mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
optimized cv::meanStdDev
This commit is contained in:
parent
d940093fb5
commit
33173d900a
@ -4419,22 +4419,22 @@ int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
|
||||
InputArray src4, InputArray src5, InputArray src6,
|
||||
InputArray src7, InputArray src8, InputArray src9)
|
||||
{
|
||||
int type = src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), esz = CV_ELEM_SIZE(depth);
|
||||
int type = src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), esz1 = CV_ELEM_SIZE1(depth);
|
||||
Size ssize = src1.size();
|
||||
const ocl::Device & d = ocl::Device::getDefault();
|
||||
|
||||
int vectorWidths[] = { d.preferredVectorWidthChar(), d.preferredVectorWidthChar(),
|
||||
d.preferredVectorWidthShort(), d.preferredVectorWidthShort(),
|
||||
d.preferredVectorWidthInt(), d.preferredVectorWidthFloat(),
|
||||
d.preferredVectorWidthDouble(), -1 }, width = vectorWidths[depth];
|
||||
d.preferredVectorWidthDouble(), -1 }, kercn = vectorWidths[depth];
|
||||
if (d.isIntel())
|
||||
{
|
||||
// it's heuristic
|
||||
int vectorWidthsIntel[] = { 16, 16, 8, 8, 1, 1, 1, -1 };
|
||||
width = vectorWidthsIntel[depth];
|
||||
kercn = vectorWidthsIntel[depth];
|
||||
}
|
||||
|
||||
if (ssize.width * cn < width || width <= 0)
|
||||
if (ssize.width * cn < kercn || kercn <= 0)
|
||||
return 1;
|
||||
|
||||
std::vector<size_t> offsets, steps, cols;
|
||||
@ -4449,7 +4449,7 @@ int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
|
||||
PROCESS_SRC(src9);
|
||||
|
||||
size_t size = offsets.size();
|
||||
int wsz = width * esz;
|
||||
int wsz = kercn * esz1;
|
||||
std::vector<int> dividers(size, wsz);
|
||||
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
@ -4460,14 +4460,14 @@ int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
if (dividers[i] != wsz)
|
||||
{
|
||||
width = 1;
|
||||
kercn = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
// another strategy
|
||||
// width = *std::min_element(dividers.begin(), dividers.end());
|
||||
|
||||
return width;
|
||||
return kercn;
|
||||
}
|
||||
|
||||
#undef PROCESS_SRC
|
||||
|
129
modules/core/src/opencl/meanstddev.cl
Normal file
129
modules/core/src/opencl/meanstddev.cl
Normal file
@ -0,0 +1,129 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
#ifdef cl_amd_fp64
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#elif defined (cl_khr_fp64)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define noconvert
|
||||
|
||||
#if cn != 3
|
||||
#define loadpix(addr) *(__global const srcT *)(addr)
|
||||
#define storepix(val, addr) *(__global dstT *)(addr) = val
|
||||
#define storesqpix(val, addr) *(__global sqdstT *)(addr) = val
|
||||
#define srcTSIZE (int)sizeof(srcT)
|
||||
#define dstTSIZE (int)sizeof(dstT)
|
||||
#define sqdstTSIZE (int)sizeof(sqdstT)
|
||||
#else
|
||||
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
|
||||
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
|
||||
#define storesqpix(val, addr) vstore3(val, 0, (__global sqdstT1 *)(addr))
|
||||
#define srcTSIZE ((int)sizeof(srcT1)*3)
|
||||
#define dstTSIZE ((int)sizeof(dstT1)*3)
|
||||
#define sqdstTSIZE ((int)sizeof(sqdstT1)*3)
|
||||
#endif
|
||||
|
||||
__kernel void meanStdDev(__global const uchar * srcptr, int src_step, int src_offset, int cols,
|
||||
int total, int groups, __global uchar * dstptr
|
||||
#ifdef HAVE_MASK
|
||||
, __global const uchar * mask, int mask_step, int mask_offset
|
||||
#endif
|
||||
)
|
||||
{
|
||||
int lid = get_local_id(0);
|
||||
int gid = get_group_id(0);
|
||||
int id = get_global_id(0);
|
||||
|
||||
__local dstT localMemSum[WGS2_ALIGNED];
|
||||
__local sqdstT localMemSqSum[WGS2_ALIGNED];
|
||||
#ifdef HAVE_MASK
|
||||
__local int localMemNonZero[WGS2_ALIGNED];
|
||||
#endif
|
||||
|
||||
dstT accSum = (dstT)(0);
|
||||
sqdstT accSqSum = (sqdstT)(0);
|
||||
#ifdef HAVE_MASK
|
||||
int accNonZero = 0;
|
||||
mask += mask_offset;
|
||||
#endif
|
||||
srcptr += src_offset;
|
||||
|
||||
for (int grain = groups * WGS; id < total; id += grain)
|
||||
{
|
||||
#ifdef HAVE_MASK
|
||||
#ifdef HAVE_SRC_CONT
|
||||
int mask_index = id;
|
||||
#else
|
||||
int mask_index = mad24(id / cols, mask_step, id % cols);
|
||||
#endif
|
||||
if (mask[mask_index])
|
||||
#endif
|
||||
{
|
||||
#ifdef HAVE_SRC_CONT
|
||||
int src_index = mul24(id, srcTSIZE);
|
||||
#else
|
||||
int src_index = mad24(id / cols, src_step, mul24(id % cols, srcTSIZE));
|
||||
#endif
|
||||
|
||||
srcT value = loadpix(srcptr + src_index);
|
||||
accSum += convertToDT(value);
|
||||
sqdstT dvalue = convertToSDT(value);
|
||||
accSqSum = fma(dvalue, dvalue, accSqSum);
|
||||
|
||||
#ifdef HAVE_MASK
|
||||
++accNonZero;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if (lid < WGS2_ALIGNED)
|
||||
{
|
||||
localMemSum[lid] = accSum;
|
||||
localMemSqSum[lid] = accSqSum;
|
||||
#ifdef HAVE_MASK
|
||||
localMemNonZero[lid] = accNonZero;
|
||||
#endif
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lid >= WGS2_ALIGNED && total >= WGS2_ALIGNED)
|
||||
{
|
||||
localMemSum[lid - WGS2_ALIGNED] += accSum;
|
||||
localMemSqSum[lid - WGS2_ALIGNED] += accSqSum;
|
||||
#ifdef HAVE_MASK
|
||||
localMemNonZero[lid - WGS2_ALIGNED] += accNonZero;
|
||||
#endif
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for (int lsize = WGS2_ALIGNED >> 1; lsize > 0; lsize >>= 1)
|
||||
{
|
||||
if (lid < lsize)
|
||||
{
|
||||
int lid2 = lsize + lid;
|
||||
localMemSum[lid] += localMemSum[lid2];
|
||||
localMemSqSum[lid] += localMemSqSum[lid2];
|
||||
#ifdef HAVE_MASK
|
||||
localMemNonZero[lid] += localMemNonZero[lid2];
|
||||
#endif
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if (lid == 0)
|
||||
{
|
||||
storepix(localMemSum[0], dstptr + dstTSIZE * gid);
|
||||
storesqpix(localMemSqSum[0], dstptr + mad24(dstTSIZE, groups, sqdstTSIZE * gid));
|
||||
#ifdef HAVE_MASK
|
||||
*(__global int *)(dstptr + mad24(dstTSIZE + sqdstTSIZE, groups, (int)sizeof(int) * gid)) = localMemNonZero[0];
|
||||
#endif
|
||||
}
|
||||
}
|
@ -878,14 +878,76 @@ namespace cv {
|
||||
static bool ocl_meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
|
||||
{
|
||||
bool haveMask = _mask.kind() != _InputArray::NONE;
|
||||
|
||||
int nz = haveMask ? -1 : (int)_src.total();
|
||||
Scalar mean, stddev;
|
||||
if (!ocl_sum(_src, mean, OCL_OP_SUM, _mask))
|
||||
return false;
|
||||
if (!ocl_sum(_src, stddev, OCL_OP_SUM_SQR, _mask))
|
||||
return false;
|
||||
|
||||
int nz = haveMask ? countNonZero(_mask) : (int)_src.total();
|
||||
{
|
||||
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
|
||||
isContinuous = _src.isContinuous();
|
||||
int groups = ocl::Device::getDefault().maxComputeUnits();
|
||||
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
|
||||
|
||||
int ddepth = std::max(CV_32S, depth), sqddepth = std::max(CV_32F, depth),
|
||||
dtype = CV_MAKE_TYPE(ddepth, cn),
|
||||
sqdtype = CV_MAKETYPE(sqddepth, cn);
|
||||
CV_Assert(!haveMask || _mask.type() == CV_8UC1);
|
||||
|
||||
int wgs2_aligned = 1;
|
||||
while (wgs2_aligned < (int)wgs)
|
||||
wgs2_aligned <<= 1;
|
||||
wgs2_aligned >>= 1;
|
||||
|
||||
if ( (!doubleSupport && depth == CV_64F) || cn > 4 )
|
||||
return false;
|
||||
|
||||
char cvt[2][40];
|
||||
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D sqddepth=%d"
|
||||
" -D sqdstT=%s -D sqdstT1=%s -D convertToSDT=%s -D cn=%d%s"
|
||||
" -D convertToDT=%s -D WGS=%d -D WGS2_ALIGNED=%d%s%s",
|
||||
ocl::typeToStr(type), ocl::typeToStr(depth),
|
||||
ocl::typeToStr(dtype), ocl::typeToStr(ddepth), sqddepth,
|
||||
ocl::typeToStr(sqdtype), ocl::typeToStr(sqddepth),
|
||||
ocl::convertTypeStr(depth, sqddepth, cn, cvt[0]),
|
||||
cn, isContinuous ? " -D HAVE_SRC_CONT" : "",
|
||||
ocl::convertTypeStr(depth, ddepth, cn, cvt[1]),
|
||||
(int)wgs, wgs2_aligned, haveMask ? " -D HAVE_MASK" : "",
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
||||
|
||||
ocl::Kernel k("meanStdDev", ocl::core::meanstddev_oclsrc, opts);
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
int dbsize = groups * ((haveMask ? CV_ELEM_SIZE1(CV_32S) : 0) +
|
||||
CV_ELEM_SIZE(sqdtype) + CV_ELEM_SIZE(dtype));
|
||||
UMat src = _src.getUMat(), db(1, dbsize, CV_8UC1), mask = _mask.getUMat();
|
||||
|
||||
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
||||
dbarg = ocl::KernelArg::PtrWriteOnly(db),
|
||||
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);
|
||||
|
||||
if (haveMask)
|
||||
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg, maskarg);
|
||||
else
|
||||
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg);
|
||||
|
||||
size_t globalsize = groups * wgs;
|
||||
if (!k.run(1, &globalsize, &wgs, false))
|
||||
return false;
|
||||
|
||||
typedef Scalar (* part_sum)(Mat m);
|
||||
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> };
|
||||
Mat dbm = db.getMat(ACCESS_READ);
|
||||
|
||||
mean = funcs[ddepth - CV_32S](Mat(1, groups, dtype, dbm.data));
|
||||
stddev = funcs[sqddepth - CV_32S](Mat(1, groups, sqdtype, dbm.data + groups * CV_ELEM_SIZE(dtype)));
|
||||
|
||||
if (haveMask)
|
||||
nz = saturate_cast<int>(funcs[0](Mat(1, groups, CV_32SC1, dbm.data +
|
||||
groups * (CV_ELEM_SIZE(dtype) +
|
||||
CV_ELEM_SIZE(sqdtype))))[0]);
|
||||
}
|
||||
|
||||
double total = nz != 0 ? 1.0 / nz : 0;
|
||||
int k, j, cn = _src.channels();
|
||||
for (int i = 0; i < cn; ++i)
|
||||
@ -927,7 +989,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
|
||||
ocl_meanStdDev(_src, _mean, _sdv, _mask))
|
||||
|
||||
Mat src = _src.getMat(), mask = _mask.getMat();
|
||||
CV_Assert( mask.empty() || mask.type() == CV_8U );
|
||||
CV_Assert( mask.empty() || mask.type() == CV_8UC1 );
|
||||
|
||||
int k, cn = src.channels(), depth = src.depth();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user