mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
Unit tests for TensorFlow importer
This commit is contained in:
parent
0bd357e7ec
commit
339793143c
@ -183,7 +183,7 @@ public:
|
||||
}
|
||||
else
|
||||
{
|
||||
getConvPoolOutParams(Size(inpH, inpW), kernel, stride, padMode, out);
|
||||
getConvPoolOutParams(Size(inpW, inpH), kernel, stride, padMode, out);
|
||||
}
|
||||
|
||||
int ngroups = inpCn / blobs[0].size[1];
|
||||
|
@ -25,7 +25,7 @@ public:
|
||||
{
|
||||
setParamsFrom(params);
|
||||
paddingDim = params.get<int>("padding_dim");
|
||||
padding = abs(params.get<int>("padding"));
|
||||
padding = params.get<int>("padding");
|
||||
inputDims = params.get<int>("input_dims", 0);
|
||||
index = params.get<int>("index", 0);
|
||||
paddingValue = params.get<double>("value", 0);
|
||||
|
@ -558,6 +558,16 @@ void TFImporter::populateNet(Net dstNet)
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
}
|
||||
else if (type == "BiasAdd" || type == "Add")
|
||||
{
|
||||
bool haveConst = false;
|
||||
for(int ii = 0; !haveConst && ii < layer.input_size(); ++ii)
|
||||
{
|
||||
Pin input = parsePin(layer.input(ii));
|
||||
haveConst = value_id.find(input.name) != value_id.end();
|
||||
}
|
||||
CV_Assert(!haveConst || layer.input_size() == 2);
|
||||
|
||||
if (haveConst)
|
||||
{
|
||||
layerParams.blobs.resize(1);
|
||||
blobFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]);
|
||||
@ -568,12 +578,20 @@ void TFImporter::populateNet(Net dstNet)
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
}
|
||||
else if (type == "Identity")
|
||||
else
|
||||
{
|
||||
int id = dstNet.addLayer(name, "Identity", layerParams);
|
||||
layerParams.set("operation", "sum");
|
||||
int id = dstNet.addLayer(name, "Eltwise", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
for (int ii = 0; ii < layer.input_size(); ii++)
|
||||
{
|
||||
Pin inp = parsePin(layer.input(ii));
|
||||
if (layer_id.find(inp.name) == layer_id.end())
|
||||
CV_Error(Error::StsError, "Input layer not found: " + inp.name);
|
||||
dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (type == "MatMul")
|
||||
{
|
||||
@ -624,13 +642,6 @@ void TFImporter::populateNet(Net dstNet)
|
||||
else if (type == "Const")
|
||||
{
|
||||
}
|
||||
else if (type == "Softmax")
|
||||
{
|
||||
int id = dstNet.addLayer(name, "Softmax", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else if (type == "LRN")
|
||||
{
|
||||
if(hasLayerAttr(layer, "alpha")) {
|
||||
@ -653,37 +664,28 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else if (type == "Concat")
|
||||
else if (type == "Concat" || type == "ConcatV2")
|
||||
{
|
||||
int axis = getConstBlob(layer, value_id, 0).int_val().Get(0);
|
||||
int axisId = (type == "Concat" ? 0 : layer.input_size() - 1);
|
||||
int axis = getConstBlob(layer, value_id, axisId).int_val().Get(0);
|
||||
layerParams.set("axis", toNCHW[axis]);
|
||||
|
||||
int id = dstNet.addLayer(name, "Concat", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
// input(0) is concat_dim
|
||||
for (int ii = 1; ii < layer.input_size(); ii++)
|
||||
|
||||
int from = (type == "Concat" ? 1 : 0);
|
||||
int to = (type == "Concat" ? layer.input_size() : layer.input_size() - 1);
|
||||
|
||||
// input(0) or input(n-1) is concat_dim
|
||||
for (int ii = from; ii < to; ii++)
|
||||
{
|
||||
Pin inp = parsePin(layer.input(ii));
|
||||
if (layer_id.find(inp.name) == layer_id.end())
|
||||
CV_Error(Error::StsError, "Input layer not found: " + inp.name);
|
||||
dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii - 1);
|
||||
dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii - from);
|
||||
}
|
||||
}
|
||||
else if (type == "Relu")
|
||||
{
|
||||
int id = dstNet.addLayer(name, "ReLU", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else if (type == "Elu")
|
||||
{
|
||||
int id = dstNet.addLayer(name, "ELU", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else if (type == "MaxPool")
|
||||
{
|
||||
layerParams.set("pool", "max");
|
||||
@ -736,6 +738,145 @@ void TFImporter::populateNet(Net dstNet)
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 0);
|
||||
}
|
||||
else if (type == "Mul")
|
||||
{
|
||||
bool haveConst = false;
|
||||
for(int ii = 0; !haveConst && ii < layer.input_size(); ++ii)
|
||||
{
|
||||
Pin input = parsePin(layer.input(ii));
|
||||
haveConst = value_id.find(input.name) != value_id.end();
|
||||
}
|
||||
CV_Assert(!haveConst || layer.input_size() == 2);
|
||||
|
||||
if (haveConst)
|
||||
{
|
||||
// Multiplication by constant.
|
||||
CV_Assert(layer.input_size() == 2);
|
||||
|
||||
float scale = getConstBlob(layer, value_id).float_val()[0];
|
||||
layerParams.set("scale", scale);
|
||||
|
||||
int id = dstNet.addLayer(name, "Power", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
Pin inp0 = parsePin(layer.input(0));
|
||||
if (layer_id.find(inp0.name) != layer_id.end())
|
||||
// First operand is a constant.
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
else
|
||||
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
layerParams.set("operation", "prod");
|
||||
int id = dstNet.addLayer(name, "Eltwise", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
for (int ii = 0; ii < layer.input_size(); ii++)
|
||||
{
|
||||
Pin inp = parsePin(layer.input(ii));
|
||||
if (layer_id.find(inp.name) == layer_id.end())
|
||||
CV_Error(Error::StsError, "Input layer not found: " + inp.name);
|
||||
dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (type == "Pad")
|
||||
{
|
||||
tensorflow::TensorProto paddings = getConstBlob(layer, value_id, 1);
|
||||
MatShape shape;
|
||||
blobShapeFromTensor(paddings, shape);
|
||||
if (shape[0] != 4)
|
||||
CV_Error(Error::StsError, "Expected NHWC data format");
|
||||
|
||||
// Copy tensor with paddings.
|
||||
std::vector<int32_t> values(shape[0] * 2);
|
||||
CV_Assert(sizeof(int32_t) * values.size() ==
|
||||
paddings.tensor_content().size());
|
||||
memcpy(&values[0], &paddings.tensor_content()[0],
|
||||
paddings.tensor_content().size());
|
||||
|
||||
// Allow only one padding operation per layer.
|
||||
bool padded = false;
|
||||
for (int i = 0; i < values.size(); ++i)
|
||||
{
|
||||
if (values[i])
|
||||
{
|
||||
if (padded)
|
||||
CV_Error(Error::StsError,
|
||||
"Only single padding operation per layer is supported");
|
||||
padded = true;
|
||||
|
||||
int axis = i / 2;
|
||||
// Remap NHWC to NCHW.
|
||||
// 0 -> 0
|
||||
// 1 -> 2
|
||||
// 2 -> 3
|
||||
// 3 -> 1
|
||||
if (axis != 0)
|
||||
axis = axis % 3 + 1;
|
||||
|
||||
layerParams.set("padding_dim", axis);
|
||||
if (i % 2) // Pad after
|
||||
layerParams.set("padding", values[i]);
|
||||
else // Pad before
|
||||
layerParams.set("padding", -1 * values[i]);
|
||||
|
||||
int id = dstNet.addLayer(name, "Padding", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (type == "FusedBatchNorm")
|
||||
{
|
||||
// op: "FusedBatchNorm"
|
||||
// input: "input"
|
||||
// input: "BatchNorm/gamma"
|
||||
// input: "BatchNorm/beta"
|
||||
// input: "BatchNorm/moving_mean"
|
||||
// input: "BatchNorm/moving_variance"
|
||||
if (layer.input_size() != 5)
|
||||
CV_Error(Error::StsNotImplemented,
|
||||
"Expected gamma, beta, mean and std");
|
||||
|
||||
layerParams.blobs.resize(4);
|
||||
// gamma
|
||||
blobFromTensor(getConstBlob(layer, value_id, 1), layerParams.blobs[2]);
|
||||
// beta
|
||||
blobFromTensor(getConstBlob(layer, value_id, 2), layerParams.blobs[3]);
|
||||
// mean
|
||||
blobFromTensor(getConstBlob(layer, value_id, 3), layerParams.blobs[0]);
|
||||
// std
|
||||
blobFromTensor(getConstBlob(layer, value_id, 4), layerParams.blobs[1]);
|
||||
|
||||
if (hasLayerAttr(layer, "epsilon"))
|
||||
layerParams.set("eps", getLayerAttr(layer, "epsilon").f());
|
||||
|
||||
layerParams.set("has_weight", true);
|
||||
layerParams.set("has_bias", true);
|
||||
|
||||
int id = dstNet.addLayer(name, "BatchNorm", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
}
|
||||
else if (type == "Abs" || type == "Tanh" || type == "Sigmoid" ||
|
||||
type == "Relu" || type == "Elu" || type == "Softmax" ||
|
||||
type == "Identity")
|
||||
{
|
||||
std::string dnnType = type;
|
||||
if (type == "Abs") dnnType = "AbsVal";
|
||||
else if (type == "Tanh") dnnType = "TanH";
|
||||
else if (type == "Relu") dnnType = "ReLU";
|
||||
else if (type == "Elu") dnnType = "ELU";
|
||||
|
||||
int id = dstNet.addLayer(name, dnnType, layerParams);
|
||||
layer_id[name] = id;
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else
|
||||
{
|
||||
printLayerAttr(layer);
|
||||
|
@ -71,4 +71,58 @@ TEST(Test_TensorFlow, inception_accuracy)
|
||||
normAssert(ref, out);
|
||||
}
|
||||
|
||||
static std::string path(const std::string& file)
|
||||
{
|
||||
return findDataFile("dnn/tensorflow/" + file, false);
|
||||
}
|
||||
|
||||
static void runTensorFlowNet(const std::string& prefix)
|
||||
{
|
||||
std::string netPath = path(prefix + "_net.pb");
|
||||
std::string inpPath = path(prefix + "_in.npy");
|
||||
std::string outPath = path(prefix + "_out.npy");
|
||||
|
||||
Net net = readNetFromTensorflow(netPath);
|
||||
|
||||
cv::Mat input = blobFromNPY(inpPath);
|
||||
cv::Mat target = blobFromNPY(outPath);
|
||||
|
||||
net.setInput(input);
|
||||
cv::Mat output = net.forward();
|
||||
normAssert(target, output);
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, single_conv)
|
||||
{
|
||||
runTensorFlowNet("single_conv");
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, padding)
|
||||
{
|
||||
runTensorFlowNet("padding_same");
|
||||
runTensorFlowNet("padding_valid");
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, eltwise_add_mul)
|
||||
{
|
||||
runTensorFlowNet("eltwise_add_mul");
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, pad_and_concat)
|
||||
{
|
||||
runTensorFlowNet("pad_and_concat");
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, fused_batch_norm)
|
||||
{
|
||||
runTensorFlowNet("fused_batch_norm");
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, pooling)
|
||||
{
|
||||
runTensorFlowNet("max_pool_even");
|
||||
runTensorFlowNet("max_pool_odd_valid");
|
||||
runTensorFlowNet("max_pool_odd_same");
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user