGEX MATCH "[0-9]+.[0-9]+.[0-9]+" ANT_VERSION "${ANT_VERSION_FULL}")
|
||||
set(ANT_VERSION "${ANT_VERSION}" CACHE INTERNAL "Detected ant vesion")
|
||||
set(ANT_VERSION "${ANT_VERSION}" CACHE INTERNAL "Detected ant version")
|
||||
|
||||
message(STATUS "Found apache ant: ${ANT_EXECUTABLE} (${ANT_VERSION})")
|
||||
endif()
|
||||
|
@ -5,7 +5,7 @@
|
||||
#
|
||||
# Detect parameters:
|
||||
# 1. Native cmake IE package:
|
||||
# - enironment variable InferenceEngine_DIR is set to location of cmake module
|
||||
# - environment variable InferenceEngine_DIR is set to location of cmake module
|
||||
# 2. Custom location:
|
||||
# - INF_ENGINE_INCLUDE_DIRS - headers search location
|
||||
# - INF_ENGINE_LIB_DIRS - library search location
|
||||
|
@ -249,7 +249,7 @@ if(NOT ${found})
|
||||
|
||||
# Export return values
|
||||
set(${found} "${_found}" CACHE INTERNAL "")
|
||||
set(${executable} "${_executable}" CACHE FILEPATH "Path to Python interpretor")
|
||||
set(${executable} "${_executable}" CACHE FILEPATH "Path to Python interpreter")
|
||||
set(${version_string} "${_version_string}" CACHE INTERNAL "")
|
||||
set(${version_major} "${_version_major}" CACHE INTERNAL "")
|
||||
set(${version_minor} "${_version_minor}" CACHE INTERNAL "")
|
||||
|
@ -781,7 +781,7 @@ macro(ocv_check_modules define)
|
||||
if(pkgcfg_lib_${define}_${_lib})
|
||||
list(APPEND _libs "${pkgcfg_lib_${define}_${_lib}}")
|
||||
else()
|
||||
message(WARNING "ocv_check_modules(${define}): can't find library '${_lib}'. Specify 'pkgcfg_lib_${define}_${_lib}' manualy")
|
||||
message(WARNING "ocv_check_modules(${define}): can't find library '${_lib}'. Specify 'pkgcfg_lib_${define}_${_lib}' manually")
|
||||
list(APPEND _libs "${_lib}")
|
||||
endif()
|
||||
else()
|
||||
|
@ -49,7 +49,7 @@ macro(android_get_compatible_target VAR)
|
||||
list(GET ANDROID_SDK_TARGETS 0 __lvl)
|
||||
string(REGEX MATCH "[0-9]+$" __lvl "${__lvl}")
|
||||
|
||||
#find minimal level mathing to all provided levels
|
||||
#find minimal level matching to all provided levels
|
||||
foreach(lvl ${ARGN})
|
||||
string(REGEX MATCH "[0-9]+$" __level "${lvl}")
|
||||
if(__level GREATER __lvl)
|
||||
|
@ -13,7 +13,7 @@ Optical Flow
|
||||
------------
|
||||
|
||||
Optical flow is the pattern of apparent motion of image objects between two consecutive frames
|
||||
caused by the movemement of object or camera. It is 2D vector field where each vector is a
|
||||
caused by the movement of object or camera. It is 2D vector field where each vector is a
|
||||
displacement vector showing the movement of points from first frame to second. Consider the image
|
||||
below (Image Courtesy: [Wikipedia article on Optical
|
||||
Flow](http://en.wikipedia.org/wiki/Optical_flow)).
|
||||
|
@ -253,8 +253,8 @@ Here is explained in detail the code for the real time application:
|
||||
@code{.cpp}
|
||||
RobustMatcher rmatcher; // instantiate RobustMatcher
|
||||
|
||||
cv::FeatureDetector * detector = new cv::OrbFeatureDetector(numKeyPoints); // instatiate ORB feature detector
|
||||
cv::DescriptorExtractor * extractor = new cv::OrbDescriptorExtractor(); // instatiate ORB descriptor extractor
|
||||
cv::FeatureDetector * detector = new cv::OrbFeatureDetector(numKeyPoints); // instantiate ORB feature detector
|
||||
cv::DescriptorExtractor * extractor = new cv::OrbDescriptorExtractor(); // instantiate ORB descriptor extractor
|
||||
|
||||
rmatcher.setFeatureDetector(detector); // set feature detector
|
||||
rmatcher.setDescriptorExtractor(extractor); // set descriptor extractor
|
||||
|
@ -29,8 +29,8 @@ This distance is equivalent to count the number of different elements for binary
|
||||
|
||||
To filter the matches, Lowe proposed in @cite Lowe:2004:DIF:993451.996342 to use a distance ratio test to try to eliminate false matches.
|
||||
The distance ratio between the two nearest matches of a considered keypoint is computed and it is a good match when this value is below
|
||||
a thresold. Indeed, this ratio allows helping to discriminate between ambiguous matches (distance ratio between the two nearest neighbors is
|
||||
close to one) and well discriminated matches. The figure below from the SIFT paper illustrates the probability that a match is correct
|
||||
a threshold. Indeed, this ratio allows helping to discriminate between ambiguous matches (distance ratio between the two nearest neighbors
|
||||
is close to one) and well discriminated matches. The figure below from the SIFT paper illustrates the probability that a match is correct
|
||||
based on the nearest-neighbor distance ratio test.
|
||||
|
||||
![](images/Feature_FlannMatcher_Lowe_ratio_test.png)
|
||||
|
@ -39,7 +39,7 @@ With G-API, we can define it as follows:
|
||||
It is important to understand that the new G-API based version of
|
||||
calcGST() will just produce a compute graph, in contrast to its
|
||||
original version, which actually calculates the values. This is a
|
||||
principial difference -- G-API based functions like this are used to
|
||||
principal difference -- G-API based functions like this are used to
|
||||
construct graphs, not to process the actual data.
|
||||
|
||||
Let's start implementing calcGST() with calculation of \f$J\f$
|
||||
@ -186,7 +186,7 @@ is also OpenCV-based since it fallbacks to OpenCV functions inside.
|
||||
|
||||
On GNU/Linux, application memory footprint can be profiled with
|
||||
[Valgrind](http://valgrind.org/). On Debian/Ubuntu systems it can be
|
||||
installed like this (assuming you have administrator priveleges):
|
||||
installed like this (assuming you have administrator privileges):
|
||||
|
||||
$ sudo apt-get install valgrind massif-visualizer
|
||||
|
||||
@ -239,10 +239,10 @@ consumption is because the default naive OpenCV-based backend is used to
|
||||
execute this graph. This backend serves mostly for quick prototyping
|
||||
and debugging algorithms before offload/further optimization.
|
||||
|
||||
This backend doesn't utilize any complex memory mamagement strategies yet
|
||||
This backend doesn't utilize any complex memory management strategies yet
|
||||
since it is not its point at the moment. In the following chapter,
|
||||
we'll learn about Fluid backend and see how the same G-API code can
|
||||
run in a completely different model (and the footprint shrinked to a
|
||||
run in a completely different model (and the footprint shrunk to a
|
||||
number of kilobytes).
|
||||
|
||||
# Backends and kernels {#gapi_anisotropic_backends}
|
||||
@ -298,7 +298,7 @@ as a _graph compilation option_:
|
||||
|
||||
@snippet cpp/tutorial_code/gapi/porting_anisotropic_image_segmentation/porting_anisotropic_image_segmentation_gapi_fluid.cpp kernel_pkg_use
|
||||
|
||||
Traditional OpenCV is logically divided into modules, whith every
|
||||
Traditional OpenCV is logically divided into modules, with every
|
||||
module providing a set of functions. In G-API, there are also
|
||||
"modules" which are represented as kernel packages provided by a
|
||||
particular backend. In this example, we pass Fluid kernel packages to
|
||||
@ -375,7 +375,7 @@ left side of the dump) is easily noticeable.
|
||||
The visualization reflects how G-API deals with mixed graphs, also
|
||||
called _heterogeneous_ graphs. The majority of operations in this
|
||||
graph are implemented with Fluid backend, but Box filters are executed
|
||||
by the OpenCV backend. One can easily see that the graph is partioned
|
||||
by the OpenCV backend. One can easily see that the graph is partitioned
|
||||
(with rectangles). G-API groups connected operations based on their
|
||||
affinity, forming _subgraphs_ (or _islands_ in G-API terminology), and
|
||||
our top-level graph becomes a composition of multiple smaller
|
||||
|
@ -15,7 +15,7 @@ The primary objectives for this tutorial:
|
||||
|
||||
- How to use OpenCV [imread](@ref imread) to load satellite imagery.
|
||||
- How to use OpenCV [imread](@ref imread) to load SRTM Digital Elevation Models
|
||||
- Given the corner coordinates of both the image and DEM, correllate the elevation data to the
|
||||
- Given the corner coordinates of both the image and DEM, correlate the elevation data to the
|
||||
image to find elevations for each pixel.
|
||||
- Show a basic, easy-to-implement example of a terrain heat map.
|
||||
- Show a basic use of DEM data coupled with ortho-rectified imagery.
|
||||
|
@ -157,7 +157,7 @@ already known by now.
|
||||
- *src*: Source image
|
||||
- *dst*: Destination image
|
||||
- *Size(w, h)*: The size of the kernel to be used (the neighbors to be considered). \f$w\f$ and
|
||||
\f$h\f$ have to be odd and positive numbers otherwise thi size will be calculated using the
|
||||
\f$h\f$ have to be odd and positive numbers otherwise the size will be calculated using the
|
||||
\f$\sigma_{x}\f$ and \f$\sigma_{y}\f$ arguments.
|
||||
- \f$\sigma_{x}\f$: The standard deviation in x. Writing \f$0\f$ implies that \f$\sigma_{x}\f$ is
|
||||
calculated using kernel size.
|
||||
|
@ -30,7 +30,7 @@ Two of the most basic morphological operations are dilation and erosion. Dilatio
|
||||
|
||||
![Dilation on a Grayscale Image](images/morph6.gif)
|
||||
|
||||
- __Erosion__: The vise versa applies for the erosion operation. The value of the output pixel is the <b><em>minimum</em></b> value of all the pixels that fall within the structuring element's size and shape. Look the at the example figures below:
|
||||
- __Erosion__: The vice versa applies for the erosion operation. The value of the output pixel is the <b><em>minimum</em></b> value of all the pixels that fall within the structuring element's size and shape. Look the at the example figures below:
|
||||
|
||||
![Erosion on a Binary Image](images/morph211.png)
|
||||
|
||||
|
@ -189,7 +189,7 @@ brief->compute(gray, query_kpts, query_desc); //Compute brief descriptors at eac
|
||||
|
||||
OpenCL {#tutorial_transition_hints_opencl}
|
||||
------
|
||||
All specialized `ocl` implemetations has been hidden behind general C++ algorithm interface. Now the function execution path can be selected dynamically at runtime: CPU or OpenCL; this mechanism is also called "Transparent API".
|
||||
All specialized `ocl` implementations has been hidden behind general C++ algorithm interface. Now the function execution path can be selected dynamically at runtime: CPU or OpenCL; this mechanism is also called "Transparent API".
|
||||
|
||||
New class cv::UMat is intended to hide data exchange with OpenCL device in a convenient way.
|
||||
|
||||
|
@ -101,7 +101,7 @@ using namespace cv;
|
||||
}
|
||||
@endcode
|
||||
In this case, we initialize the camera and provide the imageView as a target for rendering each
|
||||
frame. CvVideoCamera is basically a wrapper around AVFoundation, so we provie as properties some of
|
||||
frame. CvVideoCamera is basically a wrapper around AVFoundation, so we provide as properties some of
|
||||
the AVFoundation camera options. For example we want to use the front camera, set the video size to
|
||||
352x288 and a video orientation (the video camera normally outputs in landscape mode, which results
|
||||
in transposed data when you design a portrait application).
|
||||
|
@ -13,7 +13,7 @@ In this tutorial you will learn how to:
|
||||
Motivation
|
||||
----------
|
||||
|
||||
Why is it interesting to extend the SVM optimation problem in order to handle non-linearly separable
|
||||
Why is it interesting to extend the SVM optimization problem in order to handle non-linearly separable
|
||||
training data? Most of the applications in which SVMs are used in computer vision require a more
|
||||
powerful tool than a simple linear classifier. This stems from the fact that in these tasks __the
|
||||
training data can be rarely separated using an hyperplane__.
|
||||
|
@ -113,7 +113,7 @@ This tutorial code's is shown lines below. You can also download it from
|
||||
Result
|
||||
------
|
||||
|
||||
-# Here is the result of running the code above and using as input the video stream of a build-in
|
||||
-# Here is the result of running the code above and using as input the video stream of a built-in
|
||||
webcam:
|
||||
|
||||
![](images/Cascade_Classifier_Tutorial_Result_Haar.jpg)
|
||||
|
@ -15,7 +15,7 @@ Optical Flow
|
||||
------------
|
||||
|
||||
Optical flow is the pattern of apparent motion of image objects between two consecutive frames
|
||||
caused by the movemement of object or camera. It is 2D vector field where each vector is a
|
||||
caused by the movement of object or camera. It is 2D vector field where each vector is a
|
||||
displacement vector showing the movement of points from first frame to second. Consider the image
|
||||
below (Image Courtesy: [Wikipedia article on Optical Flow](http://en.wikipedia.org/wiki/Optical_flow)).
|
||||
|
||||
|
@ -622,7 +622,7 @@ int main(int argc, char* argv[])
|
||||
vector<Size> sizes(num_images);
|
||||
vector<UMat> masks(num_images);
|
||||
|
||||
// Preapre images masks
|
||||
// Prepare images masks
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
masks[i].create(images[i].size(), CV_8U);
|
||||
|
@ -41,7 +41,7 @@ const int MAX_FOCUS_STEP = 32767;
|
||||
const int FOCUS_DIRECTION_INFTY = 1;
|
||||
const int DEFAULT_BREAK_LIMIT = 5;
|
||||
const int DEFAULT_OUTPUT_FPS = 20;
|
||||
const double epsylon = 0.0005; // compression, noice, etc.
|
||||
const double epsylon = 0.0005; // compression, noise, etc.
|
||||
|
||||
struct Args_t
|
||||
{
|
||||
|
@ -83,7 +83,7 @@ public:
|
||||
r = m_pD3D11SwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&m_pBackBuffer);
|
||||
if (FAILED(r))
|
||||
{
|
||||
throw std::runtime_error("GetBufer() failed!");
|
||||
throw std::runtime_error("GetBuffer() failed!");
|
||||
}
|
||||
|
||||
r = m_pD3D11Dev->CreateRenderTargetView(m_pBackBuffer, NULL, &m_pRenderTarget);
|
||||
|
@ -67,7 +67,7 @@ You need to prepare 2 LMDB databases: one for training images, one for validatio
|
||||
|
||||
3. Train your detector
|
||||
For training you need to have 3 files: train.prototxt, test.prototxt and solver.prototxt. You can find these files in the same directory as for this readme.
|
||||
Also you need to edit train.prototxt and test.prototxt to replace paths for your LMDB databases to actual databases you've crated in step 2.
|
||||
Also you need to edit train.prototxt and test.prototxt to replace paths for your LMDB databases to actual databases you've created in step 2.
|
||||
|
||||
Now all is done for launch training process.
|
||||
Execute next lines in Terminal:
|
||||
|
@ -88,7 +88,7 @@ while cv.waitKey(1) < 0:
|
||||
|
||||
points = []
|
||||
for i in range(len(BODY_PARTS)):
|
||||
# Slice heatmap of corresponging body's part.
|
||||
# Slice heatmap of corresponding body's part.
|
||||
heatMap = out[0, i, :, :]
|
||||
|
||||
# Originally, we try to find all the local maximums. To simplify a sample
|
||||
|
@ -703,7 +703,7 @@ int App::process_frame_with_open_cl(cv::Mat& frame, bool use_buffer, cl_mem* mem
|
||||
if (0 == mem || 0 == m_img_src)
|
||||
{
|
||||
// allocate/delete cl memory objects every frame for the simplicity.
|
||||
// in real applicaton more efficient pipeline can be built.
|
||||
// in real application more efficient pipeline can be built.
|
||||
|
||||
if (use_buffer)
|
||||
{
|
||||
|
@ -66,7 +66,7 @@ def on_high_V_thresh_trackbar(val):
|
||||
cv.setTrackbarPos(high_V_name, window_detection_name, high_V)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Code for Thresholding Operations using inRange tutorial.')
|
||||
parser.add_argument('--camera', help='Camera devide number.', default=0, type=int)
|
||||
parser.add_argument('--camera', help='Camera divide number.', default=0, type=int)
|
||||
args = parser.parse_args()
|
||||
|
||||
## [cap]
|
||||
|
@ -25,7 +25,7 @@ def detectAndDisplay(frame):
|
||||
parser = argparse.ArgumentParser(description='Code for Cascade Classifier tutorial.')
|
||||
parser.add_argument('--face_cascade', help='Path to face cascade.', default='data/haarcascades/haarcascade_frontalface_alt.xml')
|
||||
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.', default='data/haarcascades/haarcascade_eye_tree_eyeglasses.xml')
|
||||
parser.add_argument('--camera', help='Camera devide number.', type=int, default=0)
|
||||
parser.add_argument('--camera', help='Camera divide number.', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
||||
face_cascade_name = args.face_cascade
|
||||
|
Loading…
Reference in New Issue
Block a user