From cdbbe0dfbe75defbf911d50760519ca47e5fe6cf Mon Sep 17 00:00:00 2001 From: alexandre benoit Date: Wed, 12 Jun 2013 22:40:43 +0200 Subject: [PATCH 1/6] 1. created module bioinspired. 2.transfered Retina module into the new module bioinspired. 3. added a fast tone mapping method to Retina interface and wrapped existing reinafilter dedicated method --- .../images/retina_TreeHdr_retina.jpg | Bin .../images/retina_TreeHdr_small.jpg | Bin .../images/studentsSample_input.jpg | Bin .../images/studentsSample_magno.jpg | Bin .../images/studentsSample_parvo.jpg | Bin .../bioinspired/retina_model/retina_model.rst | 416 +++++++++++++++ .../retina_model/retina_model.rst~} | 0 .../images/retina_TreeHdr_small.jpg | Bin .../table_of_content_bioinspired.rst | 36 ++ .../table_of_content_bioinspired.rst~} | 0 modules/bioinspired/CMakeLists.txt | 2 + modules/bioinspired/doc/bioinspired.rst | 10 + .../doc/retina/images/retinaInput.jpg | Bin 0 -> 13646 bytes .../retina/images/retinaOutput_default.jpg | Bin 0 -> 22461 bytes .../retina/images/retinaOutput_realistic.jpg | Bin 0 -> 19131 bytes modules/bioinspired/doc/retina/index.rst | 483 ++++++++++++++++++ .../include/opencv2/bioinspired.hpp | 51 ++ .../opencv2/bioinspired/bioinspired.hpp | 48 ++ .../include/opencv2/bioinspired}/retina.hpp | 42 +- .../bioinspired/retinafasttonemapping.hpp | 123 +++++ .../src/basicretinafilter.cpp | 6 +- .../src/basicretinafilter.hpp | 7 +- .../src/imagelogpolprojection.cpp | 6 +- .../src/imagelogpolprojection.hpp | 5 +- .../src/magnoretinafilter.cpp | 5 +- .../src/magnoretinafilter.hpp | 6 +- .../src/parvoretinafilter.cpp | 5 +- .../src/parvoretinafilter.hpp | 5 +- modules/bioinspired/src/precomp.cpp | 44 ++ modules/bioinspired/src/precomp.hpp | 61 +++ .../{contrib => bioinspired}/src/retina.cpp | 82 +-- .../src/retinacolor.cpp | 6 +- .../src/retinacolor.hpp | 8 +- .../bioinspired/src/retinafasttonemapping.cpp | 222 ++++++++ .../src/retinafilter.cpp | 17 +- .../src/retinafilter.hpp | 7 +- .../src/templatebuffer.hpp | 13 +- modules/bioinspired/test/test_main.cpp | 3 + modules/bioinspired/test/test_precomp.cpp | 1 + modules/bioinspired/test/test_precomp.hpp | 17 + .../retina_tutorial.cpp | 8 +- 41 files changed, 1668 insertions(+), 77 deletions(-) rename doc/tutorials/{contrib => bioinspired}/retina_model/images/retina_TreeHdr_retina.jpg (100%) rename doc/tutorials/{contrib => bioinspired}/retina_model/images/retina_TreeHdr_small.jpg (100%) rename doc/tutorials/{contrib => bioinspired}/retina_model/images/studentsSample_input.jpg (100%) rename doc/tutorials/{contrib => bioinspired}/retina_model/images/studentsSample_magno.jpg (100%) rename doc/tutorials/{contrib => bioinspired}/retina_model/images/studentsSample_parvo.jpg (100%) create mode 100644 doc/tutorials/bioinspired/retina_model/retina_model.rst rename doc/tutorials/{contrib/retina_model/retina_model.rst => bioinspired/retina_model/retina_model.rst~} (100%) rename doc/tutorials/{contrib/table_of_content_contrib => bioinspired/table_of_content_bioinspired}/images/retina_TreeHdr_small.jpg (100%) create mode 100644 doc/tutorials/bioinspired/table_of_content_bioinspired/table_of_content_bioinspired.rst rename doc/tutorials/{contrib/table_of_content_contrib/table_of_content_contrib.rst => bioinspired/table_of_content_bioinspired/table_of_content_bioinspired.rst~} (100%) create mode 100644 modules/bioinspired/CMakeLists.txt create mode 100644 modules/bioinspired/doc/bioinspired.rst create mode 100644 modules/bioinspired/doc/retina/images/retinaInput.jpg create mode 100644 modules/bioinspired/doc/retina/images/retinaOutput_default.jpg create mode 100644 modules/bioinspired/doc/retina/images/retinaOutput_realistic.jpg create mode 100644 modules/bioinspired/doc/retina/index.rst create mode 100644 modules/bioinspired/include/opencv2/bioinspired.hpp create mode 100644 modules/bioinspired/include/opencv2/bioinspired/bioinspired.hpp rename modules/{contrib/include/opencv2/contrib => bioinspired/include/opencv2/bioinspired}/retina.hpp (88%) create mode 100644 modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp rename modules/{contrib => bioinspired}/src/basicretinafilter.cpp (99%) rename modules/{contrib => bioinspired}/src/basicretinafilter.hpp (99%) rename modules/{contrib => bioinspired}/src/imagelogpolprojection.cpp (99%) rename modules/{contrib => bioinspired}/src/imagelogpolprojection.hpp (99%) rename modules/{contrib => bioinspired}/src/magnoretinafilter.cpp (99%) rename modules/{contrib => bioinspired}/src/magnoretinafilter.hpp (99%) rename modules/{contrib => bioinspired}/src/parvoretinafilter.cpp (99%) rename modules/{contrib => bioinspired}/src/parvoretinafilter.hpp (99%) create mode 100644 modules/bioinspired/src/precomp.cpp create mode 100644 modules/bioinspired/src/precomp.hpp rename modules/{contrib => bioinspired}/src/retina.cpp (92%) rename modules/{contrib => bioinspired}/src/retinacolor.cpp (99%) rename modules/{contrib => bioinspired}/src/retinacolor.hpp (99%) create mode 100644 modules/bioinspired/src/retinafasttonemapping.cpp rename modules/{contrib => bioinspired}/src/retinafilter.cpp (98%) rename modules/{contrib => bioinspired}/src/retinafilter.hpp (99%) rename modules/{contrib => bioinspired}/src/templatebuffer.hpp (99%) create mode 100644 modules/bioinspired/test/test_main.cpp create mode 100644 modules/bioinspired/test/test_precomp.cpp create mode 100644 modules/bioinspired/test/test_precomp.hpp rename samples/cpp/tutorial_code/{contrib => bioinspired}/retina_tutorial.cpp (96%) diff --git a/doc/tutorials/contrib/retina_model/images/retina_TreeHdr_retina.jpg b/doc/tutorials/bioinspired/retina_model/images/retina_TreeHdr_retina.jpg similarity index 100% rename from doc/tutorials/contrib/retina_model/images/retina_TreeHdr_retina.jpg rename to doc/tutorials/bioinspired/retina_model/images/retina_TreeHdr_retina.jpg diff --git a/doc/tutorials/contrib/retina_model/images/retina_TreeHdr_small.jpg b/doc/tutorials/bioinspired/retina_model/images/retina_TreeHdr_small.jpg similarity index 100% rename from doc/tutorials/contrib/retina_model/images/retina_TreeHdr_small.jpg rename to doc/tutorials/bioinspired/retina_model/images/retina_TreeHdr_small.jpg diff --git a/doc/tutorials/contrib/retina_model/images/studentsSample_input.jpg b/doc/tutorials/bioinspired/retina_model/images/studentsSample_input.jpg similarity index 100% rename from doc/tutorials/contrib/retina_model/images/studentsSample_input.jpg rename to doc/tutorials/bioinspired/retina_model/images/studentsSample_input.jpg diff --git a/doc/tutorials/contrib/retina_model/images/studentsSample_magno.jpg b/doc/tutorials/bioinspired/retina_model/images/studentsSample_magno.jpg similarity index 100% rename from doc/tutorials/contrib/retina_model/images/studentsSample_magno.jpg rename to doc/tutorials/bioinspired/retina_model/images/studentsSample_magno.jpg diff --git a/doc/tutorials/contrib/retina_model/images/studentsSample_parvo.jpg b/doc/tutorials/bioinspired/retina_model/images/studentsSample_parvo.jpg similarity index 100% rename from doc/tutorials/contrib/retina_model/images/studentsSample_parvo.jpg rename to doc/tutorials/bioinspired/retina_model/images/studentsSample_parvo.jpg diff --git a/doc/tutorials/bioinspired/retina_model/retina_model.rst b/doc/tutorials/bioinspired/retina_model/retina_model.rst new file mode 100644 index 0000000000..4f96a9ae13 --- /dev/null +++ b/doc/tutorials/bioinspired/retina_model/retina_model.rst @@ -0,0 +1,416 @@ +.. _Retina_Model: + +Discovering the human retina and its use for image processing +************************************************************* + +Goal +===== + +I present here a model of human retina that shows some interesting properties for image preprocessing and enhancement. +In this tutorial you will learn how to: + +.. container:: enumeratevisibleitemswithsquare + + + discover the main two channels outing from your retina + + + see the basics to use the retina model + + + discover some parameters tweaks + + +General overview +================ + +The proposed model originates from Jeanny Herault's research [herault2010]_ at `Gipsa `_. It is involved in image processing applications with `Listic `_ (code maintainer and user) lab. This is not a complete model but it already present interesting properties that can be involved for enhanced image processing experience. The model allows the following human retina properties to be used : + +* spectral whitening that has 3 important effects: high spatio-temporal frequency signals canceling (noise), mid-frequencies details enhancement and low frequencies luminance energy reduction. This *all in one* property directly allows visual signals cleaning of classical undesired distortions introduced by image sensors and input luminance range. + +* local logarithmic luminance compression allows details to be enhanced even in low light conditions. + +* decorrelation of the details information (Parvocellular output channel) and transient information (events, motion made available at the Magnocellular output channel). + +The first two points are illustrated below : + +In the figure below, the OpenEXR image sample *CrissyField.exr*, a High Dynamic Range image is shown. In order to make it visible on this web-page, the original input image is linearly rescaled to the classical image luminance range [0-255] and is converted to 8bit/channel format. Such strong conversion hides many details because of too strong local contrasts. Furthermore, noise energy is also strong and pollutes visual information. + +.. image:: images/retina_TreeHdr_small.jpg + :alt: A High dynamic range image linearly rescaled within range [0-255]. + :align: center + +In the following image, applying the ideas proposed in [benoit2010]_, as your retina does, local luminance adaptation, spatial noise removal and spectral whitening work together and transmit accurate information on lower range 8bit data channels. On this picture, noise in significantly removed, local details hidden by strong luminance contrasts are enhanced. Output image keeps its naturalness and visual content is enhanced. Color processing is based on the color multiplexing/demultiplexing method proposed in [chaix2007]_. + +.. image:: images/retina_TreeHdr_retina.jpg + :alt: A High dynamic range image compressed within range [0-255] using the retina. + :align: center + + +*Note :* image sample can be downloaded from the `OpenEXR website `_. Regarding this demonstration, before retina processing, input image has been linearly rescaled within 0-255 keeping its channels float format. 5% of its histogram ends has been cut (mostly removes wrong HDR pixels). Check out the sample *opencv/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp* for similar processing. The following demonstration will only consider classical 8bit/channel images. + +The retina model output channels +================================ + +The retina model presents two outputs that benefit from the above cited behaviors. + +* The first one is called the Parvocellular channel. It is mainly active in the foveal retina area (high resolution central vision with color sensitive photo-receptors), its aim is to provide accurate color vision for visual details remaining static on the retina. On the other hand objects moving on the retina projection are blurred. + +* The second well known channel is the Magnocellular channel. It is mainly active in the retina peripheral vision and send signals related to change events (motion, transient events, etc.). These outing signals also help visual system to focus/center retina on 'transient'/moving areas for more detailed analysis thus improving visual scene context and object classification. + +**NOTE :** regarding the proposed model, contrary to the real retina, we apply these two channels on the entire input images using the same resolution. This allows enhanced visual details and motion information to be extracted on all the considered images... but remember, that these two channels are complementary. For example, if Magnocellular channel gives strong energy in an area, then, the Parvocellular channel is certainly blurred there since there is a transient event. + +As an illustration, we apply in the following the retina model on a webcam video stream of a dark visual scene. In this visual scene, captured in an amphitheater of the university, some students are moving while talking to the teacher. + +In this video sequence, because of the dark ambiance, signal to noise ratio is low and color artifacts are present on visual features edges because of the low quality image capture tool-chain. + +.. image:: images/studentsSample_input.jpg + :alt: an input video stream extract sample + :align: center + +Below is shown the retina foveal vision applied on the entire image. In the used retina configuration, global luminance is preserved and local contrasts are enhanced. Also, signal to noise ratio is improved : since high frequency spatio-temporal noise is reduced, enhanced details are not corrupted by any enhanced noise. + +.. image:: images/studentsSample_parvo.jpg + :alt: the retina Parvocellular output. Enhanced details, luminance adaptation and noise removal. A processing tool for image analysis. + :align: center + +Below is the output of the Magnocellular output of the retina model. Its signals are strong where transient events occur. Here, a student is moving at the bottom of the image thus generating high energy. The remaining of the image is static however, it is corrupted by a strong noise. Here, the retina filters out most of the noise thus generating low false motion area 'alarms'. This channel can be used as a transient/moving areas detector : it would provide relevant information for a low cost segmentation tool that would highlight areas in which an event is occurring. + +.. image:: images/studentsSample_magno.jpg + :alt: the retina Magnocellular output. Enhanced transient signals (motion, etc.). A preprocessing tool for event detection. + :align: center + +Retina use case +=============== + +This model can be used basically for spatio-temporal video effects but also in the aim of : + +* performing texture analysis with enhanced signal to noise ratio and enhanced details robust against input images luminance ranges (check out the Parvocellular retina channel output) + +* performing motion analysis also taking benefit of the previously cited properties. + +Literature +========== +For more information, refer to the following papers : + +.. [benoit2010] Benoit A., Caplier A., Durette B., Herault, J., "Using Human Visual System Modeling For Bio-Inspired Low Level Image Processing", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773. DOI + +* Please have a look at the reference work of Jeanny Herault that you can read in his book : + +.. [herault2010] Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + +This retina filter code includes the research contributions of phd/research collegues from which code has been redrawn by the author : + +* take a look at the *retinacolor.hpp* module to discover Brice Chaix de Lavarene phD color mosaicing/demosaicing and his reference paper: + +.. [chaix2007] B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 + +* take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. More informations in the above cited Jeanny Heraults's book. + +Code tutorial +============= + +Please refer to the original tutorial source code in file *opencv_folder/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp*. + +To compile it, assuming OpenCV is correctly installed, use the following command. It requires the opencv_core *(cv::Mat and friends objects management)*, opencv_highgui *(display and image/video read)* and opencv_bioinspired *(Retina description)* libraries to compile. + +.. code-block:: cpp + + // compile + gcc retina_tutorial.cpp -o Retina_tuto -lopencv_core -lopencv_highgui -lopencv_bioinspired + + // Run commands : add 'log' as a last parameter to apply a spatial log sampling (simulates retina sampling) + // run on webcam + ./Retina_tuto -video + // run on video file + ./Retina_tuto -video myVideo.avi + // run on an image + ./Retina_tuto -image myPicture.jpg + // run on an image with log sampling + ./Retina_tuto -image myPicture.jpg log + +Here is a code explanation : + +Retina definition is present in the bioinspired package and a simple include allows to use it + +.. code-block:: cpp + + #include "opencv2/opencv.hpp" + +Provide user some hints to run the program with a help function + +.. code-block:: cpp + + // the help procedure + static void help(std::string errorMessage) + { + std::cout<<"Program init error : "< you can use this to fine tune parameters and load them if you save to file 'RetinaSpecificParameters.xml'"<= 3) + { + std::cout<<"RetinaDemo: processing image "<>inputFrame; + }else + { + // bad command parameter + help("bad command parameter"); + return -1; + } + +Once all input parameters are processed, a first image should have been loaded, if not, display error and stop program : + +.. code-block:: cpp + + if (inputFrame.empty()) + { + help("Input media could not be loaded, aborting"); + return -1; + } + +Now, everything is ready to run the retina model. I propose here to allocate a retina instance and to manage the eventual log sampling option. The Retina constructor expects at least a cv::Size object that shows the input data size that will have to be managed. One can activate other options such as color and its related color multiplexing strategy (here Bayer multiplexing is chosen using enum cv::RETINA_COLOR_BAYER). If using log sampling, the image reduction factor (smaller output images) and log sampling strengh can be adjusted. + +.. code-block:: cpp + + // pointer to a retina object + cv::Ptr myRetina; + + // if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) + if (useLogSampling) + { + myRetina = createRetina(inputFrame.size(), true, RETINA_COLOR_BAYER, true, 2.0, 10.0); + } + else// -> else allocate "classical" retina : + myRetina = createRetina(inputFrame.size()); + +Once done, the proposed code writes a default xml file that contains the default parameters of the retina. This is useful to make your own config using this template. Here generated template xml file is called *RetinaDefaultParameters.xml*. + +.. code-block:: cpp + + // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" + myRetina->write("RetinaDefaultParameters.xml"); + +In the following line, the retina attempts to load another xml file called *RetinaSpecificParameters.xml*. If you created it and introduced your own setup, it will be loaded, in the other case, default retina parameters are used. + +.. code-block:: cpp + + // load parameters if file exists + myRetina->setup("RetinaSpecificParameters.xml"); + +It is not required here but just to show it is possible, you can reset the retina buffers to zero to force it to forget past events. + +.. code-block:: cpp + + // reset all retina buffers (imagine you close your eyes for a long time) + myRetina->clearBuffers(); + +Now, it is time to run the retina ! First create some output buffers ready to receive the two retina channels outputs + +.. code-block:: cpp + + // declare retina output buffers + cv::Mat retinaOutput_parvo; + cv::Mat retinaOutput_magno; + +Then, run retina in a loop, load new frames from video sequence if necessary and get retina outputs back to dedicated buffers. + +.. code-block:: cpp + + // processing loop with no stop condition + while(true) + { + // if using video stream, then, grabbing a new frame, else, input remains the same + if (videoCapture.isOpened()) + videoCapture>>inputFrame; + + // run retina filter on the loaded input frame + myRetina->run(inputFrame); + // Retrieve and display retina output + myRetina->getParvo(retinaOutput_parvo); + myRetina->getMagno(retinaOutput_magno); + cv::imshow("retina input", inputFrame); + cv::imshow("Retina Parvo", retinaOutput_parvo); + cv::imshow("Retina Magno", retinaOutput_magno); + cv::waitKey(10); + } + +That's done ! But if you want to secure the system, take care and manage Exceptions. The retina can throw some when it sees irrelevant data (no input frame, wrong setup, etc.). +Then, i recommend to surround all the retina code by a try/catch system like this : + +.. code-block:: cpp + + try{ + // pointer to a retina object + cv::Ptr myRetina; + [---] + // processing loop with no stop condition + while(true) + { + [---] + } + + }catch(cv::Exception e) + { + std::cerr<<"Error using Retina : "< + +Once done open the configuration file *RetinaDefaultParameters.xml* generated by the demo and let's have a look at it. + +.. code-block:: cpp + + + + + 1 + 1 + 7.5e-01 + 9.0e-01 + 5.7e-01 + 0.01 + 0.5 + 7. + 7.5e-01 + + 1 + 0. + 0. + 7. + 2.0e+00 + 9.5e-01 + 0. + 7. + + +Here are some hints but actually, the best parameter setup depends more on what you want to do with the retina rather than the images input that you give to retina. Apart from the more specific case of High Dynamic Range images (HDR) that require more specific setup for specific luminance compression objective, the retina behaviors should be rather stable from content to content. Note that OpenCV is able to manage such HDR format thanks to the OpenEXR images compatibility. + +Then, if the application target requires details enhancement prior to specific image processing, you need to know if mean luminance information is required or not. If not, the the retina can cancel or significantly reduce its energy thus giving more visibility to higher spatial frequency details. + + +Basic parameters +---------------- + +The most simple parameters are the following : + +* **colorMode** : let the retina process color information (if 1) or gray scale images (if 0). In this last case, only the first channel of the input will be processed. + +* **normaliseOutput** : each channel has this parameter, if value is 1, then the considered channel output is rescaled between 0 and 255. Take care in this case at the Magnocellular output level (motion/transient channel detection). Residual noise will also be rescaled ! + +**Note :** using color requires color channels multiplexing/demultipexing which requires more processing. You can expect much faster processing using gray levels : it would require around 30 product per pixel for all the retina processes and it has recently been parallelized for multicore architectures. + +Photo-receptors parameters +-------------------------- + +The following parameters act on the entry point of the retina - photo-receptors - and impact all the following processes. These sensors are low pass spatio-temporal filters that smooth temporal and spatial data and also adjust there sensitivity to local luminance thus improving details extraction and high frequency noise canceling. + +* **photoreceptorsLocalAdaptationSensitivity** between 0 and 1. Values close to 1 allow high luminance log compression effect at the photo-receptors level. Values closer to 0 give a more linear sensitivity. Increased alone, it can burn the *Parvo (details channel)* output image. If adjusted in collaboration with **ganglionCellsSensitivity** images can be very contrasted whatever the local luminance there is... at the price of a naturalness decrease. + +* **photoreceptorsTemporalConstant** this setups the temporal constant of the low pass filter effect at the entry of the retina. High value lead to strong temporal smoothing effect : moving objects are blurred and can disappear while static object are favored. But when starting the retina processing, stable state is reached lately. + +* **photoreceptorsSpatialConstant** specifies the spatial constant related to photo-receptors low pass filter effect. This parameters specify the minimum allowed spatial signal period allowed in the following. Typically, this filter should cut high frequency noise. Then a 0 value doesn't cut anything noise while higher values start to cut high spatial frequencies and more and more lower frequencies... Then, do not go to high if you wanna see some details of the input images ! A good compromise for color images is 0.53 since this won't affect too much the color spectrum. Higher values would lead to gray and blurred output images. + +Horizontal cells parameters +--------------------------- + +This parameter set tunes the neural network connected to the photo-receptors, the horizontal cells. It modulates photo-receptors sensitivity and completes the processing for final spectral whitening (part of the spatial band pass effect thus favoring visual details enhancement). + +* **horizontalCellsGain** here is a critical parameter ! If you are not interested by the mean luminance and focus on details enhancement, then, set to zero. But if you want to keep some environment luminance data, let some low spatial frequencies pass into the system and set a higher value (<1). + +* **hcellsTemporalConstant** similar to photo-receptors, this acts on the temporal constant of a low pass temporal filter that smooths input data. Here, a high value generates a high retina after effect while a lower value makes the retina more reactive. This value should be lower than **photoreceptorsTemporalConstant** to limit strong retina after effects. + +* **hcellsSpatialConstant** is the spatial constant of the low pass filter of these cells filter. It specifies the lowest spatial frequency allowed in the following. Visually, a high value leads to very low spatial frequencies processing and leads to salient halo effects. Lower values reduce this effect but the limit is : do not go lower than the value of **photoreceptorsSpatialConstant**. Those 2 parameters actually specify the spatial band-pass of the retina. + +**NOTE** after the processing managed by the previous parameters, input data is cleaned from noise and luminance in already partly enhanced. The following parameters act on the last processing stages of the two outing retina signals. + +Parvo (details channel) dedicated parameter +------------------------------------------- + +* **ganglionCellsSensitivity** specifies the strength of the final local adaptation occurring at the output of this details dedicated channel. Parameter values remain between 0 and 1. Low value tend to give a linear response while higher values enforces the remaining low contrasted areas. + +**Note :** this parameter can correct eventual burned images by favoring low energetic details of the visual scene, even in bright areas. + +IPL Magno (motion/transient channel) parameters +----------------------------------------------- + +Once image information is cleaned, this channel acts as a high pass temporal filter that only selects signals related to transient signals (events, motion, etc.). A low pass spatial filter smooths extracted transient data and a final logarithmic compression enhances low transient events thus enhancing event sensitivity. + +* **parasolCells_beta** generally set to zero, can be considered as an amplifier gain at the entry point of this processing stage. Generally set to 0. + +* **parasolCells_tau** the temporal smoothing effect that can be added + +* **parasolCells_k** the spatial constant of the spatial filtering effect, set it at a high value to favor low spatial frequency signals that are lower subject to residual noise. + +* **amacrinCellsTemporalCutFrequency** specifies the temporal constant of the high pass filter. High values let slow transient events to be selected. + +* **V0CompressionParameter** specifies the strength of the log compression. Similar behaviors to previous description but here it enforces sensitivity of transient events. + +* **localAdaptintegration_tau** generally set to 0, no real use here actually + +* **localAdaptintegration_k** specifies the size of the area on which local adaptation is performed. Low values lead to short range local adaptation (higher sensitivity to noise), high values secure log compression. diff --git a/doc/tutorials/contrib/retina_model/retina_model.rst b/doc/tutorials/bioinspired/retina_model/retina_model.rst~ similarity index 100% rename from doc/tutorials/contrib/retina_model/retina_model.rst rename to doc/tutorials/bioinspired/retina_model/retina_model.rst~ diff --git a/doc/tutorials/contrib/table_of_content_contrib/images/retina_TreeHdr_small.jpg b/doc/tutorials/bioinspired/table_of_content_bioinspired/images/retina_TreeHdr_small.jpg similarity index 100% rename from doc/tutorials/contrib/table_of_content_contrib/images/retina_TreeHdr_small.jpg rename to doc/tutorials/bioinspired/table_of_content_bioinspired/images/retina_TreeHdr_small.jpg diff --git a/doc/tutorials/bioinspired/table_of_content_bioinspired/table_of_content_bioinspired.rst b/doc/tutorials/bioinspired/table_of_content_bioinspired/table_of_content_bioinspired.rst new file mode 100644 index 0000000000..88869e98f9 --- /dev/null +++ b/doc/tutorials/bioinspired/table_of_content_bioinspired/table_of_content_bioinspired.rst @@ -0,0 +1,36 @@ +.. _Table-Of-Content-Bioinspired: + +*bioinspired* module. Algorithms inspired from biological models +---------------------------------------------------------------- + +Here you will learn how to use additional modules of OpenCV defined in the "bioinspired" module. + + .. include:: ../../definitions/tocDefinitions.rst + ++ + .. tabularcolumns:: m{100pt} m{300pt} + .. cssclass:: toctableopencv + + =============== ====================================================== + |RetinaDemoImg| **Title:** :ref:`Retina_Model` + + *Compatibility:* > OpenCV 2.4 + + *Author:* |Author_AlexB| + + You will learn how to process images and video streams with a model of retina filter for details enhancement, spatio-temporal noise removal, luminance correction and spatio-temporal events detection. + + =============== ====================================================== + + .. |RetinaDemoImg| image:: images/retina_TreeHdr_small.jpg + :height: 90pt + :width: 90pt + + .. raw:: latex + + \pagebreak + +.. toctree:: + :hidden: + + ../retina_model/retina_model diff --git a/doc/tutorials/contrib/table_of_content_contrib/table_of_content_contrib.rst b/doc/tutorials/bioinspired/table_of_content_bioinspired/table_of_content_bioinspired.rst~ similarity index 100% rename from doc/tutorials/contrib/table_of_content_contrib/table_of_content_contrib.rst rename to doc/tutorials/bioinspired/table_of_content_bioinspired/table_of_content_bioinspired.rst~ diff --git a/modules/bioinspired/CMakeLists.txt b/modules/bioinspired/CMakeLists.txt new file mode 100644 index 0000000000..a27ad73d06 --- /dev/null +++ b/modules/bioinspired/CMakeLists.txt @@ -0,0 +1,2 @@ +set(the_description "Biologically inspired algorithms") +ocv_define_module(bioinspired opencv_core OPTIONAL opencv_highgui) diff --git a/modules/bioinspired/doc/bioinspired.rst b/modules/bioinspired/doc/bioinspired.rst new file mode 100644 index 0000000000..e970021063 --- /dev/null +++ b/modules/bioinspired/doc/bioinspired.rst @@ -0,0 +1,10 @@ +******************************************************************* +bioinspired. Biologically inspired vision models and derivated tools +******************************************************************* + +The module provides biological visual systems models (human visual system and others). It also provides derivated objects that take advantage of those bio-inspired models. + +.. toctree:: + :maxdepth: 2 + + Human retina documentation diff --git a/modules/bioinspired/doc/retina/images/retinaInput.jpg b/modules/bioinspired/doc/retina/images/retinaInput.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d3cdeeecbd3048191f733da0e072891d5ee1e123 GIT binary patch literal 13646 zcmb8VcRba9^f>;yi;IhEU;E-(*PexpYtOnyR>TBz110WCx&?Ob%?-HN^fJu)a z(7zh|51^2LH4F-cK*?ZaWdB{{6mT+f3UV?sI2D|N@*j}y5LA?ie-Hl#`Jb*}7z6^N zBqt;PugU+f>TfSV2M6{+Y7h_|0Hy;$=sSSy=MJy z4bRpG+qD0>f1nwEAMBV?HDg<@{)F??U zG$iuuLTyB&8I4(=IN-1&qRnxn}=L4*Npa7F+?P2|10{*gkzD^qd@(olrB1>DBou^bp9DwZQYT5ogIH0MY2W}x&ZUAV zp394!0#;97wX)s;$nse`HrNDmsjO-b>MSmc`|bj$_y5Q(%?6PADYfM+=Te?1%-{W6e_-LxGA&wYh#eZ%PvnNN6;&?J$C>I8=!VJBGLIDOmfbTIo9j-WGB^+-QF7a zm)-e&O;>6x6q*DC{asDE$rb1Z{b!=w9(G(hRiJ6Qfeb^F8j`_Cqe!)?LD6b}EU3!w z=UW)!ZYbA<>0m?Uy{F zwLsW6yIXBVul)Cq4lUXq7hCez@nm4;l=96)TMTk-9x5pu6`iewCcl4@>{aI^wG#&t z0wSo?8BhSHRN>&jG1Z&H&bGtO_GfuFgtVANx0gqvbDM5mAHVyZE9lEoFxlrX?A;_ln)?;)_oAm#zt-TASAR=Gx}OiYyN&H}lEtBEQ$_{%=C()JQ91 zKp8p!LTa!nx2?Z`ss-EE@mfYJmyPg>O{`{_xq9v`7iKH|z1#O!GP0%S)Jf>zVQ`T4 zvOVa>mnwZ8D$&j~u==RbpoMX|RO;JH5AK|`?RtNHxup=&bR%aI4FjM93@Ein?O&%8 z(b4HNnO92T<~iRC@lm3?zp^gnNq@5Wl6^zdM#L$O($y_K6LkLh>U2=~2!0D7i-uNGJHbI}C!vehhLx#lytPBNR+LyC z9PmVTuIy51N=c{8xHAtvOjbyEjM1G85R&@|naVM?wlmeW!{bDwgqnNlV`OCPp8xF9 zD+r4c1E6SX3hEL-#o?hpC65cUI&yPu1 zDDh~e5=TU%Q=>$qnXR-4hbh!SEUD3msaBiZl4xBp63X^y;Fo`rsXR&H43P?{QEC+H z$47EsL#zeTKPUa(Y&zT!H@|%{O2VoR4~_u1rMn9Dh^^6^a2zs9H0q!Bi7I@ZxM%p| zMZNI$TE(1{rxRQ!v3kO2u;|%?FUI8`d@2(k?E80-)+$OO8QhBMA7Z0dCtmzgIa?qE zIA&a{&?LeKH7VHZdfUJBFL$L9M|t4t%<9PIAuCEz;`n&yxyEaGIYcBYP8dh%ueRnv zP##oq|A)G0Gct+}uAV3wrG)+Yi|lMr7J^G7`?sB@ppFeBwTndpU;qXMLBU|izg=q=P`o>Ctc=DI9|&BNGd+AW09yN!l3%1A7!&MKbp{owly|RDAO_-x8}ruLd}2 zXp2uyPK7U)ks(l$4%B=#v)gwS3k@H1H_sedI(Gy;mH6nst9*-$Kuv9xgBpnW2gy~Y z|61GkM3NymuU3l1I4nwO_E(Rv<*v-hVWZV!q>|qvoXnkCv`1$q_zhi}9zNJ~ZsXt_ z$q&4DdG6KB?2743S3;t;kcC-@OzBi1P36CWK#}HU6yzHJ5?>IZAzoR52ykKzCj^8b zDq3GtOUf*#oUhF->^)n3SFuy*ey_bD>DhCA5?f z;3^hgTKYsP`P-ON3uxBM0e39T{8 zpy9c=$9<(-^+la9rFgK3mr;B6Eyl;VexH%Dk{X3y+>Q51WNFzaUEI4Nv^~jt0r#Ca zbM^*Q$=&XIyuEH@I%=AKx#OysitQ&`m&Uppg=%69|Hhf+-k_V?eYe$#C-UZ52Bk%y(B!&4vU!aLHr+IVAeLCX-qr1UMfB ziB$0~XN=DzG?@B!PEYdA&k}rP1a$ehTh5Y{%O~zXOMd)$cf5FV=GP^>P-~a*RYsFy zQ^pS)8GaQoRq4F@PN*~PNX~^pkGcsbfdzjZ!Ea9<6j(nM7(3?aOiB<{>5V6HTK3a> zU9-Dw5vx)Be+Khk~h1Q?onR_>YwyQFrdS$}0U^eF#^{iK;dZyYh{=to<>f?Hv)> z=R~H%3K@M^k1{hXd194Ct5oS3uWXA&4M?3x5dvI{jlX+ZjX#of{0lfCFAz;F3XHaz zKV2BKKtuiyxtw(7{V125Rpq5lJ`alO%zvEBdWFbE#`y@nR|;UjWDJ+51RMNGT=MkL zJE0^Li%<4-+O8~|HGPWw_BLqIN+4gaFOFxJ_N}na)!ih|`{4o5T4S-ay}bdc;|{6g zGJ)X9!j-}wePgMgUUyjIJ%!poq|H3V=E9`-E9D`aIcGToG7G)qbWx5BbpmvA%=e;p z34Cx5PUCmn$qWa*_cSc&z&g)`lL#3>G9??bHnm2s17jymgwSUTv%7Bd-{`f`s%ztIk{}^@; z*C+p{FJ||&SQqvJ(92&u*!+VpGGZ!MQqBHYCR9%I)jYG}G{?EUMkV2&G%|Z(c3B7lfbnsGgBQ zETIW}sC{f1{(5^Ml*(0&dXJbF81R;{$)_w&$4=N@8dmAfPtVd&FD3reuiB6P zg5zS(4UH7S{*X_XwJDzw)ot6D((w_yRHfwBJaQ)#rf9aHSmv>>NSxh>>fI>b&yr!a z>`c_ptumZ+D`_p<#&I$+a4}Z)2d$A4jhnf7<6r4vv@mIJbykx< zrR*0oHMNcZsrf~Ze_Z^*BGmlV-z>-G5nLDc>XwUN&ZtFOpT z)l5CZg)LW_r>TZqj2B{nR_uvzwbq`#b-8eHKu^eI z^mb=_{q(IT_FBtD)2r1Qd3F&JQNQP59JNF_s37Z)^Z*tV-~F_^B>5K{(Zdu*59l3` zZkZVUx}PXDU-LL^*25fe?_!Tf=wo7DMbrzuGj4SramailTvpvNDdKD`pgVVB9b?%F zD{;;h&}S81Fm&@{oUbpS{yb9!d9eK#ATdafmg^Bl+nQZHBGU|s+&4G`KOl>_cgWb*AD)dO-7~)CbZe` znw6laEbeQUb*pIvjQZB`p0rPCG6~Oc?X&eTOTwP~ zY%uFXp7Ze00vi?d6*5_`X3b5G?j4}N-+Q^UTOmA`VLze9k^ckS^jkPxvoQ1PCst}z zzqP0YY*l_JtG*J)yxZm5p<6v&m9skR7hjsE{uVy_m6)|w>CAW$lOp@8%;Pb%_qi@T@2z-AiV!`MIfF>-wR^2%=|Ov3N#EZUTO=d>d4*Te46 zmX4l%4a5GhaITSnZ4HdJ2?^h0s&y!R$kXQ_Q_64rl3Wfp+7*%gDl+aA-E4)`#;SR3 zb^6K~DkLjqICn8`(0-+!c#1mKR?0zMhN;wv2!E~4mbUDBWmee5>q@_Ajq>XbPPOnZ zNOMkR;*IAzFy!pzNF2>q)zYE9{Y8il&rlJFz0vbW4t{^^yX^bKnbvz#Ic?1R5-iBU zD{p9dKFTUh?@C;qn%8z*wk&j9M}5w5*x+1xHk7W1yh==9i{{agqFY7k++yLa!Kx|h z3wUO3azv5G`E7PG^%I+D+=d<*)5_iw7fCa`mvJ}3)EN|KcV3;l6f=Yg*j2HbZHi}p zMLkqHqK@I^j2TB37Oz=lu4<`!`KjxgX#x>S)^eKdargV5T+ezrDG)h_RW`_HkZ+Ak zHPozCHYi`{L?!!rf8M?-^v%?h$-T$cRwW*3MIY`F5E&jzSN(}Tp0lnLh5Lc(FZ%%wo%9KRo$!ue5~+|Tz)05z-iNPo!=DEVDq{GX2e#bV zUXZOBE)SY@{odv=9%C8F@<{B_V4eZnOweq0q3oA zQ?1jl{HO2sE3P;Oi&*_Skv)8`F>+}3?j2Xt(8B``4?~huWqab8vkS1`B(p23I?lYm zeAG2xvRZO219wSt?DkovnY_eWn(Y6Q_o)u(CpL$o>VKYX|D;x_`N@)L_**#0tEN!n z3Q@~T;f>DN%LyE@K3_kFL2++pR`T1R{IQl_LCtlEXKvLDL{2ofcQ+dAyZ3c%*xkEo zfW7lvQR)2u8K;P~FZtcin3UXSMUh&z@>!As_ZF)N*3Zh#H)qS4p54I*v8=cl-qiVl#SEnYxsIQ!%%%EaU-u`b{sIwm_m#buUR+lr6Hltw3>k6bzH9cl zzp9qVwM}!oweEUXD$}qROM++Y{aGF7#qQUEHnL)WN|d)o5E0j?B)spG-M*xA(vrm2 z)>}Gw#S3DR;{=J*TD{aP+x*}(lROUGP8);Q4wy>2%IcLA5xH)sf~0j}aJDe~5Pv{R z!+x;Ua$if2@eLi9^5g@}BwM4f)u75Hywczb%MG&0Enj%wg*k*JzgUAN?W{)9<$R&1T4 zEG&viE`x<8Q%rXuwgS=`gcjH?BjOV%y~?bYFJ0Vr^v?kREbkSxr9S6_JVE->`-jJr z#j&GK8}xR2u(5WcoOXxiDc`qPhPJ9DTZ7pKv&-aRn(u7{78x_l3x6She{*tnd2%vC ze9#l8Dt~ptvR?;H$*2U`^gumep&GJkVK9q8TL@jW7N%Nt=Jp>BLKq+RarG=e&hN4` zyk}%gxBPQ+&NAYipo`jH;POC=u)h}7&$lV_=+pC{0iGWUe$#0w{0<74Pp8st zd1?^GNlbN_1yv0btq9djdxe*iZ49(i)m|}2Y*^#^ov_=eAGTRd($PXwTGGPGPCy0m zp&-Cve47z;Fis_rC5shC%In{(ZVE4Vfse2-fvAZ0#*6In5u?sy;h0FtF+=6D_DxnD zb7{g0zY{~pRI{(pPp00S{#iVdDLy9f^?@`9u{y*rw*ht0H1TFPzL_sbn~e_P)Aj5Z znVqHPyDshRHpAJqIqt#0H$IOFA5NcvUq5GGx$@HQ6XS;TL&cBw733}SKXzD5ijH5t zlVH$V^Wiyi%$q#rV^Rxt2@@%4zx{zOSO$o7zq7;18@9tXU>WvEvpg!}tF}nAIn(%O$lANljnk`h)OBtMIYIfxv!{^q^g_TcE-1LU7ULV0`YA zbjskRr%tLO+?o1ihgj3a_W!H|K_n?W`aeK2%>T0z06J1Y#u(|~8=h8*ZtB@Tm|FYa zaT!$})5!R}Yms8JHTyq^rZO_Cg0s*o+%mZbK#kjj<@!6ng!yTWJyZk#6vLIZX~~I? zc+H77Q-5iv>hzRfHt=w=FqJq_rl>OMq?2N4@BPJSh<0_}G8NuulCFO-#&~IrB0stG z2q$M5ihmu;1*5uI4B0@?g_Eh~04Q7aoa)9YZoPw~(VA=in~DS1*?dKedzBsII2dM> z={xvg7W9Rn?w9DJ%n>i?68zc@zngpK42kl93Me|O-Zq=8N5jvNW^ruo@;}a{P zJ)Ip3wBSB28&f^G?w~p~{M_L{M?zw~xE_5hx$(MQhB>>R+m#IQ{(Ew3x0%>=+)B&N z=kap}su;@4MRYn`74v%?VYbsBg}&hVe3!Jn_LJ23D7zlA2JjAkie$}thc)Zmm#{K3 zyVZhVuCw)|1;SB$P~<)ORRR~Jn?iLkDm0AO#vq=as0~N+ZNQVVxqffi2;cp{<}zon zs>??&sg1EGAbm-cg2%vv9Tf@ozv$OB+tYY$>?7b=P)Fj5e%l7aaSS}0ToQ*u|AyK} z{J1Zi0`CFn-wL5`z>Z#KiRLRIpz;2-1zs9=>|eHEE^-i{#>)Oc`*@#grG6k{Z$8r+ zK|daGLd)Z654t`J+u(?fkD_Dn5&sCYOxTqmpQW4Mr;z!fd<>dq{zCL ztFoL(U)@Nqy9n~9(E0}ewEDv=W6SQN-DiiigUcSp$J&S15*e1+tyk5j)JWf|s&rB^ zjbDW=d>*!(ID`BVV|n6*jH{FtPW6$uwlG!@;OOxkzH*0gmi!BW$=BQmK-6;Ge=UC1 z+x+k(P-;GMwFhcX&?nH%GC{pkK&Z6Y{H3yaL-edSSzJO;6lEhR6)#L}6NdW!6N@xH&YsoNeYyyK z94d=6iS99kW_`KjncSEQeaZ37HJjC2669BhmQ>gZ&l+Fry)|kLN?w)lykE$AQrOV< z@H_TSS7_wA-|dK&3YSNt9Pwu$lzl`e!Q@jRj#D$9>`F>%WN(efp@c}7U(=hiLyf5& z5UhFaPnXWqg5Pxcxj0td9iM_xvvYOOZHYVQ{I4W&ichHL@(`zgfej?Z62o40T!HeR zNQ!sh#dq|8B`4qN;Bkf=H<{9p5vh;+Oz~df4U-%VP?%jCo67^6GqX~vpPaXT)Z6#b zN8j8Ez1wFvk_%=U3VK|gGFBmp^zn)Op7^xj9`xYr$PmG-?n=k~t1q1BwVGIEhDxs# zr6q5=b{6Ukr(~cOIi5kXB2IZ53CUjvdmbme|LWv6QpDRSX&M(0c|M*69z^X6gTe;B zzFivz9>QP+m9Gs4o`n?17T40&Len}|KV zuqQ=ek0W1`T|acXBmeTTeS1XOa_uyYSj>=johMamNB9A3y`r=cMO=K&X#pv8P*>fN zvEes{x0$_M+lgz`Rw6iR{(uii5pG!Z}ZtsRDp>Xs7=F)Lx8t7H%uuH=rg;= zd1cc_Z&K#;hf0xMgk>t6UE2XMD5qfP23%X--+UNSy4845pazcWl}com%F&k6R?%UL z@)u{l2Yk)O+wniK0Qki%#7j)&8{(U7{kdE?M#H5XJ7OAbKo|H*sa(Ts5p&PAj|)P4 z7vVyUE)tu5{e+v{_c;fY_8&=RudkjGHsh&KKeW~SxpNbqE6S05R=8biqY+`gcV@6_ zn~u*?ZtlZuSsN3<0Xff8UJ#$BG%we=3-SIi)=DN0sB$sx8!JHn0+E!#jsitZSU)F_ zox{NSNVESp^0NJrf?dGgF)wo?`&sT)y0bC5b*tWNy@z8KsfkSyZa-jEOVaK}Z{D7A zKAW|Cg^MQKNMtT!G}dD6+d81`sY`p8_T*2L-OF4yr?}5}pON*ot1~<`UiF_kUh&oD z@F%Ga&R(P;$T@U~^YH7w@5$F~94^q%#8uiKwuF#B~pIo)7d(a#Yk0$ySI--LyUhUKgKhX`_tyQ4XFqjvrHvamJc2NN(q6 zjhg;Hxs!&X?RiVGW|G$|$jL5$$_bgCm|#c^mR|n!8P#-Ep1QU=a_*w z#zky%U~cF6_-**bbmNk#@pma>`@!1Kgwvu4NFx_)qC56l&tG8tp%nuCu_W||L?D-F z@2NgCoxp#hZOo1Fyu=Wlcp9zn!dpC~be;fHt=WCCC9lHf>6J5%IhUU9?d z_Vrc&t)y{1IPYFs7CZRHDsozEqj5R^?O5Kf3)QkzZsmFRfK$Pr z$Oj%-u_sCI%qn*>+4Ryr?oxA=DQRO!;n)jBG`x3)0Bw!w}^Ip zwIQ1a-z6vLR+Ps-Z2ju1_u6s=`IFO;zW>!^IG-9Ccs}-$J{X%*?ep2%vKr?rbwwR- zVXiORj1p~1-j2Q_J5|kYN?%*upC_WUD5J% z0P;cuf7@}HWS#w&z3^Z76^YaZ($z2k1sVfZLqfv<029swr0NOC0vI-3=s1H~Gn@$4 z6DI0m!YBbVd5%75$DzZ(ut&H+4!nmcvBnzbYsA} zz~dGmf#(t^BaB`R4X8o;?16MNc(`{JNkS6`MNnYUVdeBjOQg@vCAvIga10n12IwwJ z>jKPEm`DdYsW>pn+9gHBB0L0rn}7&iXsWIx$_Sl~Q}W|4=~e?G08FYH zX+|MHH_B2Cpw}aHCrv>{51>trG4!N=;LvnEvPxZOxCc5F0KzB$B%FtS^;!hUh^Bz1 zQlL{oJP}lZtE4moT{LNYFb=NAQ|=ROi^M@w^+>1*rB;W57W=>ekgkgfqu@bOd4Lg& zU|muqkVIjAz>q*fkQBV*rz4F>N?ai&rTnkxDu`s3BT0c(Nt`kMKhwPFKcoC#G#&ZL zK_W@H@N0%o8tF8Ox`+8Pe^~oip19fQPV0~Ggl)gk*XO7E zV)j%jUy&nV<&ZthXz1kesC^sb^)1MFc%5UcCBJJ-&d184Pa{FIA2seswv8d(ZR(7% z&uC}Q@45(IgA$eYT=r(9$2J8z_Hm_}L}(8k$BvPW`M2oX+swTbU_mDOmWNFJb#H8p z2e|Juk1nH>)7WArL$@dGk2D?GHHky1f7F=ce3W=zgG8G&DuRpZz20Kx%EaGeJpxEg%~e3^I< z+d6XDoObVbgRXj6JuAJRp#s==2EN6-&kQCv@88A{I%a}=M4JUO^%(; zoCx1vlPlJ)cOU6L+{wSRey5((jEKH_H$b1CKG`yyZ%DrnU9FJdGCHv59;X#rSzW-zd3IYC?<3=U1e^t-5UOFfcM-m_BTLldhUNyjprf@l|SX zgDirDg>mE&^YhgCtBc-@SA?d`o(#Ymj&6RB)v+}s55l;_T z`4)zrWD4pgTojyKS^We=m2dGEH6ZO2;z}nBLA0jxT=409ND4W)WY%IgJETOxkwek> za#wf5b4%Y%O*x)+UAwh)%8A2-rO2eHPM1qGIU@Ftb)1IhsK#?eA8R-(?bt~uDC(GI zOw$(H=Sh2m7HF)S{WscH-*7lYz~{x@rp*UJo&z748Sf@^Cd+usohjVtPn+K_W$$mC ze?_#lhs<8@Yv@VVXL|!QAkQ@Qu7%oC`^Bw#iD)*D!5pB;?K{z%J}h_~O0=7fJHoIkPkR3-A^i{{=!oApD$Zq%Q%hur&x&n#v6L&n1NJ$wdBuLdgVVqKqf@)CKIN?*~^`w zC1E95O`0-DPpUnPH1<4E9nPoK?}*RU(6pw`EF>RtbtBh~5!aq8r_~nA{dfXQp278g za@))B&~0BS{pJI8{>1qxP@I{(@rMST%Lyx}TQwisE0x7it4&YYV=QbTyedRluM(^k zFYpc@rn5_o+ToMl%V?&FS3++u?CUK?t3n{??cSUh(!3>6reB<2RNYEVnlsF7iWuwe z@#V(Lyo#Zu!;2wuuX5!AfLHW;FO$BweB*e7ciWA}6qr3cd;K-XCj#*-$bGHY;f#)+ z-ynh5ZgDi4xV=Y)_Lba}rw8F921IiTK5@(?FfktKEjE&7m8OYj9urQz>tHz6A>}>R zAt~jDn{rI%o*v*jBgfL4t5Z-4zbc4N!b3Bbam@w&0hU=kO4zDyv{X9!R<&O)ca=9C z#o}Fh{TzO#Qb{iQ*JXd;tJ=BKcRgQUK8@7QCPE*`1ar3{XF||w|@?o8K*_V4@b7r@`O>h6D-5oLCKbLqs)RsCW+pi zPnBTW82-t!0>KAs*i_&Fl4z!=Hywe5Ogm+ABz)4;`xtTc3^p7s<>z47n+r~BZb60Z&^N>-ZS$@M5CE{(Jw>ySr`wm{@z z!-CG7EH?RMj6+Z#IW#wHDj3@ugq)wkgkIi#NAhQh}vQx*Zn5dz`jDo=z~ zQzkv9r47E8jX{j+lH0J=n@xeKMq7rbYykBdOoi=9up~urCW%Yo4$HC|eJutO9a=JDN?&4fe_y+Yw5McucF&Uc))xXneBRdz7`^ngJ{;q>C6n^4jFl1f(52$bV=~I8-#RKEldp|6T&k?p zvmU;*!+tXjW~Lfu%!-;ZxXv0bZ_a7*)#HiNnXQx24Qjs3qf_juLt&ZMOR>8stWr*X_-&H37@3^#G-qt8kleb3+%K`}b-jSi%rZ0J+I z*jw5!h*OcM#b9x`CaHi<%Y!BJq|pdN|aM%oWy^!*8n&24lr{3l`k|HRzhabu#}P8KG`YjV3U zYY`n?_v$)wd$!k=E~K;aq&6FZp|XGa;9%BplI}Xq={TzX~$}~nqMvJ86L9{e^DQOpFIf$pEg=%urUSA~<;GcFVBp~`H z2yjJK>%g3a9)3eS*2oDWmkcuYZ{KHN@liMq0>Iow@sajwJE`0jBy!TDJX z(qu|YG}RC5GlXUg)xvm&^+N)Pu_jFH{F;>U)mg%b=t9=qpmwkJz3g6{Yl=oQo5S&8m6wjWGkY!KM3!5XQUSG^ zR(E!c-Uw1ing?$-gW)IG$7x+h%w*OuHDXdh1PQ&7cERcEmk+{oNhMUPEBo*UDJ^Xx z7B(>z9@um$spd@myc8?4Q2jC5z;Bn=4)j;@M`QHpV&??yrh!# zA!}TEl>iTZ{c860^fLE%BVhfZk;hMM7JHGJ9T5kRwp~s2GQ*i`!lnCq{C(OFhVM9I zBR&lF2>zQecwT0o-UiuR^!CjG)42D>vO={V5+XqQRhosgX~XaRTiK0L#9H{cp`5Ha+&R(fA4Ufp zH=^%gu;IaWs@su$2ztt-gxU>e6=Mxv@j=-WE>C(osPEIhXJU-P{K%Rub+JJY-5zW zpkb7!gd()n*u15rwpl7}Ak-ipBlAH*Lhb=3HlHA#yiZ`5w(|W3;;euO8hlkqU zd00BUkP-S}F*O0xEd7tj219QSLs>Z~jVrR92`TzB5#o{qF*vrGLqj?7#qHcZ9wIw!KOWCyM2$Jh694n5tR{Af;2nn=;+^giN-L z@d-I=>_;+9F=kF85k8T4wRs7sDmdqbQ{a) zb3!?`!V@rQ6eKNWBFJu5{4_bhKQvAnTfBYu5v_}srZM$JL_~}sAmp-mzDS|>Iw8xZ zuXbI#Y$VQb(kyf7O%2}V@J&yxWi}r=L6IvfMySox@gp^T$z+sT%`%KYXm_%4YY!O# zzS&Fk3PDCBHqe-Axg$6RqHlYv?0vc#muAYd)eUJWh?H-`iy@qrgRytOGqZ0ak7)|N z>_1|>w0A@);aJiVcdXM_`kjB&v!24FvHH`>XyiO(^6gKY4Pn0Vlyt_Ce44&2dFi3q(f0tjoyFuid$&|V)GAEp_sgxIIBfp%%#H#MO zB0icf5HH5>+=Z%qM8B<971mz~oWD_kz6whdfMH9P^zsoHxoHm?Sp(vo@?4&m9*TAD zq*KuNz&L!#u-rnXS;z6#$JnTJ-tPVKDOBlr#gncxpr2hK{-OE_F?t-XY#qqx2RdZ)z=nJgJvo|(F z3+X(Tb>gAn<#nNgJr6GY@Xkc{RYty;LQPcrtROk%F*_(TvCMu0J}FKG68%<*e@L`} zv(RZq?D4+~iRD=gcgmk|dH?K08f<-4J*oy1veD@0Y4k_jxy&`}UC|6?O{Vu6E;*OS zuh?|*xw2lyL*-%TFr?ZAm59oSIBPOBG?blNsryH@4 literal 0 HcmV?d00001 diff --git a/modules/bioinspired/doc/retina/images/retinaOutput_default.jpg b/modules/bioinspired/doc/retina/images/retinaOutput_default.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0b14a5308f12c9773ba9fa6827b76a2cf5174d5b GIT binary patch literal 22461 zcmb5VWk4KFur|8*;)}aG!7V^=ch}(V?iSp2ad&qJ4#C|mf#B{CJUAbD&-w1Xe{aoB zP4`GmPjz?o*3;GR%kNtNkc@=11ONg80wDFV0p3>uq5#N`ECj?q4*8Fuq5g3gXlN*C zSQuE?|8_WdAS@g_94ssl5eSd)k3LdJhzLmkGXI49&!dnqP*5-kaIkRy-SYp7z4rsq zfPhN~At(qm03;d&6dJ_)AbjBuYq#h*E-ti;0ES+enF}f={0Q6GiQ&uJH9?NNZIofE3^e z2XG{>d}DCY2X4GCqfQK@}R4uu)82HGG?A_0GWYMf(0{8q5xO1x&1 zIq)g@H=x5&8(9xl(|PL9quOo3>-O>Sx9YV=IQ@?Yu|uadZ}&^Tp{tS-b)30D1_pWt z2Ey%3&FZWr<`VprSo6rGWa9djJ&XhhSjeDbxm;{wKUX>TMXy_{O{AA+3k%oLU1<}? z*LJa0h{JP|Shn-1Lw)rb=0a58?apf>H`K#(v>B!K_Fs)rnX_(rg#-gSnuE~qA-u!Y+}*viLG`@oHM^P z8t(zyt>mj2qJMK5LpquMa#%U=F*sN*lPAfuQ~eUj3QN1PFDD+^WIjJQFH$KcwR6Zl zqX(y(Ro%&9zF+KNnlovA%U6$;kl9R9M5kIIW+{8h-Z56<*}``_ceScEyko=Gb)0!H zm$sl1D=o9{DU1vDU~NTG??6K!r-W?;!1pS_0qFXuxZ$(_1wY?v;`upz-4?IfDyQnW zp}oJ~s6H;5HrcnQjL5<=TwI}53l)E1po7&>#f&q9rcFiWYa{mDsy4E4BACoT!YIC?A)aBFzXfYh;%ICIC~g zEzez10%_M`VI2@qT^r>sV^1!>6Lp6^DjktF(U!#p@x?G{|0iJb#jntuUJwlW4!HYv`*$YsJ#^hF%rF*Vmd%9M!14NA##{%hy@{}{L#4;pOSES0(pgQKN}fznYQYZG2P_g zSOp|HIybx%x^kOTL!fzoG2w;>r9kURjJ&bYftfzJvjZ(mEjJskM@iH=LGhyN6-v{j ziV{}JFkDy%g`!uq5H7RSk`}G9P(NPvd{558sqO}&|;^o+4}T&t-L?(4Han3DOExx`%Azb=z3+ujtmUp=uoMzTZn;zVCxr9S$e}0z z+VcE}6}$!XD(#xwtee|g_l8`rzk0i++Qrim089|XEw;Xn$@z@P?V-v!UtqG~PXy;u zT4?N4v|uQ4ZkBu@Xk&rO=Jedq!-a+Kcz^TMH*_R9Fi}GC6VeS&o~5T>ZkZ+dMXRqK z36PH=L_>_el9Cx-S_2B=Fkm|<=&Q}2vaoMX-vI(g-|Pl=Wf04?w5(z|h7-`!3Vtp8 zXz;zgS@1C#MZ@Em-s?j_Kq79FL2()({3MkFJrW$GjD;qwL+#NDGI+_mM^x4I|rAD13ZU@`hPVw4c2~bLANzv1+?q zZTo4zT8p$)kU!ET2ooHZR@I`~m)*Ro1#hO-GJ z*kQ226mt-vR=h{{B8lfxo$UGvQQi-MB_Rn8ZK!krFzwB$9^U0{!%Ea#EC4EGj>@*po|1(pd}2hOM_@1y6bhr&Gllr2rBBC>dAXKrEOS zoI*+Gv_R;@m9LDAR26ewkMN-J^wiL$Az ztsQy&NN{n@X^0<~J}SueXHN#{kVSD{iN1$9uMFEYNxEGS*4Ek!R0bn77)rIB^Da)xOWgCY{@(<%>FR{Dei|DAO)*+|10RSPc? zJyv+c8M7;t7B7SZ9Q0>DFrJ)rH1Mwiy+2pp<7tk%WU~_>@8+OqWiy|JP&N7GF+uqd$QosJF>>y#Hn1VE-rwevV!-)wVg3oBH zm^t3hdUJhKP>vTiauE(o8M}cI{yb1REJEnH3`;OeaQLN@nopjY+^l<>z1)El!XS~z zFWyyUe)s)xte(hnuC+qGjfV#+5 zd)0p9Y{?ETpFWiDum6$Na>p#6(b{zLY0C9+YGrm6!>AfhZ@QdCS&>%nWK=@a-4AfBbpEs|JL z{d)YQ)#03d>!XynB z5&qdrT0qBJAIiQ=Y9!dM%o-so3l~~AiJ|wo97|BcKU(GD*^4d496!h$ubLfM9hW|L zM8(KW*v(w{WS86>FG1I2jKySjR8?4tL=K{}ti-4T|K%6e$ob43WI&PJzC= z`W=96IrgloJW|66{0R}|F{=M?_ADFQ`9+lxg&FhVu>}lz=EkGsJ^})`Hd7Lbl-C-^f@0W-Gf*7bg?1H@fo+ z4ZC^s6{0Y$%45^{4qW-;H=?)>v>wrS8hRp2W$SgT5~A4+Iueme`=;r#kUIsD6UdJZ z>W-RHJp--)4=T*)s5GDnmksyA9KGIv)KnlTK#X*t}O|!)r&U z-oE+{@UK~1#3Yrd{Tj@vm!uA!7uGP9Ddr%|Oju=&?kC@dchGC=FTm_G_A2*{SJoJaYYMq}-ar5NBQgR-#C ztVsuD`T6==GV(~Q36A?`nRuJs^W5gx_7(l%&WIG82*2;7W~)z$kGN9r0D}|Xo{~FU z;pg(_%9onP-Ja+A`;x}GI=RWP})U@=WzWp9hFSrX4S z*C0MjnEV6YXLlqU2`G^EOx0!US88Cf8kdry!i z5u^#clAcAi%V}&OSl9F`s?O?pY4L)0Zn*y3OdW<{2E6iQaO@UC;G@4_Pp@IjfPtgH ziNHzEmn1KWuP2u3rsRE;Npgvjqa(#7kXBw)bkucA#7rdyICEo2Wr=z=Sz4UvYS*G` zYS^2V*h|I4;U}2m3%gcd3mLoDzPvWJ&1F8z+KanB%?Y$Z>Y7M>WhoNgg@uO-U=8d= zgYDjma#DYEZVOf(BP*>>WQfy(ZN8?-L9S|lV=3WI9I#U4;P?%a`6f{(Z{-7FPi95k zt&47i#8H2s!cbT!Vrvs>meZZyv>@=wgf5++xrH~D4UDbhY;wg(>3sc$XK2zQjBA4z zL=U667$yzD2+jcG?qOVOmde1^k|{u{q&89(J1R221Jr!ga!=fPo&`lyp=j1tg=9Zj z{hngEx&BI-d_UJeBrVf49lH3mqmX-9FRkvLS1`{xpG)x>QvwrH6mXMzjd<3b@%qsS zunaQt&?fQ2%i$+sb%k_8sOUX^NN5BBy$})kz;uKLu8FB@dk&u(xbtPC?otW-VOu9% z95%l4S&K(cxA>S85v=*y$(A-KD(v0sp5c?)0fp(WoI;1#6;IXY?H21F^5M;lV z;_X-&CLK%4BrhtZX6&S2{zBn!g^cT$EL_n@=18t7T`V+94l)YOYX}qlEwNKR1qVKc zy6K?(+;&&phc_6uO zas3W3_K47TT1|uuA5E@{Fqq_$;0|%(x-KqTR0)c?_E#v|+C?Bw$Sxfsszv9c?xa$- z6WhJGRAPe_8YLkc#0wsk3FZNPJAu(W5DDt;A$y5m%ej3iIai$O+0Cb zTiaU)mtpUj@-cK+{kpHfAh;++ngUH?Lc!@8ZsEG)g-WmyM+RF`B_ZbzQhHR9X+HYD z14w%`$LJ9s>BLI#7Xti)dY_qin7EmrF;gfPtBa{{1*pN-dvy!38SqCBt1W!2%whZ5 z%}L+rDm0R8=(L*GMFwN_s?4}+?5Y=2{~~G*tE24y)WWb6PoF>S&riP(BZv&dW(6;C z23J2N#mk$GGSZ|@qEQa3)fYWNkzf{o0@L}8%zZc89J@mW59M`JlOJTa34HHTpSoX4_5Db5v63)Ww9=b%lS{(N-!Qn;W^|Ar_A6L8R+v zlk8gWlgM9ztU#fvgVfW--AqLZ9PX-;BZ1otdjx{aVy}vl6sz&lz8FL@D3Si*O}>mpc&UBDG#+fOqFUb7lhf%$T#{l$pm2#lbAj`FL}YOx zCIvwy$m;lF+!9H3lIUD)2p}~!PE7lK47f8Di?a!V33@p>sOTixoN0Wgv*%<|r3g%c zjS&c?KoN##NG{=X`44zNqm64Q| zI;JC{BCVVk2Emi1w&8quEwpF=s1HCC8WQTm8TlW`5dsYo9Rx*6#)2V4&MIsK%_iy; z_@BS>;nfI2gpdIhb!k|#mET70wtfdMXQ*Y9NOw6`F4GirL$C`L)wNz9YG?X723cl_-NovS&>LP0VzuKHB1IEe>MC1Hq;JR1Txk@ALXbE8#bV z$R^u!VtZ8Tt1#_1eV8PPiv=3-q+DHvHEHgthRE?A5VC<4mv2W5)@ zL&%^b`_HAc76_%pcm~M0V-^=bs!YV`o zNwh=DKe)GIW_wKZ`PqNCL{&&2WbkTmt>FRMwc2t#Iod6>z5q|)A@X~m3|~$fhU8ny5xS; zBHr5{vOIrWhMeW5-5MNez40;Ykl29U(k^=FMybTcH(z!qN?cA^R+av6DY2?magesagH_xeZG z#YlXbd*U)3o+wsH?kuI|Umy`1eqOKfUo#hdpc9*v`=)s*Pe$lJIXY@e2LBs3{rpak zM6z6A0)sUn9NWnPV#kRLNP$7rJ!7jQdJ!@i#!SR|iP-BeLJ~01&xb-WxZ{M5e$uq5 z{o751fLqx!#xVq&k~@CbY+Eqje}v>}xr@PIM6j07Lu_K@UN2!Tt{py_0{l_X+<3`? zhVFzc<45y@V;R*X9`=mMJ!c*qMN7Zg=YH1_#`)wDrehhE(~lM_@&Pw}Oj*G~K?9*- z|EJCVgPYLMSz*Z7U_ltsa0yzi#CHRt`xrbHys!;`hV#HoZh{&wn2vQ0vY)$(n>O7Mj#a-b%u1$%g?Us z9iU|2*@%*X^K4%r`Gm_+Wy~s_@>X1L5o!BkgSi=vQamcRVsITZX@fu9P;T?DIJzH2 zX(+eGK^_ni<&NOp#~@JrWVW>U5{yfXjFQYXAeLE@Idene0+-&_)9kmfna(&nS~*Em zm(cc$6P}SyPz82jR<4FxyF@;rkiyJyAH0?V%sZq05i#%$R6%N^KSmn!fn1$3uc^eq z48P1__pJ4CA|qlU6}|(M(~~mZ0URSg@53=9D`)**B!9YJnXR-5zV&v;tkP=wf5uCa z{7a%a;yCowR`?o{9yyTv1`K{3rCjaPiJ*|12}IBC`cCL}7JQvuoKifq&(gM>6B|#x zs+Q^tHL<-qiEhGzJ3J*-L)qqrxv+-ri?N_QCUACxToVJa?CHiN6A}H_RD44+;|0R- zi@-|4;;Ei2J13L&hc=#(eiW{S+zWrGJyuj{krVmqU=Zk)ld%-Nz&i z6!&Ibt+J!IZQZB;Q%nDzVPaz9L`r5?T4cWG^!dD|Gl8~(`v+xweY?b$>QknK^FGCy zk@fEvbu>bLGwI@qtwM@*#Lz)8l^3&bM3{M;RGi+X0+E-jB>NBDG~pL@^wuxyW~;8R zX)j2U7z1K-;q7u2PM;b6>heSxgZZfOQ*4T-Re4-*_?Pg?b!9|!US#)*Dh69ZC{z}U zz-abSm*q|Z=&X*@PQdRf4$KUHnIVINqFq)WVx53y{%s;1g#zGAL{=HgFACU>EH5n5*C3eAEf$)s0zT2v6-zUYA=fJ`sxkI2 zifw~Vwl*jVc=(G5xO}`Fu~L=3s_H4Lqz5e5_Z3WZL!PeNN6`l}mYyzegCzzmoHh8Gx@Ofi^c?i8Gfm@GVJ82pTd;QLQB%v%auWF7?lk>y;&m z3J4v@usjaZLv)j+oAwKvGn^RCbz7r5at@D^sc=rI;K55%ArOQeG@f4_!Wy>vw6B{* zC)W`pA$U9~u8)HkVG~rI=YB7yUR^R-{bx_~<*Sbsp<;i_&Wb}c2N6AA8o%V}9vSB8 zsjM;qTlh5b_xx0QeZAq?PK-z~hJuz*U-Df%aA7eT#e-KF)1I(Wp3Ja>+P<#T;X@Qd zG~N9u1$6idu$t~zNh1ASOZti%CUl{B6_}Pig3H^KJckW|eW~;+$0c*At7Z zh~e*msMxlWOB1Y!hD7x0Dw!ULlwr;|v2zLXal;1M)b6L^@;zy)3bq5?pEu;7bQdSw zmF-;}=fYu~R4aLPQajO$kxpGcS7R;Z4j0=t{*{{>)MVH5u#%S*V zd1Hjjwn0%{EHURVU@TcWmrq|FLGfYCoffzeq9g-6Z--|f#!U#gT|GAeD3CpCE?TOM z*q$U?i!qL+XKgbEP$E&4TK@{}K|R%!Fgjp}l|eA3BiA01JuEcO3n&FGF2Uj`qf)S= z9m(cKU86g)#u?|?mS$jsLQB`RO=Lx-uDqXFw&)+kC#D$s4sb5M61a)+SxJD z)~S#&{u&<1L3aHKeWKg~DnO^oDyl+tSfYB-`bd0@29rCzjk~xoI5N;btc0c^A_jti z(RN5~N7uWKT{*VK~Q?rfz0T3Znv zUZ%e?-0kK(=!9K)NZ3hjMK>ub#Y&J4mVD|VUDF6GLKx%|=K9S*81MVBY#B2CV@Fek zx7@yiG>DsH2kazfQ=W!@XRRO(_A=!L1EZ{xw;Ju)2&XW4hK_2l*++@dxZ^D2cnjM$ zo+BSCF9b5o*%%L}ae|r$f9RR19egvY#)r43E47gB@cmsrQ&!GcS+ODb?1qChb8{!@E;xHp!xoEW8yzL9K;CdD;dx&p0} zveHZ8f@FwJH=wJ(Vhp(hU8n+o+$SLGzB_!EKCAaOf zs%+4rbp9l!n9*xIfJ^Qb^UeoH{IY3fdc3>U0B!!obA}Ua$VI&g5LqZ1y}bFLA_3%o~bE6TNzK671T=vEew8Z5pSebV1}oQzv$QZ>v)4_2dMD~w{9tVnzb zur8%&Y@REffN{2pF@Vr#WY@c*`$z+-SUI4D@1>OM4>#~ zJo!!R4f6$P;_3BUzNwK}rl*ZBG_-rU^%Hb}$7#b62Nq41n)q2GS(W}qER;u*Y+yapO+VbZ`CzXQh2 zEjHa=lkR0*M`~Y1GYl7#(hp9M)LAQglZ{tnWb;RzW5xU-NX@tJ5UKa{%~4r?!C?*2 zs)%Gq>S)TyE=>#7+vNnvBBfeUn{9?+J z$#BMDj$+vEuguZB#5XL>H&L)m^i?iQng=%_18r0_J0zC=F|L?L&6)5!v9SZ#SGYK) z8!Eg-N2naAwl+UkzO=uGe%~iLK=`HP%`CWl?M_q4@HH~`<+X54#LE=5o`P--J(~59 z%xGd+rFKA|h$$$={{bmdloKh!Y)!#SO2&iKPm(S^;1(`nge-Mus+g`wM(&z|w-j}` zwSoPfeNCr~@uhRm9|}&STcq$I;Xpl_ETB|tu&=x3AdP!rY2n%^sK_gc(^H&j_OkK^q-()#HHJVg|n|=o+9_tz6EDbya`L4 zAqlKw)FJEpwI?EJ5h_rCl5s@XC;OU%j5gxFyoTd>7S4S_XTyA@uiGP)(N)o9nh=r` zV3`Sby(pZAe~?VrQ5ct={D|bh#@;+aoRpRs^^#K;6h08ZLBBvOK#+SA$+Y#8Og)is zuFrE)aL2nNRl7sy#2TUZ{tKrfyoYBOf|e}D9^1}#Oy5%h`Wpi-8^w2g;H3NWm@0neu=Qchbd;@Krr0Nwe|-)W3@(g)lub$QK13)uiNDUJtrAW>xP6UNx}xO{VG`! zO@J~!Q$l4Zi2_Ag^`%+Sk**hpKj%%x{lq%+l;t`g$#~*a+EIlpX3;yKlnyYivFIfX z8&4Ni6$}&oFIKAVUewa>UFFoawkm5DP6Z zD@)_(4sje%)`rnA5Arw{52+n!-e6-)meOGhlF9Rcqhcw_>%r+1Ck&>>8NQ|rE*D69 z@IMvTMHt0j1)Yp|#g6b{!Nr!?_+l0Kuz??Db)EHFp-vUW9nJ~!qWYJ}_#;YoGM?qH zTce?^imo%R6|kujEPEzn6a92lH;nh#*x2_U_0PcA^AAV@eT08NLO^{0s{b3r2?0PO zV-;35asmZ{3mW?7wlDv$>kT1D)&omS)%2|w>MP@^kH+Vn-{Q8e~5e#muTIp?pc9}>>S37vC3>Z*VGCRpWL++aJf7EJ9UBo^b?>hs7pulOFXKL;yW zfclgUC4lWwRkXkw{Q`P#S*Z9%^nh&c`eErcX|kO#oVT&J7{5LLuK3ram-KQ8r2@&p zMZY4FahtM9!Q;HYTZk`*%8#jpUvy_*^1p`#-hA1ev}H)}6fle5;FWNrd1}Mar8aeL zJF#wR&!c|oJMkiGd9kVE5YG%fM=wtJ8%YzRIe%D~^~d;DzB^eb9BELwZm>f&No1<2 z$2;4z(kE#XmTAS8PQwh<@xuKa%Kbb0o=mU82?5#OzkixD=lBixDKj+tg6nw~(~8qB z0++ncvfljr7>{y@_bHhvBBJ%3yZ4r5)RT2pf$+^-c4kMLZXQtunm*A5IU4y39#{pj zeB@26uD*Sa7Xrgnz=l|Ta+ROV%wxCWm+?0yN@+o65N8pJ5zmHDggKihC|76a&1;sd zscar`yg3w2lO@3lsO9?hd46Z_0JLBGEI7m)Dg}eCOeymDP)TE9GtUPq!9FxQ!7#=0 z8zSsG)7LXFM`>nNU6Qqp9E?_ZMO_%_4X~k^e-O3$8fFKv4=<4OJ=wx4o6D)L=gQ>= zx|pUWXehV%3-5<|hj!>iPt$at<;0GtaZ0KN^Vb>gs`h4mk^ERwVO1aD@S;=Z`J-!LGOTa1JrSQ_R*+XMw1AdS=r4MmaAK~mo;3P&kQyZcRA4Z7ff(2U1R5T zE;bvbBKRhn5vPQr)%jRfFl648oA61tR`tK@=AjI4g_-K6QT_dezKDPVX8+z~kD#Hc znlA8y*ZX`gJjgZX1_m`Ej8jbu?eHOW=!yo9T$8={4*JAwxEfeiu{Lg-QSSK0rbEBf z29>uf%=r&&who>I4~Wn~lsaSV%V=6Ib4FLOnRJ~9#GOwo1P9fAm<5sUgoZdB)X)6e z)XMX8QUXDQBCw_EsXkMffw=C4_e{C-<7wc!NcFRi$tfBjSs$&ZPL(;K(z9ev6^ss& z-B^x=)6dAsvhYGHa$Y<$xn%hW+_@dA7>=O3O>sBuJ`b36iDi0GTK%78(Ir~ddwXxpX+!S$Y-fGUC2nY5|#) zPnv#u#`P@VPkD+tVT0ZVPdlz zLNjl~u5khJK_?@TiDzjaf$vvdf}uW*qOU&@7ckSSK6|=nCb1h|5y7^_?e*qY>Qzmi zh#44AAZ4@9raj|1YKC`x>MrQsVpj5o%_EMMTE^j)oib8%R;PI-fUQ-VXN+lA=909o zeO5EpY)jE*nl?{I6ldHk;wmc^9G-npm`MkXDmTH3o0wC(0|K2ax!Tg?%b!Z5a+jDT z$T}}Sd<#+zibQ0X(jgBzlz>&`>%-K3W!c-fK~1;GYUt??r;S4(rA;x*Y)1l@rFPBC zm?;)k*$vav!^pUg&jD8XJalkMPioXHTJCCMvNKp;ika$&pptX4ADO#~K*-LC+h}tG zV#tGO+ut>mOQNr1n)o;}E?c6~kr8|~Z=hOpC7>9l%hh-c4XvucFHmA8Kbja;T1 z)mhRQQbS6rw4#YI_WQ$!yaUjulkFbG$L+&kdq5uah-Gc}sclwn8|^)dATRZrb(Yqq z0z(F#7(pR_rQ5&}v<3{+^gL-V_KCSe_PDWdRn0tcZw$>y={V}h7$wjG9r}Al_)X%X=NdcZ|7B|13Nfl%YX(9 z$8rYtV0(WGIYL?QDohutmw2g4V14GKs)E_)+iBt?t0zU^Sza+~Yb}14uvT?w#;Uuc zhvnsSE;v+Y1rz$#^PB8;zKY=ye$c!1CNpPnEsQZct7ON-3^}_z$}!c>=vJq z+huI&F0y?gu)-$*(Iy_uj&mB$zs#zmGebNI%_+_i(-*_I`_g~zxD~00)LU(NKcshr z!r}%br@WAM%1doEEEi~!9;&yMbRX`kG=){NK8mRZ|MH1qo&nm+0A?7Exdh9B+1K~OkBThKH41cYlg(`dj} zqHAr=UzHkzVct#4MR;OyO=5@xu;mB9_u;kD?>|$2g9AONK*WWE$l^-Q?uaOz0ozJ{ z0{8UEvw3M$%vO3aOQ#A%X6Z5CD&pkf_m6vNv7tXQu`(4Lwm+wCxZu{%eBh2n->`PoLL z?2YUc4uWmF-%C7?`5C1~{v!Vv2YyKq8H{hzLvx+F%;b}?-q9R%9=!Skr)ZFBgNtWQ zbqTs6uBhjXh(%fu8k%I<~$do?^?c$Ntj<)e;6SK&usf zGpp{rKaMyqN(1sIJY_$dN(BAIgu9G0YQcUU+>9gox&zB>pV(qjx%C0;v^X(74{PHm zG$2mo28R}H#TA@mc!f9ZlKH3q1jqa$&0pdr93*RwFVEc3Kj-kw3(x5Rjc+=fxTN_? zEYXGjO>X)!5?3GU)jh|q4=m#E2>#hE*5^~M3Nz+MUCLSZmw>TUj98X*b>;%mVX*Zq z+TrWmVt`SPsj6yIe-R4%0Lz*P2NZ698a$w7AFS}fEponyD>~Yf=h3^Q0v}>Z#A;K7h z^_QJv7vQvTqqz*Z7(7Dt92o{ak0g_1Lv{n-CcO(h%am7ad6B;vn+oKBIoJbgxuAS8 znC{%r;3v&I{8PM5O@7pM{Xk7?a&yUx%$zW}UGsxk_sX!<$5~X`;}v@cuwGN3;^Kcf z<=ws;nB}Ijo>nOY3$XOa|?r>tzfD7y}9}e$+(_k5uQNZJbw?h&O>6#(|8z^Cjb>MH4hOa(UthapM^KJg2e7$T? zxniSK+>g3w6Cm+{->?fxcb*MijG~kU-=zuavbZ;3kBW7}I+oF?f$rzCR#{;{s zb_#V(56iRz$%mqEqZUj@Qt1XvhFBe7Nq@4$r@X;y)PHf0UTuJLrSCRt7LRH-6M)~~ zTP;!^aJUVLPQJn8P#QY2g$w5QrQ$@Vp6M`i2RF6qsgxr}z>l=ocNes2}9{rF_*re)HJM z7T20umJ||8=%X**9}?5M(w!pDmPO9sZhC6X4sImLPb_{OJS44}lo0QK^bd^EC-Q<~UQa0VxxN6N4ZWIbzQb zm5jJDC;@{)G&cbNxrI0;)(F3p_&=a8(g()EcoYN54pgaXgDat_Td`P3HYOGER!$L?Q z=m7Zu3?n|iAN@??8keLYfj?3)%-|F~L%#8Kn_z|{*)=ASAvQr2kep#be#n6!2>|eF z;8KQ`%7LUw0l+U|^89Cz-csn4A21#`uYb|2nB-s z8s`2NsQ4H51-cd__&mtI1$1QR=17ZW{9ocjy6o@om%AFA3HVFo2#T+1zj`}gZN)4i zQk)MULs#*;>#eiRKyir;4UNx&j@vb-w)SlkAw;=ajGGtw(PiosXx;BQ|7&g6WpePo zG4+>0z{O|J6FSSBnbw#mQ#rHjXv{EiRz~)=m_w`Wkr*u}rWdH}xQkZL6YhqgW20uI z?`8qZq+h^yk&pv{+Z!^BNey`PO~z*++EgwuP$*=jjCQQT24CdwRMK@e^FDKW=1ua>;PJ1g}2} zf$kk#js+*$L?H1VFPv_D-T}ptX7R65c1SP7g(Aas8>4!E%74x@w;7!YUKyS2vb-1% zV>HgSkyIITZr&01{_*=($SYVei>TPUDw^2&DhfUI!{F{6z!JUOxpuF5;#zVAj(stsVn4Ms;F*-={8##Ln6c>ULxxU!0q`THncR=-0&jZJJ5lWQLl z-(LN4N!7(W7UKlf)D8YFukWn!>5zzc;ncR5*1(4Vr>h1`(v{yaBbmEVhZtM9tF54G zTxX-+KYdAS4h-BFcC2ezV^A1rY?L@nJ0>jkkNid5#HBjC1Gy#V<(?a5J%A)`tdM&L z4AX{da_0oe3SlBqv9fP!=+fY5u`LWTYNzlxbLr^>VK|=8TV|skgHSyBkUn{H8Sb~H zzjpVJ`~I|TMsx$H`?6`iuzI3Ma>KPJZQ_1R0TBQ44}ngk>2)I-Q8|O=dTtvYN%Bo! zUWv~}UD20RUUS1(2v)QuFq%M-v$a(ub=S?UVPvETmX($MyWifI+s4Z<%GTS^5U)>= zbTK@+eS#eB3)}E#L`VD1W)FJwP9R~IgEZKdf$|c#EPdfenZz&yw+ics6tYkHFueAe z=n^&XuL)35pSZR8nD|A5Brz%CG~kAR*%4#u8e73nuc#L0>o_NJNm-=J(v@G?YT%;f z7?s_h*nmes8}HU$ms|70jM-U(*qyy%*Ol?5k;R`;?P9Tp^3$}6z!%URgMA{~Z#$h< z>v5nlTtG}Ps{Wft`RPnaXz_4Yy;fE_3q^!Kz&ozZ=L&hZe=-s#8v8}Z-4n$8VFM`s zvjP7Wj{o1Fw|_Q(jFt4C4G;=+0$=_=5pN)?8z}!A8={pBlg;tQ>46^VejeC?2T7Cx z20O+qv;>- zY}^+{qu&!Isc0KewjanTH%a*DU0g%DB=EIuozQ-RA++%Ga$Yz4!+uAXhwIiPm(JhOY9|W!UUcDu~BPN3z2kQ)$7+gnCHH5N8q+kI7P^dkk2DckI@UMFBItn zB5IDE9V4SaZ?IOHE~WF|JjiP(#_FA4zjWaOOwmQ=ku6RGZh3@I54d=qVw%Fw*nGa; zU$_zATRioo2)qMa^c1!mn`DO8{zCpS>A6i(V`y-prXA4D;94sCGto-0w-S>r8|)kA z@))jXx7dlB^Y>-o9nf+94#-<{((|jwc;2srn@04p@G&0BIggn@US=7C9X5qzafhpb z9bh}=ZI20X2bjhELIAiSCw3Y}Z?>?K#*Jyr2$r+X`6X zj$1``oG&sX)u_i2nnxJU=~~99q4x3Ooe6I`-he;I{j1CTsz+eS{|V|9 z73!ot*mL01fsXAC2e~^G;G3PPWV>+2@xb%(i-r~u*k>=2}^8tE@Pqroy zpBzI7dc;=G4x$wNkSqhG#5ll6bO*55t>x5+;0anUM71%fMkzM_EI1bITht@j9)-*GnW#AS@0gL2ls3|zKDxN;agki$Q?2SA+0 z69^L9^!*^eU`4x`yPdZqd!SA z8ZExlsb=Oqj2qM5;n?ztn5BJ8k^{Z0Oa`@OT`M?o8+A5`P|2sNaP==J)Ix_F!N59T z%;69fl_q;@s5}TO3qYn8>KtL@=N#9k?8ka&OSv&hgM7epGUnkk$L=kVS^%K}zR+N! zaLqBpUB)zpS)^D~u26LuHFKEHVMcAp)}jRHx*Dv?FHtmB$j-w2O8qTc%tqd=7Yo_! z$RwY*5QS#Jh5rD`e%M0+OI$EbzR7~mw6|U>i%*%D^*M;U>-b0TpG!b({{S=oqF~kT zAg}Ed!z2U@gnv&6^uXi5A~Z}Ngt9@<&55U@{{U1EdLuyH-T-#^yhEuWJ>Y?j0k&#~ z(l~e@j$Yxe!YdS@(zM_w1BIk#YGpDM`??4fm>YFN@=Bq6CAS<76HI1qYA3?I&LD?w#kD`>Qal5rmLXuIde0a+M3de?>X{^dB_v}$>p`lBebuWaRFS$zx z#Ee_{!EpdDq$iEcClvnRSHno}%_u{Kk&*UoPb>IM2$8nFPx*jCBVb>#)B{Ij^^UX zh_AT15g<>AI1~lrxKcQ$u+Wx0l!a~y>yios#HhI*nUt#e#HYL@NpB#sl%f9snw&Eq zjpuE)4Hsx4GjwmY03<^Nm2nH4Be&>(@>-+0b!QMb6v_Vpsy@-gG**%#xpy0@Y2IM< z!(%rEKs6)XG)cq-~A_y`NUPLc5@!o`(^Q);Ub zs{#6MQp+N_5fE;hWx}wmcQLGZ#j$CeKwDy?BynnPotqZ6mp*+Fhf7C5cPFs#@9v%WpW8pImNX;z>jyIx4- z(sq#{w19D?#3i3m2HJHTxcQQ}3W#SIS^{uoc4hn9IySS-MEAT+=bX`g+@% z$`EK-R$0#7U*-I#piD0uw*vVgs6`A0+@K{?FbFfaCXNQLGWn+MrIiACtK#SZ{BCvt zw}8+Ank{aG-n8wB=SCLE(SyqNh7A&ZkFMZey+$<_o2sA-C#`|EI zrj_Iai9m+;9NpSxm)n9EFdlyztUe_SJAxdh6s7o_^#-@kk)qGZy8f^MU(zIR`3!0N z)BqRcRN?Y`A1!i=tfF&Y!6viu{^1VAfQ1hs-3S|MiGZ(-k*GaFs{A7|A@-Qss>(F# zB3pZ@?z zK&f1%1Qk5n4_5T=7#zj}3RtyzK^ub>d{|-}M^z$~eTZ{KjKO@q4G?0M0YnvL-w!6PtvL zhaqME0J$3g^xG;iW9 zxB$bj7z->mhVY=kyB5A%(wExJT5#sl$m*&tzi9?0ufx zi<_&q6SsA!C75b)0V9N)wH&>qUfnS9sJm zJko1yut#?wpK0%6hffJ`-2N=1$^!u=LhhVMPTXx+OsOV zF_&6}z?n@Eegf_P0GWOMkkL(bFq7VuR+QU;~Tv%nd2Tx~+aL7Q(ow1P@w@q~px9PbI0{$1tNL z{{T5Tw}>U$iXcuk4sMdX!f>Vrj)F^R9qDc|V{5OmVHmuzjRl}|jgWap@JV5(sZ zgUWNxCd{H?jwNKiSky2Dypa0?esdz<5LCt(nQ?|uKnao%;cC=eBw!0Iyl4+W!ii)W zB`Mh2?Nkjq<~))1POUL`ifBPDquGfX4d-JQ`@O zp-=>OOnpehDLE0xu{fVG64LFA?;A8rSra(o9IIi}K7)!QtL?6dvtGenhH3e9GMKkJyL`FWf6g_Hp>`!);3x-phRgQ zOWBSgL@dhKWDX+D^gK9H>wUOEwY4Jb1}_@6wG=@_^SNbzp{P1G!}SvqoW-h~YAh&& zCG@O7Dy`HWAp(=>D6hT2h=CB4%%v4ZRz6w5a8|FiL=7xyf4>k!RC#4Zl|u6bTQW#l za&;{29SBudi-Pm6SeB}k%m(zJy=r1Izy8p}wfO+5)Wz`~OE-2S72$7J1bd^=l--VS zatzUM4G@uKYN3#1h4pu7L2agn2qo2ogClLQeGI)MXGKzVO3Q=&gmdmzLw4q81b$Nj zryRw1{^ePGp{}p}aVFlQQrGPaHu&ZWJsisx^!@^c8d0E$WE_})ZTA<1WtEd9?@$Xv z&0Ro;Lj-cbR0M3#^(z{@gIoB^9(h249l> zR@jBY-QZsYtHo4Dk*V}3(WjIJBg%V$Zl?26u+nIjccj@~TQgP|GP43~zGv3}h!T2O zk0?K+d4-aLBoD>qRZG2N`N3q2qTyQ3r|@5a&E!>{2hyJM)xLY#9mQZD_$0iQu} zF|SuHQw6^vUC(WF?~$|DjsEzBr73c2RD#JvtBR4;P4bD)SVk{Jj`A&!zx-gaRQlZ zkg1$iF4j3eu!VnX%qyQRIOG+132DT;=AjmVB*7)ptHh4Pu!{5tx3Oq3vSORfetA#`_Ylc}t+PV{ zh58B3G`l41DhK%4MYoLTLIjzSDz4U@QK@8+#wl?)X{RZvK^t0}sIW$xdPLtZ;D`>` zls`rH01;Cz-3@c%*m&OH*c8Fu z;d!%YtI8p6RZp$K=*38q8&b5YQx__ESuaQX%n87u4ybOi1yy484e*1=;Dt@p1119r z2QqVa!ZBdi)90}(NA0uFzqTD$bR5`)1#zkT|xWswejb*0a^nK1FUjk_DmzrBd zug4e`yzUYq7QCUP)-&7u!jpws)IJdzBB$}3{sjkywWnjB8!WKn^`rKBo~T*+{%=KlM==>S+Te+ zV!#6w_@wJ$saStluus$`!4IGKO0{&aBc)X4r53?kJirQ=7RB-)8iTeUmMj&I#3G-F zZKynqSYc?3@jh_?0W+diqzf##N9c-O8Os&wiZ&~9Nf_N7s6Cg^^{5;2j~95#X}!LS7tmy zZxxJ}*8|3)6==?6(=k&o@ZdkmKiZ&;(c_YgGUey~BP;&^!Z`r#54ib4yHEewr(=C4 literal 0 HcmV?d00001 diff --git a/modules/bioinspired/doc/retina/images/retinaOutput_realistic.jpg b/modules/bioinspired/doc/retina/images/retinaOutput_realistic.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1bd60f80cced8cf6afbf3f351caf3ae507b8d56c GIT binary patch literal 19131 zcmb5VbzB}j&^Ed^?(Qzd-QC^Y-6;;m-Q8UZMT)z-yK8ZZyA&uc?V-SI-I3yf26!d>t{(l932LMzU z;2I!1BU=0p`c-4KOW=!Yxw_q_>t+~^S|o= z0yqc&LjgzmxbaLucPx5DDjlNnBf3vs`f|X`)IfGO6}zZs`o!X%V7s;R76Stgqzo1a z3FMO}OehI?Oy{YXLx`Jh_RDBotgPu95KWTd=%cKezG!loc6@qAJfBejAVI-_V1Y3C z+C{goAEWw7*C<9WA|$^FdIZTY*{O0{FWT47cI!~CvO@WF@O8{#n|TADO9SnNU8t1ZB4(TqE0;^AZqgngesjF2@PA#bCa+XtGcuC~yw>l_ zXR1T;1XC4Zey5$K%xKlh%GK~eoK_ro^4_0T8s5&5W-L{`(4S2(hnIbY+?RJ96$B-4 z3vgGF4&|1IHMA?AASwUMc0qdtvAh%VPil!UtPEvVPpD^riKF(TnRb`ph0APUtkZ;WjK*9hOfdEFlVUfySIIr*I(Vg#2?sKa@ zuYZc6PDa^&{!)fOyy2Rac1-&ZTfwNRdoFSv04zuXEZn&mK$XW7#sy27T+%@n{DyUV z{##AI)X_;VxZhi+cSu&4To)O{ zqOM2OsvnL182IWS0H&ntFA!lgTXi1%EBi%K(av;*!mt6dcVOw9a@owL-y^#vozXpe z)+k4(R`uZ3%5(jGVB({1>psqW2x^$ax8=i)@m4x(8%%^A}rHX}Dr?9ef5}eaGVCnqIZ5%j43nxO$(qj2sTW7ZYvX80@Bq}QdBmk!TjA_SP z-cXiVy+%XyxCJeJlL%UP>X3^@FYr13;nF!4*37QeX}} zNxBafQNLY#gAE`ay)2dek^;kThg^Yurr0(T8YCVF2NK2Tg9Br`4S+2vST;ui6Px6S zqlT+ZJ;pcnXBLXbG(4%=T-speZ`jjN}bMw^V|#UV;*3;{lfaw-g_o7|F|W| zK8apURuseLv*9>o-O&s~%Eqr{Kj-qas`eNiVK`8+mmS)%j=6N0+gs;;k?qlF)mSZ^ z48e~$E1FSO3KjF@)p~hpP3!bYtXGHn`wV#s>QGAnEILRe@Pj>BJ^s_QbP}PH2!(kA zawM&!a+nuv7Rx54Zn5b8H#5*-oJ^sRpJ>@3+hBY4A6!UZcZIYe`wIf3o! zV~7u^BQ9ebMr=B%UM@>&holKEW5Z=cqBw zF+iwzN(6KH$$A9pNp=o_=iqTLH@S#vx2;m^4?!(R#t11(n_wDjx=6W6jSnU1``VP{ zfpI&Z#(P1)d5rapmZ$rmN$bA*_6c#QtbN?MhEexIjB$X%EL1P?J7hpg9%wiH41r(q zHOdOBs{2QjWqQ}V=_CB*^6;A@Pj1b4+RIK>Zmn{?kz!uj9a;V&{6q+Q!^`k&$z}te zepJJyhwsRm#f0DcuSc%xKR5V9_1cc84RpjsxM~(z?K|81Kfv!uiq|Y4u3!v^& z{8|mwoLm{29k>kc$CqvP%JGdeq)%i%#dF_`{bJY@BVUzOI+#wAJhrT#4dH`0Dt_$0 z*I|7JZ6>qfS*;YCCoO3oES4~Is&6!Hd z)M<3W^O5JSb|Q2XGFcW?06Aem&;;9^$#Z3L(_W1MM zbpWYbsJ%B5+GG8G7C*Z>tA@=(y_!x*_b(tZ3-uQuXqOjFsCtRl`jX{Y<$fSb&S;dO zQO~&-Zwx!?C8{>Tf5p}P=ZuSCdC9gZq|!y=XxHF?+1sa*!-Vy>3*NZP7|y;bb=o{cm=%{# zl5xC3x;-t}9`DKadN59zFc@V)Yw-YQg0P-AVLFu9*gx z5zYu)Zozg_yY%-N`ximb;o>|T zgu|t9FBs1#zTy=^W?M6XUlHzr6BxZmxFJ{vwRlTo=jX^VF04G;g$Ie7q3tb(dN3Kk zf)|3L4>PFZfizg-aoc!m(4K}xj*|5n?i5PpVryc-|sDX%E8rmS+QzeGkrhi=UyxG zap#eU?6f6ffJ!0_O4XJ&lU$R=I@YR-+!Do5R*#*_WFL#EUuS)&@Atu((Yo{Tqj_Ox zh_Fjgzq654;cDBe;ZrBurM%YDh_{%;YBqC!b=>|k@GapzVj})RYNb?U6DGqArc*8V z&L&L*1D|%q6A>Yf*kFjTwsGwu76satUFASCMugaF(rEijpZ>GjKyF2^Mn2MDAsA!s z(XW}9+vW}NxhrPK)(S9k0FSAROl;HM4FLP>bVtfi!?IXA_&eVI^~w{)Ec zX(JK#V`oByGqZ)>6F#lyVsJOkyV4(|BxHg^43`W!*zUg`prT`}R7`r_L7txzy}3`g zq!?j}yET3pspq|;tM#QJ$haA38SNZLIJW*SNSIC*YxrO?Ipgl#C8|W5{2$vlt-pXl zr;VQ6P|Ka32iDJ$?E~~}1>{WUhG-?m8hx6%O)9z{nw1r29TmK$;d%q*F3ze4w5_BX z?P%4*Ll?)9cw4PaTG=Rj`OV$PPT7bfT^UZb71AE0&rH{1iVIi5dg&`F4jWCaE(>9b zouM59g}wB(6=#(i8oKX!l@+uP2`*@tOmKwOq??t8e}R>8JA+MQ4)zmr4E&1Daz&0? z4YG~BR=8(4Dj(fnx-7C-IzQb07z89}tjxU$pX8LmWCh{KI(qhi46Cxfu=OT2F#7_s zViqdCT=*B4$8d?fF!Ct;d^`{;9WaKrW!y-V)6HG9^!Vz!%=@krkI_HrJgfIwKQ4(_ zH+sX4m|dFxUB;+m-Twj~YbA120Q|!O|IY^hw^I5b5Goi78VR#7Iw?4dvWU}vi=z(< zT?ix{N($qA2_x!&t}ktbKnmL?VjIPU^obNk)W>s=-gP9Q@gjmylt5Y(T}{0wPbkqS z@fkX^mvkJHVE!|&C`#xOsQ|zCLaGii=`F!(gP_;}&)0Hv!D#-l#I3uG0;O)LzW~f% zAfObh@DDu}#?uTmSO65xAI{;Y1u}vSvA!JzCBF5GmZW$XdsB-XD@sj+1+}2Q9VhO4 zQ&K(##z`6YlM-D$u^&9CO6s<9;1qlVZlNckrack!_6Qaq_es98zTO$fIui%6CNyu6 zCf}*}BHG_uoc$mY48B=7J-ruYvDE&GPsHGrkskXh_)-8gocFu7 z!mg(lGsPoo$LbZIbRiV~l2uDmlp@cNjPwuNHH1FfB7MyEW8BVo2&F85Ze2jJ z{-|CQy^0hf;eR;vk3at#BmtqIf_-p^R2UqcMTAWGKMsAMJ3=5YEV~b~ADE~{Kf71rXIT=l zY;)AUc5v&(kOLc2;M&L|#zE_b1ywW@fLm}+Y=E`IK8=W=;)~O0 zO5=xIJb_a(dFnL05OLXNx^FRo^L{^k9dNDQgPbeT>v!w*&Ex@}?ERP_%QuSH)+$|% zLx|LpK52Kl*B~CBbvkqB7JDSAkOmP^0%NYh^cit_dh%Z1A{X1TL=YaQh@BL}#+Kbw z`?i4ZE-Png{9?+Py0ByvCk??VI=pK1E#st-|ABdAV)sp`UW^$ZWh9!GmemqzwjVhL zo1IO>Gdev$AqF?fl11Onl1atF*RegCezkRA7uMNKOi~m}a_b5woRchZZi2c9b9_Wh zrIKZ^=ZU2NW*je7Mf6Z5MMymC=VT0qim2sq9x{6U2U*0WQozyoj1Ekq6Wi=`vvW5* zk=_Zy=Vox~SX|d5h@G0A$U3IIOzGo(iJh0gP*KreEs#_#OqjuD#D=3QjHX^%Dr}?F zdEr*^wT%upJ5|wFuVH7z8(_Y}b&74%9-=lywTQHcoB7AehNH1QWhw5GFA~46K50*Omem)XcA#j)1U&ZPt2<9VlKfU_5Bo- z;>v|LYU*yuP4m0|ugL=?1cqeC)X`g18>}@@cyMb3>%t%;alJCAUzs5>QEiL*C`W=7 zWc$o$0QRWxTfdBFy1=s>?j(SgMnrg{5XJVOU5oZmzcQ6kW8!~eX)ZMy6A5q^RkPFD z`t7!RYwM_W`-{`#%oqB2DKgRa(pEHa{&Zp&iNAQ48F`#U6P3;7NtZLJ)@oD{dgC5!&1BA zqy3a&9DIc#vEP;Xb+rcGu}nN`@Xk8v8ud%(Tq_Rr8T6ZUE6aZyowU0t?+t|?$!z^1 zR}mdNFb;1(2bX|eg$w>U7qL{7jY&v9`2NH8dX?&pxf0##Q0a*j&D|fUH7>vK4zM`X zWj<~ku7`V6IWl<`@QJnI7K+QS-FgUWdQ;B0TAhOa3w-|0=JdSd!V@$>~+Isr%1P!?pCnz;4g@SWbTqLq^f0mt&O@nsj%H? zz9{V3d}UG%i`Uw_(moPsBl}*Ema-)~oEf=Bg}pQqx}r<=c~F<2Q|-)NamplzrzdM| z740g6s0IJLHU?q{VM>+Abp5zmy=$2&;^q64G=l3;&7F|TEt|z4mGYrR$VKcD%vILN zyV(yT#KMs)9iN(+BJwnl;pF?bzkro@{Ns90({`L67hkuRXU$^iQtmqJvcR0V1)02r z9qEwnNCuu(jjWvYr_6``ywnI5*m@}x+jRmu#r79VPF4pkH_Qh4?9`~PvdjoQgGI6x z*BeOUPy8A4cl=l`h7jWqHCOaY_0j#WophQJbzgf?jHHvVd?hcxONwU2urQ>MkHfLl z8zbuCB6PGTBO7jTH0zPlHEN6Fd~x!#MM+zSNivEO_E!u)n{4&`tt>Ip%21gb(dg+z z^@(%AALFYDWj~rBA|Bo{oe5ZDvD*Bz9L{CXC-TRa}w&_ZDYAEZ^ zXEO3|M1Q#v?-~Q)FniP!(cK(8J~fcJ_EcBmXJb%{3M89^uW0FVCquiam(1?DsP2h9 zV2Fm1X+vOxSkG9u7y!+0q4a1bi;Vv0VSaRjIIdGtOPnGJPPR2du4tlJgM|$kQ^c#} zU^eLM1S^_$8sFW5})M7KN<9E-IcfT~BY$h1@BplXjEf{{1mq`Ng z@Yb2cC{}QxVp!tXRsFeht41i<5qb`BGu&Ex0LKKDEqg$a@M_(kong7n$qkwenzj- z_n)b*fA~iOj;>ZbXK(57H*za75!W+OOJYAC4}YJk+AzFaq9oL2wSt-Cz?d5R z;`})-+x@1g039h~_Rn_%8o2;dQ*fmtv?0FxinR+RAgqJ?D?dZ#-ASxT`$CJ~Q$E^q zOo(kRUH}EOeO(n5XyAHPTYWxv;5ydi28qg!95pO%li3j7tGR&AgmYby6Pbo3&djCS zm7dd(s)`pv{_E=e7RIj*@GrK8?Mx*~?@%9W;UHAIy!qXPerIlN|1sH@ky*2ZM{^wG zUlGC=)sE1nv)LwW62PB z4H1~Z_18i=tsN&Rf-m`d_893nm~^rphpUD@2M>1J=2n&u54aY4(|xyr|TLr&jV10FfF-`R zJ^$u4lEl9WX35D&lZh09VD*PgP}+;eSJe?QBZiI2qe5Oh7=CAy`rM$>hL!z?*vS4a z>uhcaLIc7^KKrnlVl~ndDG|YRcD*Mz!4hvrSF;ri zrO?UySpyqy(A`DS(1n|feG^ua^OLZGG$U9kGuG54(^YNK06zcPvsZKqhEy;PfKhN$ zjk@-v$49mXZA-Q$>7evTBR<~6WOYznIGAzo=}d8`J<5r>;?NIHxs}UaVTl`JQb$2i zu;RhQ0KpPhUY?JOFp-%%;G`pCy_nGBK;PA52TikNZ` zBfvZDPTuaWi|`_J%6gXd3&4x7hw@{tuarV&Y$b~eK8OM~c`B5Y)u67=Oh;DFA+=Qe z^eeh0^C@@2aTMLBF^iuT1<0Cf^sI!93|aQcD8uAj>6BjwN@Mhw4zzX}!d7FzS)g&< zmn{lfg3uXRU5boc(_G-+@UdNp1BCorE=Irz=4ZrQy=-N7QWk9o3rj!C5P-4 z(#5QUw*G}HY*Rqc#@41L3eCaNkN|FoEU|#IWW*gJSt*l|%e0#T4D#C_;vj0-1Qz|+*#Uo9nNXugsy&oTa zm5)~nQ{&9O+eX`$^M$~t`hurW?`_JZLk}x%kLX~{&Myw)FQ7mBCowbmtGQ%ewa5C$ zD-9zQ6-N-l`&DJR9gqn`Lmq!3S?G}LoXk%DayPHYtbL2_xb=OBhbJh82Is%N6NXf>we3iti=_AA=c zY$Kuz{G*95t=lYsyo3 z3t(ro1~{%Trzbn=kB3O`E;z zURY1MSARfiTAg%uYJHfd{8lFnlk#crq7_eW`st~Bm3U_!A|nD?ti>)0#%^=DvoN`u ze?*PZAG4PH0t(5mp?yL} zVY~VbW^m>!WW`uXcSX%&KFE7`37m8hBHSk{wYibkq zUu;4W#HDQtU0Mrw^+8CSDF@}ZQr>4)$&srVmioi`Hb+Q~7^`fE9+l0l{LQfRg8D3R zCqnUB=%7i_-l7;E-Gr;1@Y<8=*^Ds!!;QR{U8^qYMBy!3YYp-8KdJD+RN&ym-UaIUu^cu5i442+$z4yN0$ldKa(zpFk#TFsFocc zbkT{{Agz!db-5ZUtaO0)nDvA5FRG~ysu8A$${q}U^w9BI*IZT4N__i?`&8g)SP>eM zXB*b-Q$xAXK}K^>9S%Yc6d8Ah?A!b?Bcw;g=+bDdub{(WK0JXsTiCL$B{3~a!s{V` z>LEL?CAm^7;gBYv(Q+mz&DE^TA=zK{%mgYEzxx60TCC!sTj0{!uWv1jt6EyovW|iG zYpQSsAwpyNTe3q~F{*#^F;g9;ty{5mocDpSMCj+K7-;`b+E7-t7Pj$WT8d2bPUasx z(#t%$fpMqqWYMrW7b|Sp?4QQQDyY_aq2<{^;Z1de)O(pnv~hu;i?e1|^ixzlE?tE~ z>PcJD0Pmi-#LR#@*U$@^J!-9v<|qm@!ofrF{lS%=Xrtm8%{EpUQ?9@-dW=zH2)A)7 z`9jxP7$<;AJoR;?vm~aZozdn|qpZLP#p0zhrh)nr{IN>yd7?X5|O$L51=GbAW-sA^xFY{{vD2sH7|?|KN_Gqym!b`u^SdoB#70 zSBTV8$nJ_d;dh2j!3}TstL2uF^}{!`3>WV`E@P>lr_^eJdi#W^V5TUU+PAz{?b!4% zfuvK+^^CUeBwj(%;XcO1NjU++dy@PW* z^AV}GS7P)Ozsdf7UMa3zDz#$}-$Bo}rPE+O$TT|s&#yT8tC{mWqmJe51~CZWNEeCs zA7Ggc33x;}KNVFtKcYct4A|Of`7RIGTd_<+WkCBDjJ;uO+hkK&9{U&3v)!#3oj+yW zQm(QQ^c_QvMV{GH7KLtQ0wx_w`bs_fqz>@t#!;8*cnv_EwT2zvblMA4T#u)z5i;x` z5s}UvrP%y-f>zkhB$KKJ#~KSjW%d_f1Wdk9*H1a!)n4h69_5=zYeM~z-Z_oLhp=;e zWsG8!9U$R*@}o5xtpxYK=W3PRdONdv{3TJdVuv4UxIMH|fjxCu1}5h|+^DCpNI6S& z9J))(&l2ltHi&yq6*qbQ8~xhT)3FwDltQY?pZo+b0hQY`06Uz&3pp5$+wHlF3K@3T zSv4~XJtD$+_wWtDi`j9c?kw){fquq*xn|&7i(6x&Wb5d(!5baz!eS@-0D9NZp#z~= zWAyGmEq6`Jy4@Ajc|e4C?PJ|GrX1$!fKyQjek@ijM12m;n2ant>zY>~zgq>|NWp-1 zT$%>EG)Ki_a1o*o+fL}YUCGRjL#vQq+UPIA1GhnNq)5f!pu$SgmqhE6Kx-N}_+q9? zB2JA%_(9n~yZxG?*jk;GFZ=M2%0=1VsXFNpO`+BdRtY)qnLQ1ogCq%NZHtIUn%;)FI8&8&ioXgBOGpZE}vkpr_BZnvzhnI~lNDo>f}KGB)G;{M>mHRX^! z#IMPyW?5<|`B|o-E0T^%;S$z;2RAog2#bw%o&c(t7g;q_GH-f(*#$1usBSd{yjq@<*_SSG)TpIk&+t+*+;1 zQ#Tvr^8WY(^{)FC8txEg`ru?Oa#xo5WM)o;mu%B{PgM-22cT@r>N@a6uI<#T$K=vY z;|4gBbp7OgopgpeTNY7N@eF(7rmM5_6t|ySO-mSrc)_x?*7mjZ4ko(qtnYH^Hu~NL z3~JgBK{j7daM6;ukex{%yTGsFB@7nZ!phm>`kHe{%%=ipr&{)8wbACx|=HN=yJJR8(9^5hWqWaP0XDHw#S5;i>15CF7u z&c=ci%p&JMT6exxB`5N|?b8yWE-{=A0MKaA9C|uZH(;1Si1oEhMM9t$XJ-f^^#8K< zvVb&|*b>z*OD{F^cIrvvkV5ez>Gfo>=A(pkbl>P=(u5}`HAPFM362_ft1(!%Y>1bG z{VoiQEmT~9o-FwJc2|&*+C1fUR}kHHcM}lY1_#^DL(9%XbKWdwk$v(k=7cww8x#lD zt5E08aI-+W2{ig$yl=6dHE8@)2#UCO?bT;w1M$C0s#kjjO6K%uAH%VxI!0@Bf?JHq zx6$hp=>!WZQ4FwOvhCbVY7vw4bzS}THQ)oq8@Qgd5I$auU`T}iF`coz;nr+L6j~6- zlb+);TIY?sVW>0Cxz9SmwAmDgFQGKRVZT~zB5#M9e5wP7fJX%THWj5L_A490NdA0J z8|o_ASD0SvO$CJOs@@a$5YBIo_sEQ+i~WD3!lIcNl6Ip8oUV9xcQ@Sz zM;GEAfDeBVHVKpYfXe4gl?)Zf-$ZiQWwuVwmaU$xtd>a~4k#QHhe)1`AD*^yVuv`! zQxTnVO4>B#8L`4qiHlYp)%+d1+erIQd@)3fe%dVrP*$Z{yMcYtZQsWRn;+ApwlHVg z;bO!td0eT4)&)YxE!ij6EwatpPPuDggx#PpV%#N;kd_~qTyU7#+F!Mh|5de{K>xBx znr{)*6d0)-l~OWpMgI@ zXepA>hi*MpvyK&*TMHi7WOwYXZ=d%kB z23q1VwZn^4trPoA^j2W|^7FIxezbfLE~ZQtAN2_0Ib!Ja_$Rh5S~m;Tg5Ts+K>q6 zMX6Z8a@&rXJ-^UBs&YX$W|)%>&Jg{3XFFeKnDM0{Uy87VEEydyh;A`I+y@?I*Fe(0 zRKKiLRyi^$ovh`CuJ$ph?5-b&SF-AGuG;4@GAKCY%6pc@F|39utjB@%$@06~bkadT zz0k=ZPV2KAUXVPNkWNOY-E0A)@e%oALYaq05*joJ?oNssiTDR~-jrZ?5LTfpO#RX#IEo&$qKTNe}j@OA58R_eV3=~ttbD1{}Q!7`s>dnCb; z-3hl|FpF*+cV=wFSjCS8YE-+u{hp3uqF*bU?wOJ_%U@st0{7b@{A)eFsOSyJMQW6l zfAV0=(8IK!%-cyxE65@zJjF=~=%6Zf4IgMB1rW9Gyc!oL``vg681 z9^+i9pe8dI>3fKwP#kOh-ezNQR z1<(qLZv%z`Os5d?qqGn-c}k8WiHOGr5cK#gjli?|-^`D8WNezQCzL%MLw4)2mDZp%6kAY-BTX5kY!5g5DP z*t6XDg`FQy9aKVuwpTBh#GDsm_kE@4x zrRJ};o>EbGjt@sQw0oZ@tIvWqy14;Mctl4qm$f>tVrt-Zgl%P*grSS^$oF3u?WFej z`qb((sGjjhgDZny^xIl-?Q}Da^!ii$U~ZPLsf2~S;$BE0tF~xT-(mF2oJuv%v9Pd> zC@l_1I>!;~Ot_5x0XlgW5guYWQ=AL8sZQ7eS^YqbTg#gQqr+_N>g#~?Y&St4c%5=SpP+&oRVx<3B8u%&GDz%I ztp9nvEsjWckju@}to_mY=XmY2fDiNIzfB1r4ix}^^0jw0yAFcGPSPBqI#J9#t#@>wodkgU z-UkB&i;5$^ei3r&`k@duP6L3!0J~bI2sHm9Bh6dYz8-B zTQtwVJs@BZtkOUrhy|F1PfCDfPRxQ$;TVf00=-B1Qzr8HkAjU z5l4doz!FKIq{bqodNphS6c9wBINns@M z78P=RbhzCCc6k`e%dg@IrMGFS*2vBm7Y)OzDuZSx^9f8MF)(}q3`DX6;ynBKWQH_gc@Yg3I4#9NkqAuQb5Df% zq`N4yHzx!@1O^WZqey>BhLsOBPehxlDzFX$1AR&a$T&6|g5`sljDbXemFk)E!|o(O z{kQq#Ki7-@&+bGaC1GX}5mr%l{?Fk2=Nf~OyV2^fRroylqc+maYz(zr+%<6nnSh>O z3?50u#5gM~G-`#?{zZ7q#h}sZSEHPwH#bWN9nh)QBC~m)dwt5XH*&tmbYrkg+LGS5 zGc{?#^Xj^FWRV%S-?c0t_eRdW5~PUVN>7qIp*%n_M#@aKJ z$K=C%uj9{v89vUp%rE`V{@Y298{MA%p64UKYpXp4U%+dhK#xOL9PEaA85}Hs1}_Lc zQA(n>;o^D(HKnu0;2Mfuvee%~HgbobJtd|<5~hm};ImS4a4RW)`g8~CGLH9d>QCH# z?Hg4d*F3ZsC-|J6HzGuSOk$TcYHf?4LpbVU-sXS(lqV|9nM_K5(y1*Fb1UeAOL=QN zTg!1kM+}*Xfa~7r6fHDx%J>58c$Vwgf5$}%=tIE@jq>EH>vV!zFrIxtBHsuLCnBUw zWQ7v@iFM{iY9k2qZLs@dz~c{Z{`N zxD&s|ikKn*;zVe=Ayo4HX7!8Lr;qA8qd_rJKb3&P+c&D?>}5i!{D44~1OD8XkY6}X zZwYzLtvW}`d?|hBeZ;7TE@p~s3xdw&=ADC0{1Ugs+{=q$vps=Rk`JAdMaSSRNq?T) zucmI1QGdtUaT^xTLYS{|-|hAU`N2Ww=6b0uBq^4l46CS}s$+ACTZ+!MBjL2Z1MI^4Uv#N2adG zJfn-=>%q0h0E#$1Jv;Ot@G-gmZxD0WktW3v_-0Be#K&wcG9Etlp{YC; z?psH|r*m0UizS+e|XYkRBD?Y0y01Qy{*(S(*aL@26WdbZ(4FAzr;<_PTY|-G@Bm?|0^xD@;%`C2KN&Xwt6$SjgWi}A zqgeVkS|j{q^LA*pUxV&`3HJ6@*Hj};xPq%P-^hsJELjft4t7549x1)QA%|Z;ouu;6 zeC@biSUj0|b`a@}3}LBdt|mOjZRZv1>U0i^I6&&}4ga-#**@5p1=XMOYkuB!^h=o; z<#?jq9&h-!5$sGC!VK~QUV}F7ofhp;2h@nl4)R+>1|IgNC-{K>3*~`<{)6)Vljjd{ zCS?&(LHQ5LtM8w`zS$-Dzfc}Z#Y53Xz-H~`!TnvT-iy$ciH~)A)i~Hn=lN+{yFT5- zA%v*bPJ1G(Wk(o>~F= z{X{G#8O(bQVF@d2qM+qD3#-?m`P~u?FmXV^aD5%=Pq`SGRe&sUe`OD33{u zospw%h~X_kN2j)ITAboqYFE^8$3BM3b@Etaa4Z{)?YEXr zk<*t(%79qMsR2uX=Gs~G>$eJb5pT$Z3!e7mG*Z?vgoppifY8QK-PEC!DOs=iU75(U zz6|e|+f0jn>zi-~Vsasu@gdrYr!l!TguzehmUB0!Xx=(~N174xn@OSDTJ6yMoDO-^ zpiE1h&F!*3m)6s@yXBr;3w0SMUu68QV))XHoI%QsK1WR9{u&unW(x8WZL9HDX9N|9( zltodoq$dcC?=pt#o!;Zcx#I~rZ>(h~eUDHo=N^!Ns}8G9AgbD)Q8Kb|W`L{t3k;1O zS!SlQ7UihjKqHh1t|%(qV9v<}5}LNX3sYGp{m|;Yft|Ywr6JgeZ=W7Qn5(Ds%OmF) zXodYQ|06a_jtnfsrU`N0gl8MigW!u^HoOFM8UHXWrhM#|P#oG8H|WwVyD=vUTN%`_ zp+r`$DlBjVyQ0`)ot&R~yvL(ln{qTk-}#^T`z=YJBI&O|g|@%e1vg`K^~jX;|)&_Fd+#P0;i ze!h2Wru)LCGQ^Q9O^V%U?kEdpwFE-{Dm@2a459?ZX{e;jiM~&|t@!}$vkK(&QYrmi zKHVo=;VAMQ0IT8zc2-IM+tQz|4Ixm;Yuqx`ej{?}sv}qi#ETVidYUB;Ebnv>#v3RR zR-QEA^{3Hpb;&RMHwh6XXYSqL$htAC%33M{W)yZ@i98G}jYYPsD|tDwTa}-R=+c}Y zTS*Ay`|!%alTOZdKMXcVky~YA^gqz>C};#2%6pG~D9WGuq?ifeZ6U#+;;eZvLV*p9P%!8a?qAB<4_c#xad7Uy_Z=ToPF%>A zpqU@q$SW4XHQGjzadN~1F#zcA8pch&tl@FV;lUmR|MeY0o$rF)+*HPt4PV@^>8fAl(F@~XlG`tD}kzk6gYEJr##~HZrQva8)6zx zwE=BRwi~E^(5Q5^nO(<)aK$K{eWwJ@jvr^zdUFmv4Kk+=oeL{0*jRHtiq@+EK~{!Y z!w!?K^8i+B&AAg{)HsR*qMGq$exZxLD4l|tjcFVyMo{e5FN%CzkSq&Ip#0PT_+%_e zygzOOK6fM~DS{NgYmDqQ)V$eLNJ`hkq;;ZzpXpMwwynT4y7jR3qs_TT=YLT#g3; z0RWnmr~6ug90!`m#i8U+O_QMvwlDS3x<9-mAQEFKd5_Eo002S)=eewog1QKb)VXqZ zBw+wXIK{?w{;K|qyAj($)%gVe4=rvAmpf>$!r!pxDiU)z0B&MX z^&MCrOt%K&#WucAaAm)fUe+93Xta6k?3Q>Iw-^7@*1ku`H~cQ^SI-O2yDsBv3Zo!- zP9INSg`XVHHysWi`hrB4pQ1`wjrK9+I?sp*wi#J_Y3?tu#8RG{N}P;Qh9&Xi64{Q6 zYH#OfhXIoz+C*+-y4ntnRFL&;>eB9x8e|f>x%ZQ81BeZkc}DGwVmCNDvIUh}+Ur}& zw}|WARBdJkMVJv;pr~S{0!wWXzOS0-CZgTfcfU-Z7&9UBtG|&-Tw+bWF58os4USHG70;@8-|9oF-S%5}9=%>W z`}aU{!1m(5iCNsUJf_^_5fNGMXfcw{om>e)16iQQSZxjQGQ;UFK}QTT)}+mLG#z*Z z7CM3imI%6Vwq@=)CB+LBJ*fGuM4`?Hk@kZwi;t#HGoK73V&nkAeTAFnU}`S+95w~s z;XxXLx5Di`eAT_0ySY9_cu6!kW7Px#e%iwv!QTN1d?met^yC9rrK=n`J zvPFz7Ko-P1UoKtPDTVh1`FCi`NOC7}d+*~PkybVj8!V=Ww0&ocprW`l6AhCS?_oQh zANQ$j`QeX@QYr!(7*Hauk8F?q6q5Em(v9+Hy63ulujDdP;r~wn%03Y$?;E}a-~Rv`ym0ZlZt-hhkIBmv4X^~x#xn*`a&tKs z1UK!$Hn1UT7;23j#XwEEmjIfL@`nI(C{$BeSsv)_^p&R4%41{;462=@0~tXn6C{&| z12ua)h&E#WBC-J6L{%GRkQ9)Nq4zYYl%vOq5#C28y%)rI0HtYg!!%dBGMYp!)r0Z` zc&8o@GK`)8Eb+2#@ZEUb4~D-!KPMc))Yh_0;b>;<(%fT1yMF=$F3V$vC|b`E2G_LN zFA}oxsq1%7QHWVhBpQV!n1f;93_!F~8U0T16Kox34Ki)1NMn4NVR|;K`^>>CE1#*Q z0kq!}9IGVuhsiEDNsq@2Dgv3$uA8?Ul?g>^I!g`{!me4n#_t=Zzdk+uZj>0BKHeHN zQ}Q#MBwMLkGR*~Q2&;x`8YK;>k`TP{yM3iy0cGnkw%q$bp;|#G)+x)x%896P8_C&M z`?&WYXa|p2m;yUS7BJYHK*hyXx{Eb2b|XazX0xSd`T zsj~Ni;gMqF(j4R!ATCD()--bgbpeWHu3qLC-R3h_<8%s98@$94pAW!OS2g+bd!L__ z3*eix-NXPuIKu}C-u>dL_T8f6Z;LR^N~5Jk-EibL`jir}Yt*GVn^i^aSQIv?vDxbj zm2kO+t>MX>zr@XtLBz7@^DnO80*i~^%xq%HYjN(u%UtpN&7K!O%&3s49Yye-3YHHu zQu7)w>i+<+N~VuS85rbA#iou=o0tZmzCopC@ha7{T-;z_q!SBcA09p8)?XXEZjTk* z_wicXIK5E8dbPpRqbf52WT+K>(%EV)<$jd_&}{m9jvM{7`b?{Dl;#yU7-0lKsYYgP zv_YOx)MB79K>CGPW537h4S`B#jr9)A1&+ZEumqwu_XilOn&avf3wl{h1RbtW$Bk^A z<1o}vTHHWkxxSDRtkrm^QRq!^kH1N|B8azT8@CTHaMh7@7YfVbpvK6O_f=Jjt+Dao z^W$gU9tpQR_*R*Lbw4>7@k>F8SR&ZHR8-0NVvrlQm5s!x4YysO1WNK@S)5ao5s6kC zta?Byim<*qltpxgrEVPtqw(Ol;#`4!<~x8K8`~>*n8qU2S2vi$3>>`0x&Z8J<^a^? z5|FrX#v){-VCo0S&+<4+%^oSQ9G9PCryO!6*B(-5#8q4?J9|SoX3N#yt1(9sudWAoHjvOLX>q8DWZOq#aCW< zgXwG*ZE0XtTTfP4dE)W*#Ml zBK_a%nGwHeFjpkO7lzF&4r((00D>D0Yf+3Jaiz@wYBQSW+yVxV@x)Qc+thluxtNaC z&q$VSn$ETQV`!B#oG0W|7iCiS1#0VKQmKFz%uMWv3VKSV?O7}m)JEDtuBrx&57brL z6f(uS#OO|h;26BDL8HYHRkmHx7nSf9i)D#irxg_?$xXY!tFp3vLQ7y8vi#+Py z;wxs>mJD(jprFmdK{Hw|aQdXJ78Z5sMMqQ&Ez8lWJ&3WYigyxgF>SUlh_#rSuN@B> z{P>|1GQ~KH?S7?-w9>eR0la$=Q|Yk?k7Oh=)V@-xddQ4YtK;t!JJemwKu<0{AlX@# zJi?}mkLdsv)#6I)`|vClt3I@rI_xgvNPwlOv2}akr&0vpywTLJ)){E(&_Z4f@u34) zjZAC9d|r;rFm~6;T|^sW)RtwBQZH<6;qhh&p|&rGjiUIRix%q<8%DQw{Xn~5rjlVz zHzQ9?x>F1>b|l!ezUBv&Ez&>&qoqowUVEIyg%&FueA5fm00|jZKGA`n7E2NpFIkj| zwrtr05wSHGYbn(9{^5?FgsmCGc8ugxC?Qb&WW8lzt~BC3@%SF4JBhCyE&+#n)kl)c za7Aas0_BvPjz6Ye#~@V-r@#>rFxWQ*wYCgOno|lU3`Bd*8~UEKWz+XIo>8nCR`HZ8 z98O7P4p}wdC`fLO7E!j1KoZ`%`yz&oV%T6st7NoMeeh{%jF^XD9W@vUVP{Z;c#J=U zt-h^bVd@w}(ZNKq*{(#cyl{fb&%yRUZX%B|Q`$F$FfHPET$o$w51n$tC>PL`?NAxM zw!|YW(a zLQAiMbGjha2)j!lY}@|;I$pBXOzD;hYGx(|kDt*7U~zfP5NAT?X!LCTDUP%YuiGma zBb}P{jRr5uKJbXEPu24J#@f`Xyhy?Y!Td!OII933k(=C*3V;Sc zFw9)0P?|y!<#7c~pkQOxiH+48dNXr%E=iCa5^7)jKZ$Tfa8cE`F`1RyINK7%Kg31E zMZ^JY=C2JKV%ucdn66mG<~F<|f(ru^XeScWUi1;1NF%0}<~JA}SR_wgGEGOBBjqc$ zIBj_oTBgDO08msqT$T-1rUV1Ac*+=Qt@ijMJvOE|z(%o$Hu5axg{o6obu8Eo6AGhO z+)N}vk3T1@s+T<9>A9faAlDM*5a|B^lp`T*NBfv!$t7P~2rgN$`}nT`m01S{W!q+5 j%tSFVfJ~qF!RzH<3`Mdm4}WY{sERfBM6ey3+|U2nzNtj9 literal 0 HcmV?d00001 diff --git a/modules/bioinspired/doc/retina/index.rst b/modules/bioinspired/doc/retina/index.rst new file mode 100644 index 0000000000..37846e9385 --- /dev/null +++ b/modules/bioinspired/doc/retina/index.rst @@ -0,0 +1,483 @@ +Retina : a Bio mimetic human retina model +***************************************** + +.. highlight:: cpp + +Retina +====== +.. ocv:class:: Retina : public Algorithm + +Introduction +++++++++++++ + +Class which provides the main controls to the Gipsa/Listic labs human retina model. This is a non separable spatio-temporal filter modelling the two main retina information channels : + +* foveal vision for detailled color vision : the parvocellular pathway. + +* peripheral vision for sensitive transient signals detection (motion and events) : the magnocellular pathway. + +From a general point of view, this filter whitens the image spectrum and corrects luminance thanks to local adaptation. An other important property is its hability to filter out spatio-temporal noise while enhancing details. +This model originates from Jeanny Herault work [Herault2010]_. It has been involved in Alexandre Benoit phd and his current research [Benoit2010]_, [Strat2013]_ (he currently maintains this module within OpenCV). It includes the work of other Jeanny's phd student such as [Chaix2007]_ and the log polar transformations of Barthelemy Durette described in Jeanny's book. + +**NOTES :** + +* For ease of use in computer vision applications, the two retina channels are applied homogeneously on all the input images. This does not follow the real retina topology but this can still be done using the log sampling capabilities proposed within the class. + +* Extend the retina description and code use in the tutorial/contrib section for complementary explanations. + +Preliminary illustration +++++++++++++++++++++++++ + +As a preliminary presentation, let's start with a visual example. We propose to apply the filter on a low quality color jpeg image with backlight problems. Here is the considered input... *"Well, my eyes were able to see more that this strange black shadow..."* + +.. image:: images/retinaInput.jpg + :alt: a low quality color jpeg image with backlight problems. + :align: center + +Below, the retina foveal model applied on the entire image with default parameters. Here contours are enforced, halo effects are voluntary visible with this configuration. See parameters discussion below and increase horizontalCellsGain near 1 to remove them. + +.. image:: images/retinaOutput_default.jpg + :alt: the retina foveal model applied on the entire image with default parameters. Here contours are enforced, luminance is corrected and halo effects are voluntary visible with this configuration, increase horizontalCellsGain near 1 to remove them. + :align: center + +Below, a second retina foveal model output applied on the entire image with a parameters setup focused on naturalness perception. *"Hey, i now recognize my cat, looking at the mountains at the end of the day !"*. Here contours are enforced, luminance is corrected but halos are avoided with this configuration. The backlight effect is corrected and highlight details are still preserved. Then, even on a low quality jpeg image, if some luminance information remains, the retina is able to reconstruct a proper visual signal. Such configuration is also usefull for High Dynamic Range (*HDR*) images compression to 8bit images as discussed in [benoit2010]_ and in the demonstration codes discussed below. +As shown at the end of the page, parameters change from defaults are : + +* horizontalCellsGain=0.3 + +* photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89. + +.. image:: images/retinaOutput_realistic.jpg + :alt: the retina foveal model applied on the entire image with 'naturalness' parameters. Here contours are enforced but are avoided with this configuration, horizontalCellsGain is 0.3 and photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89. + :align: center + +As observed in this preliminary demo, the retina can be settled up with various parameters, by default, as shown on the figure above, the retina strongly reduces mean luminance energy and enforces all details of the visual scene. Luminance energy and halo effects can be modulated (exagerated to cancelled as shown on the two examples). In order to use your own parameters, you can use at least one time the *write(String fs)* method which will write a proper XML file with all default parameters. Then, tweak it on your own and reload them at any time using method *setup(String fs)*. These methods update a *Retina::RetinaParameters* member structure that is described hereafter. XML parameters file samples are shown at the end of the page. + +Here is an overview of the abstract Retina interface, allocate one instance with the *createRetina* functions.:: + + class Retina : public Algorithm + { + public: + // parameters setup instance + struct RetinaParameters; // this class is detailled later + + // main method for input frame processing (all use method, can also perform High Dynamic Range tone mapping) + void run (InputArray inputImage); + + // specific method aiming at correcting luminance only (faster High Dynamic Range tone mapping) + void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) + + // output buffers retreival methods + // -> foveal color vision details channel with luminance and noise correction + void getParvo (OutputArray retinaOutput_parvo); + void getParvoRAW (OutputArray retinaOutput_parvo);// retreive original output buffers without any normalisation + const Mat getParvoRAW () const;// retreive original output buffers without any normalisation + // -> peripheral monochrome motion and events (transient information) channel + void getMagno (OutputArray retinaOutput_magno); + void getMagnoRAW (OutputArray retinaOutput_magno); // retreive original output buffers without any normalisation + const Mat getMagnoRAW () const;// retreive original output buffers without any normalisation + + // reset retina buffers... equivalent to closing your eyes for some seconds + void clearBuffers (); + + // retreive input and output buffers sizes + Size getInputSize (); + Size getOutputSize (); + + // setup methods with specific parameters specification of global xml config file loading/write + void setup (String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true); + void setup (FileStorage &fs, const bool applyDefaultSetupOnFailure=true); + void setup (RetinaParameters newParameters); + struct Retina::RetinaParameters getParameters (); + const String printSetup (); + virtual void write (String fs) const; + virtual void write (FileStorage &fs) const; + void setupOPLandIPLParvoChannel (const bool colorMode=true, const bool normaliseOutput=true, const float photoreceptorsLocalAdaptationSensitivity=0.7, const float photoreceptorsTemporalConstant=0.5, const float photoreceptorsSpatialConstant=0.53, const float horizontalCellsGain=0, const float HcellsTemporalConstant=1, const float HcellsSpatialConstant=7, const float ganglionCellsSensitivity=0.7); + void setupIPLMagnoChannel (const bool normaliseOutput=true, const float parasolCells_beta=0, const float parasolCells_tau=0, const float parasolCells_k=7, const float amacrinCellsTemporalCutFrequency=1.2, const float V0CompressionParameter=0.95, const float localAdaptintegration_tau=0, const float localAdaptintegration_k=7); + void setColorSaturation (const bool saturateColors=true, const float colorSaturationValue=4.0); + void activateMovingContoursProcessing (const bool activate); + void activateContoursProcessing (const bool activate); + }; + + // Allocators + cv::Ptr createRetina (Size inputSize); + cv::Ptr createRetina (Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); + + +Description ++++++++++++ + +Class which allows the `Gipsa `_ (preliminary work) / `Listic `_ (code maintainer and user) labs retina model to be used. This class allows human retina spatio-temporal image processing to be applied on still images, images sequences and video sequences. Briefly, here are the main human retina model properties: + +* spectral whithening (mid-frequency details enhancement) + +* high frequency spatio-temporal noise reduction (temporal noise and high frequency spatial noise are minimized) + +* low frequency luminance reduction (luminance range compression) : high luminance regions do not hide details in darker regions anymore + +* local logarithmic luminance compression allows details to be enhanced even in low light conditions + +Use : this model can be used basically for spatio-temporal video effects but also in the aim of : + +* performing texture analysis with enhanced signal to noise ratio and enhanced details robust against input images luminance ranges (check out the parvocellular retina channel output, by using the provided **getParvo** methods) + +* performing motion analysis also taking benefit of the previously cited properties (check out the magnocellular retina channel output, by using the provided **getMagno** methods) + +* general image/video sequence description using either one or both channels. An example of the use of Retina in a Bag of Words approach is given in [Strat2013]_. + +Literature +========== +For more information, refer to the following papers : + +* Model description : + +.. [Benoit2010] Benoit A., Caplier A., Durette B., Herault, J., "Using Human Visual System Modeling For Bio-Inspired Low Level Image Processing", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773. DOI + +* Model use in a Bag of Words approach : + +.. [Strat2013] Strat S., Benoit A., Lambert P., "Retina enhanced SIFT descriptors for video indexing", CBMI2013, Veszprém, Hungary, 2013. + +* Please have a look at the reference work of Jeanny Herault that you can read in his book : + +.. [Herault2010] Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + +This retina filter code includes the research contributions of phd/research collegues from which code has been redrawn by the author : + +* take a look at the *retinacolor.hpp* module to discover Brice Chaix de Lavarene phD color mosaicing/demosaicing and his reference paper: + +.. [Chaix2007] B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 + +* take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. More informations in the above cited Jeanny Heraults's book. + +* Meylan&al work on HDR tone mapping that is implemented as a specific method within the model : + +.. [Meylan2007] L. Meylan , D. Alleysson, S. Susstrunk, "A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images", Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + +Demos and experiments ! +======================= + +**NOTE : Complementary to the following examples, have a look at the Retina tutorial in the tutorial/contrib section for complementary explanations.** + +Take a look at the provided C++ examples provided with OpenCV : + +* **samples/cpp/retinademo.cpp** shows how to use the retina module for details enhancement (Parvo channel output) and transient maps observation (Magno channel output). You can play with images, video sequences and webcam video. + Typical uses are (provided your OpenCV installation is situated in folder *OpenCVReleaseFolder*) + + * image processing : **OpenCVReleaseFolder/bin/retinademo -image myPicture.jpg** + + * video processing : **OpenCVReleaseFolder/bin/retinademo -video myMovie.avi** + + * webcam processing: **OpenCVReleaseFolder/bin/retinademo -video** + + **Note :** This demo generates the file *RetinaDefaultParameters.xml* which contains the default parameters of the retina. Then, rename this as *RetinaSpecificParameters.xml*, adjust the parameters the way you want and reload the program to check the effect. + + +* **samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp** shows how to use the retina to perform High Dynamic Range (HDR) luminance compression + + Then, take a HDR image using bracketing with your camera and generate an OpenEXR image and then process it using the demo. + + Typical use, supposing that you have the OpenEXR image such as *memorial.exr* (present in the samples/cpp/ folder) + + **OpenCVReleaseFolder/bin/OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr [optionnal: 'fast']** + + Note that some sliders are made available to allow you to play with luminance compression. + + If not using the 'fast' option, then, tone mapping is performed using the full retina model [Benoit2010]_. It includes spectral whitening that allows luminance energy to be reduced. When using the 'fast' option, then, a simpler method is used, it is an adaptation of the algorithm presented in [Meylan2007]_. This method gives also good results and is faster to process but it sometimes requires some more parameters adjustement. + + +Methods description +=================== + +Here are detailled the main methods to control the retina model + +Ptr::createRetina ++++++++++++++++++++++++++ + +.. ocv:function:: Ptr createRetina(Size inputSize) +.. ocv:function:: Ptr createRetina(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0 ) + + Constructors from standardized interfaces : retreive a smart pointer to a Retina instance + + :param inputSize: the input frame size + :param colorMode: the chosen processing mode : with or without color processing + :param colorSamplingMethod: specifies which kind of color sampling will be used : + + * RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice + + * RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... + + * RETINA_COLOR_BAYER: standard bayer sampling + + :param useRetinaLogSampling: activate retina log sampling, if true, the 2 following parameters can be used + :param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak + :param samplingStrenght: only usefull if param useRetinaLogSampling=true, specifies the strenght of the log scale that is applied + +Retina::activateContoursProcessing +++++++++++++++++++++++++++++++++++ + +.. ocv:function:: void Retina::activateContoursProcessing(const bool activate) + + Activate/desactivate the Parvocellular pathway processing (contours information extraction), by default, it is activated + + :param activate: true if Parvocellular (contours information extraction) output should be activated, false if not... if activated, the Parvocellular output can be retrieved using the **getParvo** methods + +Retina::activateMovingContoursProcessing +++++++++++++++++++++++++++++++++++++++++ + +.. ocv:function:: void Retina::activateMovingContoursProcessing(const bool activate) + + Activate/desactivate the Magnocellular pathway processing (motion information extraction), by default, it is activated + + :param activate: true if Magnocellular output should be activated, false if not... if activated, the Magnocellular output can be retrieved using the **getMagno** methods + +Retina::clearBuffers +++++++++++++++++++++ + +.. ocv:function:: void Retina::clearBuffers() + + Clears all retina buffers (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal transition occuring just after this method call. + +Retina::getParvo +++++++++++++++++ + +.. ocv:function:: void Retina::getParvo( OutputArray retinaOutput_parvo ) +.. ocv:function:: void Retina::getParvoRAW( OutputArray retinaOutput_parvo ) +.. ocv:function:: const Mat Retina::getParvoRAW() const + + Accessor of the details channel of the retina (models foveal vision). Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while the non RAW method allows a normalized matrix to be retrieved. + + :param retinaOutput_parvo: the output buffer (reallocated if necessary), format can be : + + * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV + + * RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1, B2, ...Bn), this output is the original retina filter model output, without any quantification or rescaling. + +Retina::getMagno +++++++++++++++++ + +.. ocv:function:: void Retina::getMagno( OutputArray retinaOutput_magno ) +.. ocv:function:: void Retina::getMagnoRAW( OutputArray retinaOutput_magno ) +.. ocv:function:: const Mat Retina::getMagnoRAW() const + + Accessor of the motion channel of the retina (models peripheral vision). Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while the non RAW method allows a normalized matrix to be retrieved. + + :param retinaOutput_magno: the output buffer (reallocated if necessary), format can be : + + * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV + + * RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the original retina filter model output, without any quantification or rescaling. + +Retina::getInputSize +++++++++++++++++++++ + +.. ocv:function:: Size Retina::getInputSize() + + Retreive retina input buffer size + + :return: the retina input buffer size + +Retina::getOutputSize ++++++++++++++++++++++ + +.. ocv:function:: Size Retina::getOutputSize() + + Retreive retina output buffer size that can be different from the input if a spatial log transformation is applied + + :return: the retina output buffer size + +Retina::printSetup +++++++++++++++++++ + +.. ocv:function:: const String Retina::printSetup() + + Outputs a string showing the used parameters setup + + :return: a string which contains formated parameters information + +Retina::run ++++++++++++ + +.. ocv:function:: void Retina::run(InputArray inputImage) + + Method which allows retina to be applied on an input image, after run, encapsulated retina module is ready to deliver its outputs using dedicated acccessors, see getParvo and getMagno methods + + :param inputImage: the input Mat image to be processed, can be gray level or BGR coded in any format (from 8bit to 16bits) + +Retina::applyFastToneMapping +++++++++++++++++++++++++++++ + +.. ocv:function:: void Retina::applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) + + Method which processes an image in the aim to correct its luminance : correct backlight problems, enhance details in shadows. This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model (simplified version of the run/getParvo methods call) since it does not include the spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral whitening and many other stuff. However, it works great for tone mapping and in a faster way. + + Check the demos and experiments section to see examples and the way to perform tone mapping using the original retina model and the method. + + :param inputImage: the input image to process (should be coded in float format : CV_32F, CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered). + :param outputToneMappedImage: the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format). + +Retina::setColorSaturation +++++++++++++++++++++++++++ + +.. ocv:function:: void Retina::setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0 ) + + Activate color saturation as the final step of the color demultiplexing process -> this saturation is a sigmoide function applied to each channel of the demultiplexed image. + + :param saturateColors: boolean that activates color saturation (if true) or desactivate (if false) + :param colorSaturationValue: the saturation factor : a simple factor applied on the chrominance buffers + + +Retina::setup ++++++++++++++ + +.. ocv:function:: void Retina::setup(String retinaParameterFile = "", const bool applyDefaultSetupOnFailure = true ) +.. ocv:function:: void Retina::setup(FileStorage & fs, const bool applyDefaultSetupOnFailure = true ) +.. ocv:function:: void Retina::setup(RetinaParameters newParameters) + + Try to open an XML retina parameters file to adjust current retina instance setup => if the xml file does not exist, then default setup is applied => warning, Exceptions are thrown if read XML file is not valid + + :param retinaParameterFile: the parameters filename + :param applyDefaultSetupOnFailure: set to true if an error must be thrown on error + :param fs: the open Filestorage which contains retina parameters + :param newParameters: a parameters structures updated with the new target configuration. You can retreive the current parameers structure using method *Retina::RetinaParameters Retina::getParameters()* and update it before running method *setup*. + +Retina::write ++++++++++++++ + +.. ocv:function:: void Retina::write( String fs ) const +.. ocv:function:: void Retina::write( FileStorage& fs ) const + + Write xml/yml formated parameters information + + :param fs: the filename of the xml file that will be open and writen with formatted parameters information + +Retina::setupIPLMagnoChannel +++++++++++++++++++++++++++++ + +.. ocv:function:: void Retina::setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta = 0, const float parasolCells_tau = 0, const float parasolCells_k = 7, const float amacrinCellsTemporalCutFrequency = 1.2, const float V0CompressionParameter = 0.95, const float localAdaptintegration_tau = 0, const float localAdaptintegration_k = 7 ) + + Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel this channel processes signals output from OPL processing stage in peripheral vision, it allows motion information enhancement. It is decorrelated from the details channel. See reference papers for more details. + + :param normaliseOutput: specifies if (true) output is rescaled between 0 and 255 of not (false) + :param parasolCells_beta: the low pass filter gain used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), typical value is 0 + :param parasolCells_tau: the low pass filter time constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical value is 0 (immediate response) + :param parasolCells_k: the low pass filter spatial constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical value is 5 + :param amacrinCellsTemporalCutFrequency: the time constant of the first order high pass fiter of the magnocellular way (motion information channel), unit is frames, typical value is 1.2 + :param V0CompressionParameter: the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.95 + :param localAdaptintegration_tau: specifies the temporal constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation + :param localAdaptintegration_k: specifies the spatial constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation + +Retina::setupOPLandIPLParvoChannel +++++++++++++++++++++++++++++++++++ + +.. ocv:function:: void Retina::setupOPLandIPLParvoChannel(const bool colorMode = true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity = 0.7, const float photoreceptorsTemporalConstant = 0.5, const float photoreceptorsSpatialConstant = 0.53, const float horizontalCellsGain = 0, const float HcellsTemporalConstant = 1, const float HcellsSpatialConstant = 7, const float ganglionCellsSensitivity = 0.7 ) + + Setup the OPL and IPL parvo channels (see biologocal model) OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See reference papers for more informations. + + :param colorMode: specifies if (true) color is processed of not (false) to then processing gray level image + :param normaliseOutput: specifies if (true) output is rescaled between 0 and 255 of not (false) + :param photoreceptorsLocalAdaptationSensitivity: the photoreceptors sensitivity renage is 0-1 (more log compression effect when value increases) + :param photoreceptorsTemporalConstant: the time constant of the first order low pass filter of the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 1 frame + :param photoreceptorsSpatialConstant: the spatial constant of the first order low pass filter of the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 1 pixel + :param horizontalCellsGain: gain of the horizontal cells network, if 0, then the mean value of the output is zero, if the parameter is near 1, then, the luminance is not filtered and is still reachable at the output, typicall value is 0 + :param HcellsTemporalConstant: the time constant of the first order low pass filter of the horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is frames, typical value is 1 frame, as the photoreceptors + :param HcellsSpatialConstant: the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model) + :param ganglionCellsSensitivity: the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.7 + + +Retina::RetinaParameters +======================== + +.. ocv:struct:: Retina::RetinaParameters + + This structure merges all the parameters that can be adjusted threw the **Retina::setup()**, **Retina::setupOPLandIPLParvoChannel** and **Retina::setupIPLMagnoChannel** setup methods + Parameters structure for better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel. :: + + class RetinaParameters{ + struct OPLandIplParvoParameters{ // Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters + OPLandIplParvoParameters():colorMode(true), + normaliseOutput(true), // specifies if (true) output is rescaled between 0 and 255 of not (false) + photoreceptorsLocalAdaptationSensitivity(0.7f), // the photoreceptors sensitivity renage is 0-1 (more log compression effect when value increases) + photoreceptorsTemporalConstant(0.5f),// the time constant of the first order low pass filter of the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 1 frame + photoreceptorsSpatialConstant(0.53f),// the spatial constant of the first order low pass filter of the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 1 pixel + horizontalCellsGain(0.0f),//gain of the horizontal cells network, if 0, then the mean value of the output is zero, if the parameter is near 1, then, the luminance is not filtered and is still reachable at the output, typicall value is 0 + hcellsTemporalConstant(1.f),// the time constant of the first order low pass filter of the horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is frames, typical value is 1 frame, as the photoreceptors. Reduce to 0.5 to limit retina after effects. + hcellsSpatialConstant(7.f),//the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model) + ganglionCellsSensitivity(0.7f)//the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.7 + {};// default setup + bool colorMode, normaliseOutput; + float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity; + }; + struct IplMagnoParameters{ // Inner Plexiform Layer Magnocellular channel (IplMagno) + IplMagnoParameters(): + normaliseOutput(true), //specifies if (true) output is rescaled between 0 and 255 of not (false) + parasolCells_beta(0.f), // the low pass filter gain used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), typical value is 0 + parasolCells_tau(0.f), //the low pass filter time constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical value is 0 (immediate response) + parasolCells_k(7.f), //the low pass filter spatial constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical value is 5 + amacrinCellsTemporalCutFrequency(1.2f), //the time constant of the first order high pass fiter of the magnocellular way (motion information channel), unit is frames, typical value is 1.2 + V0CompressionParameter(0.95f), the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.95 + localAdaptintegration_tau(0.f), // specifies the temporal constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation + localAdaptintegration_k(7.f) // specifies the spatial constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation + {};// default setup + bool normaliseOutput; + float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k; + }; + struct OPLandIplParvoParameters OPLandIplParvo; + struct IplMagnoParameters IplMagno; + }; + +Retina parameters files examples +++++++++++++++++++++++++++++++++ + +Here is the default configuration file of the retina module. It gives results such as the first retina output shown on the top of this page. + +.. code-block:: cpp + + + + + 1 + 1 + 7.5e-01 + 9.0e-01 + 5.3e-01 + 0.01 + 0.5 + 7. + 7.5e-01 + + 1 + 0. + 0. + 7. + 2.0e+00 + 9.5e-01 + 0. + 7. + + +Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page. + +.. code-block:: cpp + + + + + 1 + 1 + 8.9e-01 + 9.0e-01 + 5.3e-01 + 0.3 + 0.5 + 7. + 8.9e-01 + + 1 + 0. + 0. + 7. + 2.0e+00 + 9.5e-01 + 0. + 7. + diff --git a/modules/bioinspired/include/opencv2/bioinspired.hpp b/modules/bioinspired/include/opencv2/bioinspired.hpp new file mode 100644 index 0000000000..fb5a0aa703 --- /dev/null +++ b/modules/bioinspired/include/opencv2/bioinspired.hpp @@ -0,0 +1,51 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_BIOINSPIRED_HPP__ +#define __OPENCV_BIOINSPIRED_HPP__ + +#include "opencv2/core.hpp" +#include "opencv2/bioinspired/retina.hpp" +#include "opencv2/bioinspired/retinafasttonemapping.hpp" + +using namespace cv::hvstools; +#endif diff --git a/modules/bioinspired/include/opencv2/bioinspired/bioinspired.hpp b/modules/bioinspired/include/opencv2/bioinspired/bioinspired.hpp new file mode 100644 index 0000000000..40be2854eb --- /dev/null +++ b/modules/bioinspired/include/opencv2/bioinspired/bioinspired.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/bioinspired.hpp" diff --git a/modules/contrib/include/opencv2/contrib/retina.hpp b/modules/bioinspired/include/opencv2/bioinspired/retina.hpp similarity index 88% rename from modules/contrib/include/opencv2/contrib/retina.hpp rename to modules/bioinspired/include/opencv2/bioinspired/retina.hpp index 579c15d1dc..4e9b4f1220 100644 --- a/modules/contrib/include/opencv2/contrib/retina.hpp +++ b/modules/bioinspired/include/opencv2/bioinspired/retina.hpp @@ -11,7 +11,7 @@ ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) ** - ** Creation - enhancement process 2007-2011 + ** Creation - enhancement process 2007-2013 ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France ** ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). @@ -62,8 +62,8 @@ ** the use of this software, even if advised of the possibility of such damage. *******************************************************************************/ -#ifndef __OPENCV_CONTRIB_RETINA_HPP__ -#define __OPENCV_CONTRIB_RETINA_HPP__ +#ifndef __OPENCV_BIOINSPIRED_RETINA_HPP__ +#define __OPENCV_BIOINSPIRED_RETINA_HPP__ /* * Retina.hpp @@ -75,8 +75,8 @@ #include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support #include -namespace cv -{ +namespace cv{ +namespace hvstools{ enum RETINA_COLORSAMPLINGMETHOD { @@ -241,6 +241,14 @@ public: */ virtual void run(InputArray inputImage)=0; + /** + * method that applies a luminance correction (initially High Dynamic Range (HDR) tone mapping) using only the 2 local adaptation stages of the retina parvo channel : photoreceptors level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal smoothing and eventually high frequencies attenuation. This is a lighter method than the one available using the regular run method. It is then faster but it does not include complete temporal filtering nor retina spectral whitening. Then, it can have a more limited effect on images with a very high dynamic range. This is an adptation of the original still image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: + * -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + @param inputImage the input image to process RGB or gray levels + @param outputToneMappedImage the output tone mapped image + */ + virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0; + /** * accessor of the details channel of the retina (models foveal vision) * @param retinaOutput_parvo : the output buffer (reallocated if necessary), this output is rescaled for standard 8bits image processing use in OpenCV @@ -297,6 +305,26 @@ public: CV_EXPORTS Ptr createRetina(Size inputSize); CV_EXPORTS Ptr createRetina(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); -} -#endif /* __OPENCV_CONTRIB_RETINA_HPP__ */ + + /** + * exports a valarray buffer outing from HVStools objects to a cv::Mat in CV_8UC1 (gray level picture) or CV_8UC3 (color) format + * @param grayMatrixToConvert the valarray to export to OpenCV + * @param nbRows : the number of rows of the valarray flatten matrix + * @param nbColumns : the number of rows of the valarray flatten matrix + * @param colorMode : a flag which mentions if matrix is color (true) or graylevel (false) + * @param outBuffer : the output matrix which is reallocated to satisfy Retina output buffer dimensions + */ + void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer); + + /** + * convert a cv::Mat to a valarray buffer in float format + * @param inputMatToConvert : the OpenCV cv::Mat that has to be converted to gray or RGB valarray buffer that will be processed by the retina model + * @param outputValarrayMatrix : the output valarray + * @return the input image color mode (color=true, gray levels=false) + */ + bool _convertCvMat2ValarrayBuffer(InputArray inputMatToConvert, std::valarray &outputValarrayMatrix); + +} +} +#endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */ diff --git a/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp b/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp new file mode 100644 index 0000000000..0bb040163c --- /dev/null +++ b/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp @@ -0,0 +1,123 @@ + +/*#****************************************************************************** + ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + ** + ** By downloading, copying, installing or using the software you agree to this license. + ** If you do not agree to this license, do not download, install, + ** copy or use the software. + ** + ** + ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** + ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) + ** + ** Creation - enhancement process 2007-2013 + ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France + ** + ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). + ** Refer to the following research paper for more information: + ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: + ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + ** + ** + ** + ** + ** + ** This class is based on image processing tools of the author and already used within the Retina class (this is the same code as method retina::applyFastToneMapping, but in an independent class, it is ligth from a memory requirement point of view). It implements an adaptation of the efficient tone mapping algorithm propose by David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: + ** -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + ** + ** + ** License Agreement + ** For Open Source Computer Vision Library + ** + ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. + ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. + ** + ** For Human Visual System tools (hvstools) + ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. + ** + ** Third party copyrights are property of their respective owners. + ** + ** Redistribution and use in source and binary forms, with or without modification, + ** are permitted provided that the following conditions are met: + ** + ** * Redistributions of source code must retain the above copyright notice, + ** this list of conditions and the following disclaimer. + ** + ** * Redistributions in binary form must reproduce the above copyright notice, + ** this list of conditions and the following disclaimer in the documentation + ** and/or other materials provided with the distribution. + ** + ** * The name of the copyright holders may not be used to endorse or promote products + ** derived from this software without specific prior written permission. + ** + ** This software is provided by the copyright holders and contributors "as is" and + ** any express or implied warranties, including, but not limited to, the implied + ** warranties of merchantability and fitness for a particular purpose are disclaimed. + ** In no event shall the Intel Corporation or contributors be liable for any direct, + ** indirect, incidental, special, exemplary, or consequential damages + ** (including, but not limited to, procurement of substitute goods or services; + ** loss of use, data, or profits; or business interruption) however caused + ** and on any theory of liability, whether in contract, strict liability, + ** or tort (including negligence or otherwise) arising in any way out of + ** the use of this software, even if advised of the possibility of such damage. + *******************************************************************************/ + +#ifndef __OPENCV_CONTRIB_RETINAFASTTONEMAPPING_HPP__ +#define __OPENCV_CONTRIB_RETINAFASTTONEMAPPING_HPP__ + +/* + * retinafasttonemapping.hpp + * + * Created on: May 26, 2013 + * Author: Alexandre Benoit + */ + +#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support +#include + +namespace cv{ +namespace hvstools{ + +/** + * @class RetinaFastToneMappingImpl a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV. + * This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc. + * As a summary, these are the model properties: + * => 2 stages of local luminance adaptation with a different local neighborhood for each. + * => first stage models the retina photorecetors local luminance adaptation + * => second stage models th ganglion cells local information adaptation + * => compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters. + * ====> this can help noise robustness and temporal stability for video sequence use cases. + * for more information, read to the following papers : + * Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + * regarding spatio-temporal filter and the bigger retina model : + * Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + */ +class CV_EXPORTS RetinaFastToneMapping : public Algorithm +{ +public: + + /** + * method that applies a luminance correction (initially High Dynamic Range (HDR) tone mapping) using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal smoothing and eventually high frequencies attenuation. This is a lighter method than the one available using the regular retina::run method. It is then faster but it does not include complete temporal filtering nor retina spectral whitening. Then, it can have a more limited effect on images with a very high dynamic range. This is an adptation of the original still image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: + * -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + @param inputImage the input image to process RGB or gray levels + @param outputToneMappedImage the output tone mapped image + */ + virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0; + + /** + * setup method that updates tone mapping behaviors by adjusing the local luminance computation area + * @param photoreceptorsNeighborhoodRadius the first stage local adaptation area + * @param ganglioncellsNeighborhoodRadius the second stage local adaptation area + * @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information (default is 1, see reference paper) + */ + virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f)=0; +}; + +CV_EXPORTS Ptr createRetinaFastToneMapping(Size inputSize); + +} +} +#endif /* __OPENCV_CONTRIB_RETINAFASTTONEMAPPING_HPP__ */ + diff --git a/modules/contrib/src/basicretinafilter.cpp b/modules/bioinspired/src/basicretinafilter.cpp similarity index 99% rename from modules/contrib/src/basicretinafilter.cpp rename to modules/bioinspired/src/basicretinafilter.cpp index 020b8f04e1..57f5c439ed 100644 --- a/modules/contrib/src/basicretinafilter.cpp +++ b/modules/bioinspired/src/basicretinafilter.cpp @@ -72,7 +72,8 @@ namespace cv { - +namespace hvstools +{ // @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr Gipsa-Lab, France: www.gipsa-lab.inpg.fr/ ////////////////////////////////////////////////////////// @@ -883,4 +884,5 @@ void BasicRetinaFilter::_verticalAnticausalFilter_Irregular_multGain(float *outp } } -} +}// end of namespace hvstools +}// end of namespace cv diff --git a/modules/contrib/src/basicretinafilter.hpp b/modules/bioinspired/src/basicretinafilter.hpp similarity index 99% rename from modules/contrib/src/basicretinafilter.hpp rename to modules/bioinspired/src/basicretinafilter.hpp index a2ece415db..c22fa0a902 100644 --- a/modules/contrib/src/basicretinafilter.hpp +++ b/modules/bioinspired/src/basicretinafilter.hpp @@ -113,6 +113,8 @@ //#define __BASIC_RETINA_ELEMENT_DEBUG namespace cv +{ +namespace hvstools { class BasicRetinaFilter { @@ -287,7 +289,7 @@ namespace cv * @param maxInputValue: the maximum amplitude value measured after local adaptation processing (c.f. function runFilter_LocalAdapdation & runFilter_LocalAdapdation_autonomous) * @param meanLuminance: the a priori meann luminance of the input data (should be 128 for 8bits images but can vary greatly in case of High Dynamic Range Images (HDRI) */ - void setV0CompressionParameterToneMapping(const float v0, const float maxInputValue, const float meanLuminance=128.0f){ _v0=v0*maxInputValue; _localLuminanceFactor=1.0f; _localLuminanceAddon=meanLuminance*_v0; _maxInputValue=maxInputValue;}; + void setV0CompressionParameterToneMapping(const float v0, const float maxInputValue, const float meanLuminance=128.0f){ _v0=v0*maxInputValue; _localLuminanceFactor=1.0f; _localLuminanceAddon=meanLuminance*v0; _maxInputValue=maxInputValue;}; /** * update compression parameters while keeping v0 parameter value @@ -650,7 +652,8 @@ namespace cv }; -} +}// end of namespace hvstools +}// end of namespace cv #endif diff --git a/modules/contrib/src/imagelogpolprojection.cpp b/modules/bioinspired/src/imagelogpolprojection.cpp similarity index 99% rename from modules/contrib/src/imagelogpolprojection.cpp rename to modules/bioinspired/src/imagelogpolprojection.cpp index 22f5214e7c..4fa9802deb 100644 --- a/modules/contrib/src/imagelogpolprojection.cpp +++ b/modules/bioinspired/src/imagelogpolprojection.cpp @@ -72,7 +72,8 @@ namespace cv { - +namespace hvstools +{ // constructor ImageLogPolProjection::ImageLogPolProjection(const unsigned int nbRows, const unsigned int nbColumns, const PROJECTIONTYPE projection, const bool colorModeCapable) :BasicRetinaFilter(nbRows, nbColumns), @@ -446,4 +447,5 @@ std::valarray &ImageLogPolProjection::runProjection(const std::valarray &MagnoRetinaFilter::runFilter(const std::valarray inline const T* get_data(const std::valarray& arr) +{ return &((std::valarray&)arr)[0]; } + +} + +#endif diff --git a/modules/contrib/src/retina.cpp b/modules/bioinspired/src/retina.cpp similarity index 92% rename from modules/contrib/src/retina.cpp rename to modules/bioinspired/src/retina.cpp index de752c024c..509e2a1fcf 100644 --- a/modules/contrib/src/retina.cpp +++ b/modules/bioinspired/src/retina.cpp @@ -75,6 +75,8 @@ namespace cv { +namespace hvstools +{ class RetinaImpl : public Retina { @@ -196,6 +198,14 @@ public: */ void run(InputArray inputImage); + /** + * method that applies a luminance correction (initially High Dynamic Range (HDR) tone mapping) using only the 2 local adaptation stages of the retina parvo channel : photoreceptors level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal smoothing and eventually high frequencies attenuation. This is a lighter method than the one available using the regular run method. It is then faster but it does not include complete temporal filtering nor retina spectral whitening. This is an adptation of the original still image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: + * -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + @param inputImage the input image to process RGB or gray levels + @param outputToneMappedImage the output tone mapped image + */ + void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage); + /** * accessor of the details channel of the retina (models foveal vision) * @param retinaOutput_parvo : the output buffer (reallocated if necessary), this output is rescaled for standard 8bits image processing use in OpenCV @@ -253,30 +263,12 @@ private: // Parameteres setup members RetinaParameters _retinaParameters; // structure of parameters - // Retina model related modules + // Retina model related modules std::valarray _inputBuffer; //!< buffer used to convert input cv::Mat to internal retina buffers format (valarrays) // pointer to retina model RetinaFilter* _retinaFilter; //!< the pointer to the retina module, allocated with instance construction - /** - * exports a valarray buffer outing from HVStools objects to a cv::Mat in CV_8UC1 (gray level picture) or CV_8UC3 (color) format - * @param grayMatrixToConvert the valarray to export to OpenCV - * @param nbRows : the number of rows of the valarray flatten matrix - * @param nbColumns : the number of rows of the valarray flatten matrix - * @param colorMode : a flag which mentions if matrix is color (true) or graylevel (false) - * @param outBuffer : the output matrix which is reallocated to satisfy Retina output buffer dimensions - */ - void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer); - - /** - * - * @param inputMatToConvert : the OpenCV cv::Mat that has to be converted to gray or RGB valarray buffer that will be processed by the retina model - * @param outputValarrayMatrix : the output valarray - * @return the input image color mode (color=true, gray levels=false) - */ - bool _convertCvMat2ValarrayBuffer(InputArray inputMatToConvert, std::valarray &outputValarrayMatrix); - //! private method called by constructors, gathers their parameters and use them in a unified way void _init(const Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); @@ -287,6 +279,7 @@ private: Ptr createRetina(Size inputSize){ return new RetinaImpl(inputSize); } Ptr createRetina(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght){return new RetinaImpl(inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);} + // RetinaImpl code RetinaImpl::RetinaImpl(const cv::Size inputSz) { @@ -401,10 +394,10 @@ void RetinaImpl::setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailur printf("%s\n", printSetup().c_str()); } -void RetinaImpl::setup(cv::Retina::RetinaParameters newConfiguration) +void RetinaImpl::setup(Retina::RetinaParameters newConfiguration) { // simply copy structures - memcpy(&_retinaParameters, &newConfiguration, sizeof(cv::Retina::RetinaParameters)); + memcpy(&_retinaParameters, &newConfiguration, sizeof(Retina::RetinaParameters)); // apply setup setupOPLandIPLParvoChannel(_retinaParameters.OPLandIplParvo.colorMode, _retinaParameters.OPLandIplParvo.normaliseOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.photoreceptorsTemporalConstant, _retinaParameters.OPLandIplParvo.photoreceptorsSpatialConstant, _retinaParameters.OPLandIplParvo.horizontalCellsGain, _retinaParameters.OPLandIplParvo.hcellsTemporalConstant, _retinaParameters.OPLandIplParvo.hcellsSpatialConstant, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity); setupIPLMagnoChannel(_retinaParameters.IplMagno.normaliseOutput, _retinaParameters.IplMagno.parasolCells_beta, _retinaParameters.IplMagno.parasolCells_tau, _retinaParameters.IplMagno.parasolCells_k, _retinaParameters.IplMagno.amacrinCellsTemporalCutFrequency,_retinaParameters.IplMagno.V0CompressionParameter, _retinaParameters.IplMagno.localAdaptintegration_tau, _retinaParameters.IplMagno.localAdaptintegration_k); @@ -526,6 +519,27 @@ void RetinaImpl::run(InputArray inputMatToConvert) throw cv::Exception(-1, "RetinaImpl cannot be applied, wrong input buffer size", "RetinaImpl::run", "RetinaImpl.h", 0); } +void RetinaImpl::applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) +{ + // first convert input image to the compatible format : + const bool colorMode = _convertCvMat2ValarrayBuffer(inputImage.getMat(), _inputBuffer); + const unsigned int nbPixels=_retinaFilter->getOutputNBrows()*_retinaFilter->getOutputNBcolumns(); + + // process tone mapping + if (colorMode) + { + std::valarray imageOutput(nbPixels*3); + _retinaFilter->runRGBToneMapping(_inputBuffer, imageOutput, true, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity); + _convertValarrayBuffer2cvMat(imageOutput, _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), true, outputToneMappedImage); + }else + { + std::valarray imageOutput(nbPixels); + _retinaFilter->runGrayToneMapping(_inputBuffer, imageOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity); + _convertValarrayBuffer2cvMat(imageOutput, _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, outputToneMappedImage); + } + +} + void RetinaImpl::getParvo(OutputArray retinaOutput_parvo) { if (_retinaFilter->getColorMode()) @@ -584,7 +598,7 @@ void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, RETINA_COLO { // basic error check if (inputSz.height*inputSz.width <= 0) - throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "RetinaImpl::setup", "RetinaImpl.h", 0); + throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "RetinaImpl::setup", "Retina.cpp", 0); unsigned int nbPixels=inputSz.height*inputSz.width; // resize buffers if size does not match @@ -596,7 +610,7 @@ void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, RETINA_COLO _retinaFilter = new RetinaFilter(inputSz.height, inputSz.width, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght); // prepare the default parameter XML file with default setup - setup(_retinaParameters); + setup(_retinaParameters); // init retina _retinaFilter->clearAllBuffers(); @@ -605,7 +619,7 @@ void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, RETINA_COLO printf("%s\n", printSetup().c_str()); } -void RetinaImpl::_convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer) +void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer) { // fill output buffer with the valarray buffer const float *valarrayPTR=get_data(grayMatrixToConvert); @@ -623,7 +637,8 @@ void RetinaImpl::_convertValarrayBuffer2cvMat(const std::valarray &grayMa } }else { - const unsigned int doubleNBpixels=_retinaFilter->getOutputNBpixels()*2; + const unsigned int nbPixels=nbColumns*nbRows; + const unsigned int doubleNBpixels=nbColumns*nbRows*2; outBuffer.create(cv::Size(nbColumns, nbRows), CV_8UC3); Mat outMat = outBuffer.getMat(); for (unsigned int i=0;i &grayMa cv::Point2d pixel(j,i); cv::Vec3b pixelValues; pixelValues[2]=(unsigned char)*(valarrayPTR); - pixelValues[1]=(unsigned char)*(valarrayPTR+_retinaFilter->getOutputNBpixels()); + pixelValues[1]=(unsigned char)*(valarrayPTR+nbPixels); pixelValues[0]=(unsigned char)*(valarrayPTR+doubleNBpixels); outMat.at(pixel)=pixelValues; @@ -642,7 +657,7 @@ void RetinaImpl::_convertValarrayBuffer2cvMat(const std::valarray &grayMa } } -bool RetinaImpl::_convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray &outputValarrayMatrix) +bool _convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray &outputValarrayMatrix) { const Mat inputMatToConvert=inputMat.getMat(); // first check input consistency @@ -657,14 +672,16 @@ bool RetinaImpl::_convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray const int dsttype = DataType::depth; // output buffer is float format + const unsigned int nbPixels=inputMat.getMat().rows*inputMat.getMat().cols; + const unsigned int doubleNBpixels=inputMat.getMat().rows*inputMat.getMat().cols*2; if(imageNumberOfChannels==4) { // create a cv::Mat table (for RGBA planes) cv::Mat planes[4] = { - cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]), - cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]), cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]) }; planes[3] = cv::Mat(inputMatToConvert.size(), dsttype); // last channel (alpha) does not point on the valarray (not usefull in our case) @@ -676,8 +693,8 @@ bool RetinaImpl::_convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray // create a cv::Mat table (for RGB planes) cv::Mat planes[] = { - cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()*2]), - cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[_retinaFilter->getInputNBpixels()]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]), cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]) }; // split color cv::Mat in 3 planes... it fills valarray directely @@ -701,5 +718,6 @@ void RetinaImpl::activateMovingContoursProcessing(const bool activate){_retinaFi void RetinaImpl::activateContoursProcessing(const bool activate){_retinaFilter->activateContoursProcessing(activate);} -} // end of namespace cv +}// end of namespace hvstools +}// end of namespace cv diff --git a/modules/contrib/src/retinacolor.cpp b/modules/bioinspired/src/retinacolor.cpp similarity index 99% rename from modules/contrib/src/retinacolor.cpp rename to modules/bioinspired/src/retinacolor.cpp index 92cba47af5..1498e36ab3 100644 --- a/modules/contrib/src/retinacolor.cpp +++ b/modules/bioinspired/src/retinacolor.cpp @@ -73,7 +73,8 @@ namespace cv { - +namespace hvstools +{ // init static values static float _LMStoACr1Cr2[]={1.0, 1.0, 0.0, 1.0, -1.0, 0.0, -0.5, -0.5, 1.0}; //static double _ACr1Cr2toLMS[]={0.5, 0.5, 0.0, 0.5, -0.5, 0.0, 0.5, 0.0, 1.0}; @@ -720,4 +721,5 @@ void RetinaColor::_applyImageColorSpaceConversion(const std::valarray &in } } -} +}// end of namespace hvstools +}// end of namespace cv diff --git a/modules/contrib/src/retinacolor.hpp b/modules/bioinspired/src/retinacolor.hpp similarity index 99% rename from modules/contrib/src/retinacolor.hpp rename to modules/bioinspired/src/retinacolor.hpp index ff4a12e408..640d0da526 100644 --- a/modules/contrib/src/retinacolor.hpp +++ b/modules/bioinspired/src/retinacolor.hpp @@ -85,7 +85,8 @@ namespace cv { - +namespace hvstools +{ class RetinaColor: public BasicRetinaFilter { public: @@ -99,7 +100,7 @@ namespace cv * @param NBcolumns: number of columns of the input image * @param samplingMethod: the chosen color sampling method */ - RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod=RETINA_COLOR_DIAGONAL); + RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod=RETINA_COLOR_BAYER); /** * standard destructor @@ -382,7 +383,8 @@ namespace cv #endif }; -} +}// end of namespace hvstools +}// end of namespace cv #endif /*RETINACOLOR_HPP_*/ diff --git a/modules/bioinspired/src/retinafasttonemapping.cpp b/modules/bioinspired/src/retinafasttonemapping.cpp new file mode 100644 index 0000000000..c052770bcb --- /dev/null +++ b/modules/bioinspired/src/retinafasttonemapping.cpp @@ -0,0 +1,222 @@ + +/*#****************************************************************************** + ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + ** + ** By downloading, copying, installing or using the software you agree to this license. + ** If you do not agree to this license, do not download, install, + ** copy or use the software. + ** + ** + ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** + ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) + ** + ** Creation - enhancement process 2007-2013 + ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France + ** + ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). + ** Refer to the following research paper for more information: + ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: + ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + ** + ** + ** This class is based on image processing tools of the author and already used within the Retina class (this is the same code as method retina::applyFastToneMapping, but in an independent class, it is ligth from a memory requirement point of view). It implements an adaptation of the efficient tone mapping algorithm propose by David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: + ** -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + ** + ** + ** License Agreement + ** For Open Source Computer Vision Library + ** + ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. + ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. + ** + ** For Human Visual System tools (hvstools) + ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. + ** + ** Third party copyrights are property of their respective owners. + ** + ** Redistribution and use in source and binary forms, with or without modification, + ** are permitted provided that the following conditions are met: + ** + ** * Redistributions of source code must retain the above copyright notice, + ** this list of conditions and the following disclaimer. + ** + ** * Redistributions in binary form must reproduce the above copyright notice, + ** this list of conditions and the following disclaimer in the documentation + ** and/or other materials provided with the distribution. + ** + ** * The name of the copyright holders may not be used to endorse or promote products + ** derived from this software without specific prior written permission. + ** + ** This software is provided by the copyright holders and contributors "as is" and + ** any express or implied warranties, including, but not limited to, the implied + ** warranties of merchantability and fitness for a particular purpose are disclaimed. + ** In no event shall the Intel Corporation or contributors be liable for any direct, + ** indirect, incidental, special, exemplary, or consequential damages + ** (including, but not limited to, procurement of substitute goods or services; + ** loss of use, data, or profits; or business interruption) however caused + ** and on any theory of liability, whether in contract, strict liability, + ** or tort (including negligence or otherwise) arising in any way out of + ** the use of this software, even if advised of the possibility of such damage. + *******************************************************************************/ + +/* + * retinafasttonemapping.cpp + * + * Created on: May 26, 2013 + * Author: Alexandre Benoit + */ + +#include "precomp.hpp" +#include "basicretinafilter.hpp" +#include "retinacolor.hpp" +#include +#include +#include + +namespace cv +{ +namespace hvstools +{ +/** + * @class RetinaFastToneMappingImpl a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV. + * This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc. + * As a summary, these are the model properties: + * => 2 stages of local luminance adaptation with a different local neighborhood for each. + * => first stage models the retina photorecetors local luminance adaptation + * => second stage models th ganglion cells local information adaptation + * => compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters. + * ====> this can help noise robustness and temporal stability for video sequence use cases. + * for more information, read to the following papers : + * Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + * regarding spatio-temporal filter and the bigger retina model : + * Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + */ + +class RetinaFastToneMappingImpl : public RetinaFastToneMapping +{ +public: + /** + * constructor + * @param imageInput: the size of the images to process + */ + RetinaFastToneMappingImpl(Size imageInput) + { + unsigned int nbPixels=imageInput.height*imageInput.width; + + // basic error check + if (nbPixels <= 0) + throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "RetinaImpl::setup", "retinafasttonemapping.cpp", 0); + + // resize buffers + _inputBuffer.resize(nbPixels*3); // buffer supports gray images but also 3 channels color buffers... (larger is better...) + _imageOutput.resize(nbPixels*3); + _temp2.resize(nbPixels); + // allocate the main filter with 2 setup sets properties (one for each low pass filter + _multiuseFilter = new BasicRetinaFilter(imageInput.height, imageInput.width, 2); + // allocate the color manager (multiplexer/demultiplexer + _colorEngine = new RetinaColor(imageInput.height, imageInput.width); + // setup filter behaviors with default values + setup(); + } + + /** + * basic destructor + */ + virtual ~RetinaFastToneMappingImpl(){}; + + /** + * method that applies a luminance correction (initially High Dynamic Range (HDR) tone mapping) using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal smoothing and eventually high frequencies attenuation. This is a lighter method than the one available using the regular retina::run method. It is then faster but it does not include complete temporal filtering nor retina spectral whitening. Then, it can have a more limited effect on images with a very high dynamic range. This is an adptation of the original still image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: + * -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + @param inputImage the input image to process RGB or gray levels + @param outputToneMappedImage the output tone mapped image + */ + virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) + { + // first convert input image to the compatible format : + const bool colorMode = _convertCvMat2ValarrayBuffer(inputImage.getMat(), _inputBuffer); + + // process tone mapping + if (colorMode) + { + _runRGBToneMapping(_inputBuffer, _imageOutput, true); + _convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), true, outputToneMappedImage); + }else + { + _runGrayToneMapping(_inputBuffer, _imageOutput); + _convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), false, outputToneMappedImage); + } + + } + + /** + * setup method that updates tone mapping behaviors by adjusing the local luminance computation area + * @param photoreceptorsNeighborhoodRadius the first stage local adaptation area + * @param ganglioncellsNeighborhoodRadius the second stage local adaptation area + * @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information (default is 1, see reference paper) + */ + virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f) + { + // setup the spatio-temporal properties of each filter + _meanLuminanceModulatorK = meanLuminanceModulatorK; + _multiuseFilter->setV0CompressionParameter(1.f, 255.f, 128.f); + _multiuseFilter->setLPfilterParameters(0.f, 0.f, photoreceptorsNeighborhoodRadius, 1); + _multiuseFilter->setLPfilterParameters(0.f, 0.f, ganglioncellsNeighborhoodRadius, 2); + } + +private: + // a filter able to perform local adaptation and low pass spatio-temporal filtering + cv::Ptr _multiuseFilter; + cv::Ptr _colorEngine; + + //!< buffer used to convert input cv::Mat to internal retina buffers format (valarrays) + std::valarray _inputBuffer; + std::valarray _imageOutput; + std::valarray _temp2; + float _meanLuminanceModulatorK; + + // run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated + void _runGrayToneMapping(const std::valarray &grayImageInput, std::valarray &grayImageOutput) + { + // apply tone mapping on the multiplexed image + // -> photoreceptors local adaptation (large area adaptation) + _multiuseFilter->runFilter_LPfilter(grayImageInput, grayImageOutput, 0); // compute low pass filtering modeling the horizontal cells filtering to acess local luminance + _multiuseFilter->setV0CompressionParameterToneMapping(1.f, grayImageOutput.max(), _meanLuminanceModulatorK*grayImageOutput.sum()/(float)_multiuseFilter->getNBpixels()); + _multiuseFilter->runFilter_LocalAdapdation(grayImageInput, grayImageOutput, _temp2); // adapt contrast to local luminance + + // -> ganglion cells local adaptation (short area adaptation) + _multiuseFilter->runFilter_LPfilter(_temp2, grayImageOutput, 1); // compute low pass filtering (high cut frequency (remove spatio-temporal noise) + _multiuseFilter->setV0CompressionParameterToneMapping(1.f, _temp2.max(), _meanLuminanceModulatorK*grayImageOutput.sum()/(float)_multiuseFilter->getNBpixels()); + _multiuseFilter->runFilter_LocalAdapdation(_temp2, grayImageOutput, grayImageOutput); // adapt contrast to local luminance + + } + + // run the initilized retina filter in order to perform color tone mapping, after this call all retina outputs are updated + void _runRGBToneMapping(const std::valarray &RGBimageInput, std::valarray &RGBimageOutput, const bool useAdaptiveFiltering) + { + // multiplex the image with the color sampling method specified in the constructor + _colorEngine->runColorMultiplexing(RGBimageInput); + + // apply tone mapping on the multiplexed image + _runGrayToneMapping(_colorEngine->getMultiplexedFrame(), RGBimageOutput); + + // demultiplex tone maped image + _colorEngine->runColorDemultiplexing(RGBimageOutput, useAdaptiveFiltering, _multiuseFilter->getMaxInputValue());//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput()); + + // rescaling result between 0 and 255 + _colorEngine->normalizeRGBOutput_0_maxOutputValue(255.0); + + // return the result + RGBimageOutput=_colorEngine->getDemultiplexedColorFrame(); + } + +}; + +CV_EXPORTS Ptr createRetinaFastToneMapping(Size inputSize) +{ + return new RetinaFastToneMappingImpl(inputSize); +} + +}// end of namespace hvstools +}// end of namespace cv diff --git a/modules/contrib/src/retinafilter.cpp b/modules/bioinspired/src/retinafilter.cpp similarity index 98% rename from modules/contrib/src/retinafilter.cpp rename to modules/bioinspired/src/retinafilter.cpp index 4cf6019f57..a666b1fbf3 100644 --- a/modules/contrib/src/retinafilter.cpp +++ b/modules/bioinspired/src/retinafilter.cpp @@ -72,6 +72,8 @@ #include namespace cv +{ +namespace hvstools { // standard constructor without any log sampling of the input frame RetinaFilter::RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode, const RETINA_COLORSAMPLINGMETHOD samplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) @@ -375,21 +377,15 @@ namespace cv // apply tone mapping on the multiplexed image // -> photoreceptors local adaptation (large area adaptation) _photoreceptorsPrefilter.runFilter_LPfilter(grayImageInput, grayImageOutput, 2); // compute low pass filtering modeling the horizontal cells filtering to acess local luminance - _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(PhotoreceptorsCompression, grayImageOutput.sum()/(float)_photoreceptorsPrefilter.getNBpixels()); + _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(1.f-PhotoreceptorsCompression, grayImageOutput.max(), 1.f*grayImageOutput.sum()/(float)_photoreceptorsPrefilter.getNBpixels()); _photoreceptorsPrefilter.runFilter_LocalAdapdation(grayImageInput, grayImageOutput, temp2); // adapt contrast to local luminance - // high pass filter - //_spatiotemporalLPfilter(_localBuffer, _filterOutput, 2); // compute low pass filtering (high cut frequency (remove spatio-temporal noise) - - //for (unsigned int i=0;i<_NBpixels;++i) - // _localBuffer[i]-= _filterOutput[i]/2.0; - // -> ganglion cells local adaptation (short area adaptation) _photoreceptorsPrefilter.runFilter_LPfilter(temp2, grayImageOutput, 1); // compute low pass filtering (high cut frequency (remove spatio-temporal noise) - _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(ganglionCellsCompression, temp2.max(), temp2.sum()/(float)_photoreceptorsPrefilter.getNBpixels()); + _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(1.f-ganglionCellsCompression, temp2.max(), 1.f*temp2.sum()/(float)_photoreceptorsPrefilter.getNBpixels()); _photoreceptorsPrefilter.runFilter_LocalAdapdation(temp2, grayImageOutput, grayImageOutput); // adapt contrast to local luminance - } + // run the initilized retina filter in order to perform color tone mapping, after this call all retina outputs are updated void RetinaFilter::runRGBToneMapping(const std::valarray &RGBimageInput, std::valarray &RGBimageOutput, const bool useAdaptiveFiltering, const float PhotoreceptorsCompression, const float ganglionCellsCompression) { @@ -526,4 +522,5 @@ namespace cv return true; } -} +}// end of namespace hvstools +}// end of namespace cv diff --git a/modules/contrib/src/retinafilter.hpp b/modules/bioinspired/src/retinafilter.hpp similarity index 99% rename from modules/contrib/src/retinafilter.hpp rename to modules/bioinspired/src/retinafilter.hpp index 7fa2a078c8..02ccdb89fb 100644 --- a/modules/contrib/src/retinafilter.hpp +++ b/modules/bioinspired/src/retinafilter.hpp @@ -110,7 +110,8 @@ //#define __RETINADEBUG // define RETINADEBUG to display debug data namespace cv { - +namespace hvstools +{ // retina class that process the 3 outputs of the retina filtering stages class RetinaFilter//: public BasicRetinaFilter { @@ -541,7 +542,9 @@ private: }; -} +}// end of namespace hvstools +}// end of namespace cv + #endif /*RETINACLASSES_H_*/ diff --git a/modules/contrib/src/templatebuffer.hpp b/modules/bioinspired/src/templatebuffer.hpp similarity index 99% rename from modules/contrib/src/templatebuffer.hpp rename to modules/bioinspired/src/templatebuffer.hpp index 21414b4da7..c3174d332e 100644 --- a/modules/contrib/src/templatebuffer.hpp +++ b/modules/bioinspired/src/templatebuffer.hpp @@ -71,6 +71,12 @@ #include +//#define __TEMPLATEBUFFERDEBUG //define TEMPLATEBUFFERDEBUG in order to display debug information + +namespace cv +{ +namespace hvstools +{ //// If a parallelization method is available then, you should define MAKE_PARALLEL, in the other case, the classical serial code will be used #define MAKE_PARALLEL // ==> then include required includes @@ -101,10 +107,6 @@ public: }; #endif -//#define __TEMPLATEBUFFERDEBUG //define TEMPLATEBUFFERDEBUG in order to display debug information - -namespace cv -{ /** * @class TemplateBuffer * @brief this class is a simple template memory buffer which contains basic functions to get information on or normalize the buffer content @@ -548,7 +550,8 @@ namespace cv return std::fabs(x); } -} +}// end of namespace hvstools +}// end of namespace cv #endif diff --git a/modules/bioinspired/test/test_main.cpp b/modules/bioinspired/test/test_main.cpp new file mode 100644 index 0000000000..6b24993447 --- /dev/null +++ b/modules/bioinspired/test/test_main.cpp @@ -0,0 +1,3 @@ +#include "test_precomp.hpp" + +CV_TEST_MAIN("cv") diff --git a/modules/bioinspired/test/test_precomp.cpp b/modules/bioinspired/test/test_precomp.cpp new file mode 100644 index 0000000000..5956e13e3e --- /dev/null +++ b/modules/bioinspired/test/test_precomp.cpp @@ -0,0 +1 @@ +#include "test_precomp.hpp" diff --git a/modules/bioinspired/test/test_precomp.hpp b/modules/bioinspired/test/test_precomp.hpp new file mode 100644 index 0000000000..e87ed79628 --- /dev/null +++ b/modules/bioinspired/test/test_precomp.hpp @@ -0,0 +1,17 @@ +#ifdef __GNUC__ +# pragma GCC diagnostic ignored "-Wmissing-declarations" +# if defined __clang__ || defined __APPLE__ +# pragma GCC diagnostic ignored "-Wmissing-prototypes" +# pragma GCC diagnostic ignored "-Wextra" +# endif +#endif + +#ifndef __OPENCV_TEST_PRECOMP_HPP__ +#define __OPENCV_TEST_PRECOMP_HPP__ + +#include "opencv2/ts.hpp" +#include "opencv2/bioinspired.hpp" +#include + +#endif + diff --git a/samples/cpp/tutorial_code/contrib/retina_tutorial.cpp b/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp similarity index 96% rename from samples/cpp/tutorial_code/contrib/retina_tutorial.cpp rename to samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp index 284bbf5d8d..428f8f618a 100644 --- a/samples/cpp/tutorial_code/contrib/retina_tutorial.cpp +++ b/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp @@ -9,7 +9,7 @@ #include #include -#include "opencv2/contrib.hpp" +#include "opencv2/bioinspired.hpp" #include "opencv2/highgui.hpp" static void help(std::string errorMessage) @@ -95,16 +95,16 @@ int main(int argc, char* argv[]) { try { // create a retina instance with default parameters setup, uncomment the initialisation you wanna test - cv::Ptr myRetina; + cv::Ptr myRetina; // if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) if (useLogSampling) { - myRetina = cv::createRetina(inputFrame.size(), true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0); + myRetina = createRetina(inputFrame.size(), true, RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : { - myRetina = cv::createRetina(inputFrame.size()); + myRetina = createRetina(inputFrame.size()); } // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" From 7bff79bbeb91b391ffa09c8c262eeda4a7d310e1 Mon Sep 17 00:00:00 2001 From: alexandre benoit Date: Wed, 12 Jun 2013 22:43:36 +0200 Subject: [PATCH 2/6] updated demos and tutorial regarding the Retina class transfer to bioinspired module. --- doc/CMakeLists.txt | 4 +- doc/tutorials/tutorials.rst | 12 ++-- include/opencv2/opencv.hpp | 1 + .../include/opencv2/bioinspired.hpp | 2 +- modules/contrib/doc/retina/index.rst | 28 ++++++-- modules/contrib/include/opencv2/contrib.hpp | 1 - samples/cpp/CMakeLists.txt | 2 +- ...es_HighDynamicRange_Retina_toneMapping.cpp | 72 +++++++++++++------ ...hDynamicRange_Retina_toneMapping_video.cpp | 11 +-- samples/cpp/retinaDemo.cpp | 11 +-- 10 files changed, 97 insertions(+), 47 deletions(-) diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index 70f4809d22..c42c3b1bb1 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -17,7 +17,7 @@ if(BUILD_DOCS AND HAVE_SPHINX) set(OPTIONAL_DOC_LIST "") - set(OPENCV2_BASE_MODULES core imgproc highgui video calib3d features2d objdetect ml flann gpu photo stitching nonfree contrib legacy) + set(OPENCV2_BASE_MODULES core imgproc highgui video calib3d features2d objdetect ml flann gpu photo stitching nonfree contrib legacy bioinspired) # build lists of modules to be documented set(OPENCV2_MODULES "") @@ -122,4 +122,4 @@ if(BUILD_DOCS AND HAVE_SPHINX) install(FILES "${f}" DESTINATION "${OPENCV_DOC_INSTALL_PATH}" OPTIONAL) endforeach() -endif() \ No newline at end of file +endif() diff --git a/doc/tutorials/tutorials.rst b/doc/tutorials/tutorials.rst index cbc51c1956..07bc515d53 100644 --- a/doc/tutorials/tutorials.rst +++ b/doc/tutorials/tutorials.rst @@ -156,17 +156,17 @@ As always, we would be happy to hear your comments and receive your contribution :width: 80pt :alt: gpu icon -* :ref:`Table-Of-Content-Contrib` +* :ref:`Table-Of-Content-Bioinspired` .. tabularcolumns:: m{100pt} m{300pt} .. cssclass:: toctableopencv - =========== ======================================================= - |Contrib| Discover additional contribution to OpenCV. + ============= ======================================================= + |Bioinspired| Algorithms inspired from biological models. - =========== ======================================================= + ============= ======================================================= - .. |Contrib| image:: images/retina.jpg + .. |Bioinspired| image:: images/retina.jpg :height: 80pt :width: 80pt :alt: gpu icon @@ -219,6 +219,6 @@ As always, we would be happy to hear your comments and receive your contribution objdetect/table_of_content_objdetect/table_of_content_objdetect ml/table_of_content_ml/table_of_content_ml gpu/table_of_content_gpu/table_of_content_gpu - contrib/table_of_content_contrib/table_of_content_contrib + bioinspired/table_of_content_bioinspired/table_of_content_bioinspired ios/table_of_content_ios/table_of_content_ios general/table_of_content_general/table_of_content_general diff --git a/include/opencv2/opencv.hpp b/include/opencv2/opencv.hpp index 020a45373a..3b96bdd368 100644 --- a/include/opencv2/opencv.hpp +++ b/include/opencv2/opencv.hpp @@ -52,6 +52,7 @@ #include "opencv2/calib3d.hpp" #include "opencv2/highgui.hpp" #include "opencv2/contrib.hpp" +#include "opencv2/bioinspired.hpp" #include "opencv2/ml.hpp" #endif diff --git a/modules/bioinspired/include/opencv2/bioinspired.hpp b/modules/bioinspired/include/opencv2/bioinspired.hpp index fb5a0aa703..882331b3f7 100644 --- a/modules/bioinspired/include/opencv2/bioinspired.hpp +++ b/modules/bioinspired/include/opencv2/bioinspired.hpp @@ -47,5 +47,5 @@ #include "opencv2/bioinspired/retina.hpp" #include "opencv2/bioinspired/retinafasttonemapping.hpp" -using namespace cv::hvstools; +using namespace cv::hvstools; // used to avoid complex namespace inclusions cv::hvstools::Retina => cv::Retina preferred #endif diff --git a/modules/contrib/doc/retina/index.rst b/modules/contrib/doc/retina/index.rst index 5671df77cd..c19aa5be7d 100644 --- a/modules/contrib/doc/retina/index.rst +++ b/modules/contrib/doc/retina/index.rst @@ -61,9 +61,12 @@ Here is an overview of the abstract Retina interface, allocate one instance with // parameters setup instance struct RetinaParameters; // this class is detailled later - // main method for input frame processing + // main method for input frame processing (all use method, can also perform High Dynamic Range tone mapping) void run (InputArray inputImage); + // specific method aiming at correcting luminance only (faster High Dynamic Range tone mapping) + void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) + // output buffers retreival methods // -> foveal color vision details channel with luminance and noise correction void getParvo (OutputArray retinaOutput_parvo); @@ -138,6 +141,10 @@ This retina filter code includes the research contributions of phd/research coll * take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. More informations in the above cited Jeanny Heraults's book. +* Meylan&al work on HDR tone mapping that is implemented as a specific method within the model : + +.. [Meylan2007] L. Meylan , D. Alleysson, S. Susstrunk, "A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images", Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + Demos and experiments ! ======================= @@ -161,11 +168,13 @@ Take a look at the provided C++ examples provided with OpenCV : Then, take a HDR image using bracketing with your camera and generate an OpenEXR image and then process it using the demo. - Typical use, supposing that you have the OpenEXR image *memorial.exr* (present in the samples/cpp/ folder) + Typical use, supposing that you have the OpenEXR image such as *memorial.exr* (present in the samples/cpp/ folder) - **OpenCVReleaseFolder/bin/OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr** + **OpenCVReleaseFolder/bin/OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr [optionnal: 'fast']** Note that some sliders are made available to allow you to play with luminance compression. + + If not using the 'fast' option, then, tone mapping is performed using the full retina model [Benoit2010]_. It includes spectral whitening that allows luminance energy to be reduced. When using the 'fast' option, then, a simpler method is used, it is an adaptation of the algorithm presented in [Meylan2007]_. This method gives also good results and is faster to process but it sometimes requires some more parameters adjustement. Methods description @@ -275,7 +284,7 @@ Retina::printSetup Outputs a string showing the used parameters setup - :return: a string which contains formatted parameters information + :return: a string which contains formated parameters information Retina::run +++++++++++ @@ -286,6 +295,17 @@ Retina::run :param inputImage: the input Mat image to be processed, can be gray level or BGR coded in any format (from 8bit to 16bits) +Retina::applyFastToneMapping +++++++++++++++++++++++++++++ + +.. ocv:function:: void Retina::applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) + + Method which processes an image in the aim to correct its luminance : correct backlight problems, enhance details in shadows. This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model (simplified version of the run/getParvo methods call) since it does not include the spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral whitening and many other stuff. However, it works great for tone mapping and in a faster way. +Check the demos and experiments section to see examples and the way to perform tone mapping using the original retina model and the method. + + :param inputImage: the input image to process (should be coded in float format : CV_32F, CV_32FC1, CV832F_C3, CV832F_C4, the 4th channel won't be considered). + :param outputToneMappedImage: the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format). + Retina::setColorSaturation ++++++++++++++++++++++++++ diff --git a/modules/contrib/include/opencv2/contrib.hpp b/modules/contrib/include/opencv2/contrib.hpp index be83152db5..75c6f3db0e 100644 --- a/modules/contrib/include/opencv2/contrib.hpp +++ b/modules/contrib/include/opencv2/contrib.hpp @@ -633,7 +633,6 @@ CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap); CV_EXPORTS bool initModule_contrib(); } -#include "opencv2/contrib/retina.hpp" #include "opencv2/contrib/openfabmap.hpp" #endif diff --git a/samples/cpp/CMakeLists.txt b/samples/cpp/CMakeLists.txt index ab4a0d06c6..bc2d5ee39a 100644 --- a/samples/cpp/CMakeLists.txt +++ b/samples/cpp/CMakeLists.txt @@ -5,7 +5,7 @@ SET(OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core opencv_flann opencv_imgproc opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree opencv_softcascade - opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab) + opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab opencv_bioinspired) ocv_check_dependencies(${OPENCV_CPP_SAMPLES_REQUIRED_DEPS}) diff --git a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp index 2117ede7b9..1c5108dbc7 100644 --- a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp +++ b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp @@ -10,8 +10,9 @@ #include #include -#include "opencv2/contrib.hpp" -#include "opencv2/highgui.hpp" +#include "opencv2/bioinspired.hpp" // retina based algorithms +#include "opencv2/imgproc.hpp" // cvCvtcolor function +#include "opencv2/highgui.hpp" // display static void help(std::string errorMessage) { @@ -127,7 +128,7 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i normalize(imageInputRescaled, imageInputRescaled, 0.0, 255.0, cv::NORM_MINMAX); } - cv::Ptr retina; + cv::Ptr retina; int retinaHcellsGain; int localAdaptation_photoreceptors, localAdaptation_Gcells; static void callBack_updateRetinaParams(int, void*) @@ -175,6 +176,12 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i } bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing + int chosenMethod=0; + if (!strcmp(argv[argc-1], "fast")) + { + chosenMethod=1; + std::cout<<"Using fast method (no spectral whithning), adaptation of Meylan&al 2008 method"< if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) */ if (useLogSampling) - { - retina = cv::createRetina(inputImage.size(),true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0); + { + retina = createRetina(inputImage.size(),true, RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - retina = cv::createRetina(inputImage.size()); + retina = createRetina(inputImage.size()); - // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" - retina->write("RetinaDefaultParameters.xml"); + // create a fast retina tone mapper (Meyla&al algorithm) + std::cout<<"Allocating fast tone mapper..."< fastToneMapper=createRetinaFastToneMapping(inputImage.size()); + std::cout<<"Fast tone mapper allocated"<write("RetinaDefaultParameters.xml"); - // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here - retina->activateMovingContoursProcessing(false); + // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here + retina->activateMovingContoursProcessing(false); // declare retina output buffers cv::Mat retinaOutput_parvo; @@ -230,20 +242,19 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i histogramClippingValue=0; // default value... updated with interface slider //inputRescaleMat = inputImage; //outputRescaleMat = imageInputRescaled; - cv::namedWindow("Retina input image (with cut edges histogram for basic pixels error avoidance)",1); - cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat); + cv::namedWindow("Processing configuration",1); + cv::createTrackbar("histogram edges clipping limit", "Processing configuration",&histogramClippingValue,50,callBack_rescaleGrayLevelMat); - cv::namedWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", 1); colorSaturationFactor=3; - cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors); + cv::createTrackbar("Color saturation", "Processing configuration", &colorSaturationFactor,5,callback_saturateColors); retinaHcellsGain=40; - cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams); + cv::createTrackbar("Hcells gain", "Processing configuration",&retinaHcellsGain,100,callBack_updateRetinaParams); localAdaptation_photoreceptors=197; localAdaptation_Gcells=190; - cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams); - cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams); + cv::createTrackbar("Ph sensitivity", "Processing configuration", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams); + cv::createTrackbar("Gcells sensitivity", "Processing configuration", &localAdaptation_Gcells,199,callBack_updateRetinaParams); ///////////////////////////////////////////// @@ -257,11 +268,28 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i while(continueProcessing) { // run retina filter - retina->run(imageInputRescaled); - // Retrieve and display retina output - retina->getParvo(retinaOutput_parvo); - cv::imshow("Retina input image (with cut edges histogram for basic pixels error avoidance)", imageInputRescaled/255.0); - cv::imshow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", retinaOutput_parvo); + if (!chosenMethod) + { + retina->run(imageInputRescaled); + // Retrieve and display retina output + retina->getParvo(retinaOutput_parvo); + cv::imshow("Retina input image (with cut edges histogram for basic pixels error avoidance)", imageInputRescaled/255.0); + cv::imshow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", retinaOutput_parvo); + cv::imwrite("HDRinput.jpg",imageInputRescaled/255.0); + cv::imwrite("RetinaToneMapping.jpg",retinaOutput_parvo); + } + else + { + // apply the simplified hdr tone mapping method + cv::Mat fastToneMappingOutput; + retina->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput); + cv::imshow("Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput); + } + /*cv::Mat fastToneMappingOutput_specificObject; + fastToneMapper->setup(3.f, 1.5f, 1.f); + fastToneMapper->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput_specificObject); + cv::imshow("### Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput_specificObject); +*/ cv::waitKey(10); } }catch(cv::Exception e) diff --git a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping_video.cpp b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping_video.cpp index a4b71391c4..55d7de7c69 100644 --- a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping_video.cpp +++ b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping_video.cpp @@ -14,8 +14,9 @@ #include #include -#include "opencv2/contrib.hpp" -#include "opencv2/highgui.hpp" +#include "opencv2/bioinspired.hpp" // retina based algorithms +#include "opencv2/imgproc.hpp" // cvCvtcolor function +#include "opencv2/highgui.hpp" // display static void help(std::string errorMessage) { @@ -160,7 +161,7 @@ static void rescaleGrayLevelMat(const cv::Mat &inputMat, cv::Mat &outputMat, con } - cv::Ptr retina; + cv::Ptr retina; int retinaHcellsGain; int localAdaptation_photoreceptors, localAdaptation_Gcells; static void callBack_updateRetinaParams(int, void*) @@ -280,10 +281,10 @@ static void loadNewFrame(const std::string filenamePrototype, const int currentF */ if (useLogSampling) { - retina = cv::createRetina(inputImage.size(),true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0); + retina = createRetina(inputImage.size(),true, RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - retina = cv::createRetina(inputImage.size()); + retina = createRetina(inputImage.size()); // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" retina->write("RetinaDefaultParameters.xml"); diff --git a/samples/cpp/retinaDemo.cpp b/samples/cpp/retinaDemo.cpp index ffade70f35..3dbeb08b71 100644 --- a/samples/cpp/retinaDemo.cpp +++ b/samples/cpp/retinaDemo.cpp @@ -9,7 +9,7 @@ #include #include -#include "opencv2/contrib.hpp" +#include "opencv2/bioinspired.hpp" #include "opencv2/highgui.hpp" static void help(std::string errorMessage) @@ -106,15 +106,15 @@ int main(int argc, char* argv[]) { try { // create a retina instance with default parameters setup, uncomment the initialisation you wanna test - cv::Ptr myRetina; + cv::Ptr myRetina; // if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) if (useLogSampling) { - myRetina = cv::createRetina(inputFrame.size(), true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0); + myRetina = createRetina(inputFrame.size(), true, RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - myRetina = cv::createRetina(inputFrame.size()); + myRetina = createRetina(inputFrame.size()); // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" myRetina->write("RetinaDefaultParameters.xml"); @@ -143,7 +143,8 @@ int main(int argc, char* argv[]) { cv::imshow("retina input", inputFrame); cv::imshow("Retina Parvo", retinaOutput_parvo); cv::imshow("Retina Magno", retinaOutput_magno); - cv::waitKey(10); + + cv::waitKey(5); } }catch(cv::Exception e) { From 2c1fb5fd711f6223d46c8559f01c7af500f56619 Mon Sep 17 00:00:00 2001 From: alexandre benoit Date: Thu, 13 Jun 2013 06:55:35 +0200 Subject: [PATCH 3/6] minor correction after buildbot warnings --- modules/bioinspired/doc/bioinspired.rst | 6 +- modules/bioinspired/doc/retina/index.rst | 2 +- .../include/opencv2/bioinspired/retina.hpp | 1 - .../bioinspired/retinafasttonemapping.hpp | 9 +- modules/bioinspired/src/basicretinafilter.hpp | 2 - modules/bioinspired/src/magnoretinafilter.cpp | 2 - modules/bioinspired/src/magnoretinafilter.hpp | 2 - modules/bioinspired/src/parvoretinafilter.cpp | 1 - modules/bioinspired/src/parvoretinafilter.hpp | 1 - modules/bioinspired/src/retina.cpp | 8 +- modules/bioinspired/src/retinacolor.hpp | 2 - .../bioinspired/src/retinafasttonemapping.cpp | 14 +- modules/bioinspired/src/templatebuffer.hpp | 3 - modules/bioinspired/test/test_precomp.hpp | 1 - .../contrib/doc/retina/images/retinaInput.jpg | Bin 13646 -> 0 bytes .../retina/images/retinaOutput_default.jpg | Bin 22461 -> 0 bytes .../retina/images/retinaOutput_realistic.jpg | Bin 19131 -> 0 bytes modules/contrib/doc/retina/index.rst | 474 ------------------ ...es_HighDynamicRange_Retina_toneMapping.cpp | 2 +- 19 files changed, 19 insertions(+), 511 deletions(-) delete mode 100644 modules/contrib/doc/retina/images/retinaInput.jpg delete mode 100644 modules/contrib/doc/retina/images/retinaOutput_default.jpg delete mode 100644 modules/contrib/doc/retina/images/retinaOutput_realistic.jpg delete mode 100644 modules/contrib/doc/retina/index.rst diff --git a/modules/bioinspired/doc/bioinspired.rst b/modules/bioinspired/doc/bioinspired.rst index e970021063..6bffcdcf28 100644 --- a/modules/bioinspired/doc/bioinspired.rst +++ b/modules/bioinspired/doc/bioinspired.rst @@ -1,6 +1,6 @@ -******************************************************************* -bioinspired. Biologically inspired vision models and derivated tools -******************************************************************* +******************************************************************** +bioinspired. Biologically inspired vision models and derivated tools +******************************************************************** The module provides biological visual systems models (human visual system and others). It also provides derivated objects that take advantage of those bio-inspired models. diff --git a/modules/bioinspired/doc/retina/index.rst b/modules/bioinspired/doc/retina/index.rst index 37846e9385..d81afc6bcf 100644 --- a/modules/bioinspired/doc/retina/index.rst +++ b/modules/bioinspired/doc/retina/index.rst @@ -181,7 +181,7 @@ Take a look at the provided C++ examples provided with OpenCV : **OpenCVReleaseFolder/bin/OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr [optionnal: 'fast']** Note that some sliders are made available to allow you to play with luminance compression. - + If not using the 'fast' option, then, tone mapping is performed using the full retina model [Benoit2010]_. It includes spectral whitening that allows luminance energy to be reduced. When using the 'fast' option, then, a simpler method is used, it is an adaptation of the algorithm presented in [Meylan2007]_. This method gives also good results and is faster to process but it sometimes requires some more parameters adjustement. diff --git a/modules/bioinspired/include/opencv2/bioinspired/retina.hpp b/modules/bioinspired/include/opencv2/bioinspired/retina.hpp index 4e9b4f1220..e0620efc3a 100644 --- a/modules/bioinspired/include/opencv2/bioinspired/retina.hpp +++ b/modules/bioinspired/include/opencv2/bioinspired/retina.hpp @@ -327,4 +327,3 @@ CV_EXPORTS Ptr createRetina(Size inputSize, const bool colorMode, RETINA } } #endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */ - diff --git a/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp b/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp index 0bb040163c..62c88bd6eb 100644 --- a/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp +++ b/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp @@ -64,8 +64,8 @@ ** the use of this software, even if advised of the possibility of such damage. *******************************************************************************/ -#ifndef __OPENCV_CONTRIB_RETINAFASTTONEMAPPING_HPP__ -#define __OPENCV_CONTRIB_RETINAFASTTONEMAPPING_HPP__ +#ifndef __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ +#define __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ /* * retinafasttonemapping.hpp @@ -108,7 +108,7 @@ public: /** * setup method that updates tone mapping behaviors by adjusing the local luminance computation area - * @param photoreceptorsNeighborhoodRadius the first stage local adaptation area + * @param photoreceptorsNeighborhoodRadius the first stage local adaptation area * @param ganglioncellsNeighborhoodRadius the second stage local adaptation area * @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information (default is 1, see reference paper) */ @@ -119,5 +119,4 @@ CV_EXPORTS Ptr createRetinaFastToneMapping(Size inputSize } } -#endif /* __OPENCV_CONTRIB_RETINAFASTTONEMAPPING_HPP__ */ - +#endif /* __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ */ diff --git a/modules/bioinspired/src/basicretinafilter.hpp b/modules/bioinspired/src/basicretinafilter.hpp index c22fa0a902..ac779cf2df 100644 --- a/modules/bioinspired/src/basicretinafilter.hpp +++ b/modules/bioinspired/src/basicretinafilter.hpp @@ -655,5 +655,3 @@ namespace hvstools }// end of namespace hvstools }// end of namespace cv #endif - - diff --git a/modules/bioinspired/src/magnoretinafilter.cpp b/modules/bioinspired/src/magnoretinafilter.cpp index 7c0ac214f4..f930e74b59 100644 --- a/modules/bioinspired/src/magnoretinafilter.cpp +++ b/modules/bioinspired/src/magnoretinafilter.cpp @@ -210,5 +210,3 @@ const std::valarray &MagnoRetinaFilter::runFilter(const std::valarray imageOutput(nbPixels*3); + std::valarray imageOutput(nbPixels*3); _retinaFilter->runRGBToneMapping(_inputBuffer, imageOutput, true, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity); _convertValarrayBuffer2cvMat(imageOutput, _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), true, outputToneMappedImage); }else { - std::valarray imageOutput(nbPixels); - _retinaFilter->runGrayToneMapping(_inputBuffer, imageOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity); + std::valarray imageOutput(nbPixels); + _retinaFilter->runGrayToneMapping(_inputBuffer, imageOutput, _retinaParameters.OPLandIplParvo.photoreceptorsLocalAdaptationSensitivity, _retinaParameters.OPLandIplParvo.ganglionCellsSensitivity); _convertValarrayBuffer2cvMat(imageOutput, _retinaFilter->getOutputNBrows(), _retinaFilter->getOutputNBcolumns(), false, outputToneMappedImage); } @@ -671,7 +671,6 @@ bool _convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray &out typedef float T; // define here the target pixel format, here, float const int dsttype = DataType::depth; // output buffer is float format - const unsigned int nbPixels=inputMat.getMat().rows*inputMat.getMat().cols; const unsigned int doubleNBpixels=inputMat.getMat().rows*inputMat.getMat().cols*2; @@ -720,4 +719,3 @@ void RetinaImpl::activateContoursProcessing(const bool activate){_retinaFilter-> }// end of namespace hvstools }// end of namespace cv - diff --git a/modules/bioinspired/src/retinacolor.hpp b/modules/bioinspired/src/retinacolor.hpp index 640d0da526..4e0139adec 100644 --- a/modules/bioinspired/src/retinacolor.hpp +++ b/modules/bioinspired/src/retinacolor.hpp @@ -387,5 +387,3 @@ namespace hvstools }// end of namespace cv #endif /*RETINACOLOR_HPP_*/ - - diff --git a/modules/bioinspired/src/retinafasttonemapping.cpp b/modules/bioinspired/src/retinafasttonemapping.cpp index c052770bcb..d72ae2fe76 100644 --- a/modules/bioinspired/src/retinafasttonemapping.cpp +++ b/modules/bioinspired/src/retinafasttonemapping.cpp @@ -111,7 +111,7 @@ public: // resize buffers _inputBuffer.resize(nbPixels*3); // buffer supports gray images but also 3 channels color buffers... (larger is better...) - _imageOutput.resize(nbPixels*3); + _imageOutput.resize(nbPixels*3); _temp2.resize(nbPixels); // allocate the main filter with 2 setup sets properties (one for each low pass filter _multiuseFilter = new BasicRetinaFilter(imageInput.height, imageInput.width, 2); @@ -144,7 +144,7 @@ public: _convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), true, outputToneMappedImage); }else { - _runGrayToneMapping(_inputBuffer, _imageOutput); + _runGrayToneMapping(_inputBuffer, _imageOutput); _convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), false, outputToneMappedImage); } @@ -152,17 +152,17 @@ public: /** * setup method that updates tone mapping behaviors by adjusing the local luminance computation area - * @param photoreceptorsNeighborhoodRadius the first stage local adaptation area + * @param photoreceptorsNeighborhoodRadius the first stage local adaptation area * @param ganglioncellsNeighborhoodRadius the second stage local adaptation area * @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information (default is 1, see reference paper) */ virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f) { // setup the spatio-temporal properties of each filter - _meanLuminanceModulatorK = meanLuminanceModulatorK; + _meanLuminanceModulatorK = meanLuminanceModulatorK; _multiuseFilter->setV0CompressionParameter(1.f, 255.f, 128.f); - _multiuseFilter->setLPfilterParameters(0.f, 0.f, photoreceptorsNeighborhoodRadius, 1); - _multiuseFilter->setLPfilterParameters(0.f, 0.f, ganglioncellsNeighborhoodRadius, 2); + _multiuseFilter->setLPfilterParameters(0.f, 0.f, photoreceptorsNeighborhoodRadius, 1); + _multiuseFilter->setLPfilterParameters(0.f, 0.f, ganglioncellsNeighborhoodRadius, 2); } private: @@ -171,7 +171,7 @@ private: cv::Ptr _colorEngine; //!< buffer used to convert input cv::Mat to internal retina buffers format (valarrays) - std::valarray _inputBuffer; + std::valarray _inputBuffer; std::valarray _imageOutput; std::valarray _temp2; float _meanLuminanceModulatorK; diff --git a/modules/bioinspired/src/templatebuffer.hpp b/modules/bioinspired/src/templatebuffer.hpp index c3174d332e..33593f0449 100644 --- a/modules/bioinspired/src/templatebuffer.hpp +++ b/modules/bioinspired/src/templatebuffer.hpp @@ -553,6 +553,3 @@ public: }// end of namespace hvstools }// end of namespace cv #endif - - - diff --git a/modules/bioinspired/test/test_precomp.hpp b/modules/bioinspired/test/test_precomp.hpp index e87ed79628..b1672149ab 100644 --- a/modules/bioinspired/test/test_precomp.hpp +++ b/modules/bioinspired/test/test_precomp.hpp @@ -14,4 +14,3 @@ #include #endif - diff --git a/modules/contrib/doc/retina/images/retinaInput.jpg b/modules/contrib/doc/retina/images/retinaInput.jpg deleted file mode 100644 index d3cdeeecbd3048191f733da0e072891d5ee1e123..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 13646 zcmb8VcRba9^f>;yi;IhEU;E-(*PexpYtOnyR>TBz110WCx&?Ob%?-HN^fJu)a z(7zh|51^2LH4F-cK*?ZaWdB{{6mT+f3UV?sI2D|N@*j}y5LA?ie-Hl#`Jb*}7z6^N zBqt;PugU+f>TfSV2M6{+Y7h_|0Hy;$=sSSy=MJy z4bRpG+qD0>f1nwEAMBV?HDg<@{)F??U zG$iuuLTyB&8I4(=IN-1&qRnxn}=L4*Npa7F+?P2|10{*gkzD^qd@(olrB1>DBou^bp9DwZQYT5ogIH0MY2W}x&ZUAV zp394!0#;97wX)s;$nse`HrNDmsjO-b>MSmc`|bj$_y5Q(%?6PADYfM+=Te?1%-{W6e_-LxGA&wYh#eZ%PvnNN6;&?J$C>I8=!VJBGLIDOmfbTIo9j-WGB^+-QF7a zm)-e&O;>6x6q*DC{asDE$rb1Z{b!=w9(G(hRiJ6Qfeb^F8j`_Cqe!)?LD6b}EU3!w z=UW)!ZYbA<>0m?Uy{F zwLsW6yIXBVul)Cq4lUXq7hCez@nm4;l=96)TMTk-9x5pu6`iewCcl4@>{aI^wG#&t z0wSo?8BhSHRN>&jG1Z&H&bGtO_GfuFgtVANx0gqvbDM5mAHVyZE9lEoFxlrX?A;_ln)?;)_oAm#zt-TASAR=Gx}OiYyN&H}lEtBEQ$_{%=C()JQ91 zKp8p!LTa!nx2?Z`ss-EE@mfYJmyPg>O{`{_xq9v`7iKH|z1#O!GP0%S)Jf>zVQ`T4 zvOVa>mnwZ8D$&j~u==RbpoMX|RO;JH5AK|`?RtNHxup=&bR%aI4FjM93@Ein?O&%8 z(b4HNnO92T<~iRC@lm3?zp^gnNq@5Wl6^zdM#L$O($y_K6LkLh>U2=~2!0D7i-uNGJHbI}C!vehhLx#lytPBNR+LyC z9PmVTuIy51N=c{8xHAtvOjbyEjM1G85R&@|naVM?wlmeW!{bDwgqnNlV`OCPp8xF9 zD+r4c1E6SX3hEL-#o?hpC65cUI&yPu1 zDDh~e5=TU%Q=>$qnXR-4hbh!SEUD3msaBiZl4xBp63X^y;Fo`rsXR&H43P?{QEC+H z$47EsL#zeTKPUa(Y&zT!H@|%{O2VoR4~_u1rMn9Dh^^6^a2zs9H0q!Bi7I@ZxM%p| zMZNI$TE(1{rxRQ!v3kO2u;|%?FUI8`d@2(k?E80-)+$OO8QhBMA7Z0dCtmzgIa?qE zIA&a{&?LeKH7VHZdfUJBFL$L9M|t4t%<9PIAuCEz;`n&yxyEaGIYcBYP8dh%ueRnv zP##oq|A)G0Gct+}uAV3wrG)+Yi|lMr7J^G7`?sB@ppFeBwTndpU;qXMLBU|izg=q=P`o>Ctc=DI9|&BNGd+AW09yN!l3%1A7!&MKbp{owly|RDAO_-x8}ruLd}2 zXp2uyPK7U)ks(l$4%B=#v)gwS3k@H1H_sedI(Gy;mH6nst9*-$Kuv9xgBpnW2gy~Y z|61GkM3NymuU3l1I4nwO_E(Rv<*v-hVWZV!q>|qvoXnkCv`1$q_zhi}9zNJ~ZsXt_ z$q&4DdG6KB?2743S3;t;kcC-@OzBi1P36CWK#}HU6yzHJ5?>IZAzoR52ykKzCj^8b zDq3GtOUf*#oUhF->^)n3SFuy*ey_bD>DhCA5?f z;3^hgTKYsP`P-ON3uxBM0e39T{8 zpy9c=$9<(-^+la9rFgK3mr;B6Eyl;VexH%Dk{X3y+>Q51WNFzaUEI4Nv^~jt0r#Ca zbM^*Q$=&XIyuEH@I%=AKx#OysitQ&`m&Uppg=%69|Hhf+-k_V?eYe$#C-UZ52Bk%y(B!&4vU!aLHr+IVAeLCX-qr1UMfB ziB$0~XN=DzG?@B!PEYdA&k}rP1a$ehTh5Y{%O~zXOMd)$cf5FV=GP^>P-~a*RYsFy zQ^pS)8GaQoRq4F@PN*~PNX~^pkGcsbfdzjZ!Ea9<6j(nM7(3?aOiB<{>5V6HTK3a> zU9-Dw5vx)Be+Khk~h1Q?onR_>YwyQFrdS$}0U^eF#^{iK;dZyYh{=to<>f?Hv)> z=R~H%3K@M^k1{hXd194Ct5oS3uWXA&4M?3x5dvI{jlX+ZjX#of{0lfCFAz;F3XHaz zKV2BKKtuiyxtw(7{V125Rpq5lJ`alO%zvEBdWFbE#`y@nR|;UjWDJ+51RMNGT=MkL zJE0^Li%<4-+O8~|HGPWw_BLqIN+4gaFOFxJ_N}na)!ih|`{4o5T4S-ay}bdc;|{6g zGJ)X9!j-}wePgMgUUyjIJ%!poq|H3V=E9`-E9D`aIcGToG7G)qbWx5BbpmvA%=e;p z34Cx5PUCmn$qWa*_cSc&z&g)`lL#3>G9??bHnm2s17jymgwSUTv%7Bd-{`f`s%ztIk{}^@; z*C+p{FJ||&SQqvJ(92&u*!+VpGGZ!MQqBHYCR9%I)jYG}G{?EUMkV2&G%|Z(c3B7lfbnsGgBQ zETIW}sC{f1{(5^Ml*(0&dXJbF81R;{$)_w&$4=N@8dmAfPtVd&FD3reuiB6P zg5zS(4UH7S{*X_XwJDzw)ot6D((w_yRHfwBJaQ)#rf9aHSmv>>NSxh>>fI>b&yr!a z>`c_ptumZ+D`_p<#&I$+a4}Z)2d$A4jhnf7<6r4vv@mIJbykx< zrR*0oHMNcZsrf~Ze_Z^*BGmlV-z>-G5nLDc>XwUN&ZtFOpT z)l5CZg)LW_r>TZqj2B{nR_uvzwbq`#b-8eHKu^eI z^mb=_{q(IT_FBtD)2r1Qd3F&JQNQP59JNF_s37Z)^Z*tV-~F_^B>5K{(Zdu*59l3` zZkZVUx}PXDU-LL^*25fe?_!Tf=wo7DMbrzuGj4SramailTvpvNDdKD`pgVVB9b?%F zD{;;h&}S81Fm&@{oUbpS{yb9!d9eK#ATdafmg^Bl+nQZHBGU|s+&4G`KOl>_cgWb*AD)dO-7~)CbZe` znw6laEbeQUb*pIvjQZB`p0rPCG6~Oc?X&eTOTwP~ zY%uFXp7Ze00vi?d6*5_`X3b5G?j4}N-+Q^UTOmA`VLze9k^ckS^jkPxvoQ1PCst}z zzqP0YY*l_JtG*J)yxZm5p<6v&m9skR7hjsE{uVy_m6)|w>CAW$lOp@8%;Pb%_qi@T@2z-AiV!`MIfF>-wR^2%=|Ov3N#EZUTO=d>d4*Te46 zmX4l%4a5GhaITSnZ4HdJ2?^h0s&y!R$kXQ_Q_64rl3Wfp+7*%gDl+aA-E4)`#;SR3 zb^6K~DkLjqICn8`(0-+!c#1mKR?0zMhN;wv2!E~4mbUDBWmee5>q@_Ajq>XbPPOnZ zNOMkR;*IAzFy!pzNF2>q)zYE9{Y8il&rlJFz0vbW4t{^^yX^bKnbvz#Ic?1R5-iBU zD{p9dKFTUh?@C;qn%8z*wk&j9M}5w5*x+1xHk7W1yh==9i{{agqFY7k++yLa!Kx|h z3wUO3azv5G`E7PG^%I+D+=d<*)5_iw7fCa`mvJ}3)EN|KcV3;l6f=Yg*j2HbZHi}p zMLkqHqK@I^j2TB37Oz=lu4<`!`KjxgX#x>S)^eKdargV5T+ezrDG)h_RW`_HkZ+Ak zHPozCHYi`{L?!!rf8M?-^v%?h$-T$cRwW*3MIY`F5E&jzSN(}Tp0lnLh5Lc(FZ%%wo%9KRo$!ue5~+|Tz)05z-iNPo!=DEVDq{GX2e#bV zUXZOBE)SY@{odv=9%C8F@<{B_V4eZnOweq0q3oA zQ?1jl{HO2sE3P;Oi&*_Skv)8`F>+}3?j2Xt(8B``4?~huWqab8vkS1`B(p23I?lYm zeAG2xvRZO219wSt?DkovnY_eWn(Y6Q_o)u(CpL$o>VKYX|D;x_`N@)L_**#0tEN!n z3Q@~T;f>DN%LyE@K3_kFL2++pR`T1R{IQl_LCtlEXKvLDL{2ofcQ+dAyZ3c%*xkEo zfW7lvQR)2u8K;P~FZtcin3UXSMUh&z@>!As_ZF)N*3Zh#H)qS4p54I*v8=cl-qiVl#SEnYxsIQ!%%%EaU-u`b{sIwm_m#buUR+lr6Hltw3>k6bzH9cl zzp9qVwM}!oweEUXD$}qROM++Y{aGF7#qQUEHnL)WN|d)o5E0j?B)spG-M*xA(vrm2 z)>}Gw#S3DR;{=J*TD{aP+x*}(lROUGP8);Q4wy>2%IcLA5xH)sf~0j}aJDe~5Pv{R z!+x;Ua$if2@eLi9^5g@}BwM4f)u75Hywczb%MG&0Enj%wg*k*JzgUAN?W{)9<$R&1T4 zEG&viE`x<8Q%rXuwgS=`gcjH?BjOV%y~?bYFJ0Vr^v?kREbkSxr9S6_JVE->`-jJr z#j&GK8}xR2u(5WcoOXxiDc`qPhPJ9DTZ7pKv&-aRn(u7{78x_l3x6She{*tnd2%vC ze9#l8Dt~ptvR?;H$*2U`^gumep&GJkVK9q8TL@jW7N%Nt=Jp>BLKq+RarG=e&hN4` zyk}%gxBPQ+&NAYipo`jH;POC=u)h}7&$lV_=+pC{0iGWUe$#0w{0<74Pp8st zd1?^GNlbN_1yv0btq9djdxe*iZ49(i)m|}2Y*^#^ov_=eAGTRd($PXwTGGPGPCy0m zp&-Cve47z;Fis_rC5shC%In{(ZVE4Vfse2-fvAZ0#*6In5u?sy;h0FtF+=6D_DxnD zb7{g0zY{~pRI{(pPp00S{#iVdDLy9f^?@`9u{y*rw*ht0H1TFPzL_sbn~e_P)Aj5Z znVqHPyDshRHpAJqIqt#0H$IOFA5NcvUq5GGx$@HQ6XS;TL&cBw733}SKXzD5ijH5t zlVH$V^Wiyi%$q#rV^Rxt2@@%4zx{zOSO$o7zq7;18@9tXU>WvEvpg!}tF}nAIn(%O$lANljnk`h)OBtMIYIfxv!{^q^g_TcE-1LU7ULV0`YA zbjskRr%tLO+?o1ihgj3a_W!H|K_n?W`aeK2%>T0z06J1Y#u(|~8=h8*ZtB@Tm|FYa zaT!$})5!R}Yms8JHTyq^rZO_Cg0s*o+%mZbK#kjj<@!6ng!yTWJyZk#6vLIZX~~I? zc+H77Q-5iv>hzRfHt=w=FqJq_rl>OMq?2N4@BPJSh<0_}G8NuulCFO-#&~IrB0stG z2q$M5ihmu;1*5uI4B0@?g_Eh~04Q7aoa)9YZoPw~(VA=in~DS1*?dKedzBsII2dM> z={xvg7W9Rn?w9DJ%n>i?68zc@zngpK42kl93Me|O-Zq=8N5jvNW^ruo@;}a{P zJ)Ip3wBSB28&f^G?w~p~{M_L{M?zw~xE_5hx$(MQhB>>R+m#IQ{(Ew3x0%>=+)B&N z=kap}su;@4MRYn`74v%?VYbsBg}&hVe3!Jn_LJ23D7zlA2JjAkie$}thc)Zmm#{K3 zyVZhVuCw)|1;SB$P~<)ORRR~Jn?iLkDm0AO#vq=as0~N+ZNQVVxqffi2;cp{<}zon zs>??&sg1EGAbm-cg2%vv9Tf@ozv$OB+tYY$>?7b=P)Fj5e%l7aaSS}0ToQ*u|AyK} z{J1Zi0`CFn-wL5`z>Z#KiRLRIpz;2-1zs9=>|eHEE^-i{#>)Oc`*@#grG6k{Z$8r+ zK|daGLd)Z654t`J+u(?fkD_Dn5&sCYOxTqmpQW4Mr;z!fd<>dq{zCL ztFoL(U)@Nqy9n~9(E0}ewEDv=W6SQN-DiiigUcSp$J&S15*e1+tyk5j)JWf|s&rB^ zjbDW=d>*!(ID`BVV|n6*jH{FtPW6$uwlG!@;OOxkzH*0gmi!BW$=BQmK-6;Ge=UC1 z+x+k(P-;GMwFhcX&?nH%GC{pkK&Z6Y{H3yaL-edSSzJO;6lEhR6)#L}6NdW!6N@xH&YsoNeYyyK z94d=6iS99kW_`KjncSEQeaZ37HJjC2669BhmQ>gZ&l+Fry)|kLN?w)lykE$AQrOV< z@H_TSS7_wA-|dK&3YSNt9Pwu$lzl`e!Q@jRj#D$9>`F>%WN(efp@c}7U(=hiLyf5& z5UhFaPnXWqg5Pxcxj0td9iM_xvvYOOZHYVQ{I4W&ichHL@(`zgfej?Z62o40T!HeR zNQ!sh#dq|8B`4qN;Bkf=H<{9p5vh;+Oz~df4U-%VP?%jCo67^6GqX~vpPaXT)Z6#b zN8j8Ez1wFvk_%=U3VK|gGFBmp^zn)Op7^xj9`xYr$PmG-?n=k~t1q1BwVGIEhDxs# zr6q5=b{6Ukr(~cOIi5kXB2IZ53CUjvdmbme|LWv6QpDRSX&M(0c|M*69z^X6gTe;B zzFivz9>QP+m9Gs4o`n?17T40&Len}|KV zuqQ=ek0W1`T|acXBmeTTeS1XOa_uyYSj>=johMamNB9A3y`r=cMO=K&X#pv8P*>fN zvEes{x0$_M+lgz`Rw6iR{(uii5pG!Z}ZtsRDp>Xs7=F)Lx8t7H%uuH=rg;= zd1cc_Z&K#;hf0xMgk>t6UE2XMD5qfP23%X--+UNSy4845pazcWl}com%F&k6R?%UL z@)u{l2Yk)O+wniK0Qki%#7j)&8{(U7{kdE?M#H5XJ7OAbKo|H*sa(Ts5p&PAj|)P4 z7vVyUE)tu5{e+v{_c;fY_8&=RudkjGHsh&KKeW~SxpNbqE6S05R=8biqY+`gcV@6_ zn~u*?ZtlZuSsN3<0Xff8UJ#$BG%we=3-SIi)=DN0sB$sx8!JHn0+E!#jsitZSU)F_ zox{NSNVESp^0NJrf?dGgF)wo?`&sT)y0bC5b*tWNy@z8KsfkSyZa-jEOVaK}Z{D7A zKAW|Cg^MQKNMtT!G}dD6+d81`sY`p8_T*2L-OF4yr?}5}pON*ot1~<`UiF_kUh&oD z@F%Ga&R(P;$T@U~^YH7w@5$F~94^q%#8uiKwuF#B~pIo)7d(a#Yk0$ySI--LyUhUKgKhX`_tyQ4XFqjvrHvamJc2NN(q6 zjhg;Hxs!&X?RiVGW|G$|$jL5$$_bgCm|#c^mR|n!8P#-Ep1QU=a_*w z#zky%U~cF6_-**bbmNk#@pma>`@!1Kgwvu4NFx_)qC56l&tG8tp%nuCu_W||L?D-F z@2NgCoxp#hZOo1Fyu=Wlcp9zn!dpC~be;fHt=WCCC9lHf>6J5%IhUU9?d z_Vrc&t)y{1IPYFs7CZRHDsozEqj5R^?O5Kf3)QkzZsmFRfK$Pr z$Oj%-u_sCI%qn*>+4Ryr?oxA=DQRO!;n)jBG`x3)0Bw!w}^Ip zwIQ1a-z6vLR+Ps-Z2ju1_u6s=`IFO;zW>!^IG-9Ccs}-$J{X%*?ep2%vKr?rbwwR- zVXiORj1p~1-j2Q_J5|kYN?%*upC_WUD5J% z0P;cuf7@}HWS#w&z3^Z76^YaZ($z2k1sVfZLqfv<029swr0NOC0vI-3=s1H~Gn@$4 z6DI0m!YBbVd5%75$DzZ(ut&H+4!nmcvBnzbYsA} zz~dGmf#(t^BaB`R4X8o;?16MNc(`{JNkS6`MNnYUVdeBjOQg@vCAvIga10n12IwwJ z>jKPEm`DdYsW>pn+9gHBB0L0rn}7&iXsWIx$_Sl~Q}W|4=~e?G08FYH zX+|MHH_B2Cpw}aHCrv>{51>trG4!N=;LvnEvPxZOxCc5F0KzB$B%FtS^;!hUh^Bz1 zQlL{oJP}lZtE4moT{LNYFb=NAQ|=ROi^M@w^+>1*rB;W57W=>ekgkgfqu@bOd4Lg& zU|muqkVIjAz>q*fkQBV*rz4F>N?ai&rTnkxDu`s3BT0c(Nt`kMKhwPFKcoC#G#&ZL zK_W@H@N0%o8tF8Ox`+8Pe^~oip19fQPV0~Ggl)gk*XO7E zV)j%jUy&nV<&ZthXz1kesC^sb^)1MFc%5UcCBJJ-&d184Pa{FIA2seswv8d(ZR(7% z&uC}Q@45(IgA$eYT=r(9$2J8z_Hm_}L}(8k$BvPW`M2oX+swTbU_mDOmWNFJb#H8p z2e|Juk1nH>)7WArL$@dGk2D?GHHky1f7F=ce3W=zgG8G&DuRpZz20Kx%EaGeJpxEg%~e3^I< z+d6XDoObVbgRXj6JuAJRp#s==2EN6-&kQCv@88A{I%a}=M4JUO^%(; zoCx1vlPlJ)cOU6L+{wSRey5((jEKH_H$b1CKG`yyZ%DrnU9FJdGCHv59;X#rSzW-zd3IYC?<3=U1e^t-5UOFfcM-m_BTLldhUNyjprf@l|SX zgDirDg>mE&^YhgCtBc-@SA?d`o(#Ymj&6RB)v+}s55l;_T z`4)zrWD4pgTojyKS^We=m2dGEH6ZO2;z}nBLA0jxT=409ND4W)WY%IgJETOxkwek> za#wf5b4%Y%O*x)+UAwh)%8A2-rO2eHPM1qGIU@Ftb)1IhsK#?eA8R-(?bt~uDC(GI zOw$(H=Sh2m7HF)S{WscH-*7lYz~{x@rp*UJo&z748Sf@^Cd+usohjVtPn+K_W$$mC ze?_#lhs<8@Yv@VVXL|!QAkQ@Qu7%oC`^Bw#iD)*D!5pB;?K{z%J}h_~O0=7fJHoIkPkR3-A^i{{=!oApD$Zq%Q%hur&x&n#v6L&n1NJ$wdBuLdgVVqKqf@)CKIN?*~^`w zC1E95O`0-DPpUnPH1<4E9nPoK?}*RU(6pw`EF>RtbtBh~5!aq8r_~nA{dfXQp278g za@))B&~0BS{pJI8{>1qxP@I{(@rMST%Lyx}TQwisE0x7it4&YYV=QbTyedRluM(^k zFYpc@rn5_o+ToMl%V?&FS3++u?CUK?t3n{??cSUh(!3>6reB<2RNYEVnlsF7iWuwe z@#V(Lyo#Zu!;2wuuX5!AfLHW;FO$BweB*e7ciWA}6qr3cd;K-XCj#*-$bGHY;f#)+ z-ynh5ZgDi4xV=Y)_Lba}rw8F921IiTK5@(?FfktKEjE&7m8OYj9urQz>tHz6A>}>R zAt~jDn{rI%o*v*jBgfL4t5Z-4zbc4N!b3Bbam@w&0hU=kO4zDyv{X9!R<&O)ca=9C z#o}Fh{TzO#Qb{iQ*JXd;tJ=BKcRgQUK8@7QCPE*`1ar3{XF||w|@?o8K*_V4@b7r@`O>h6D-5oLCKbLqs)RsCW+pi zPnBTW82-t!0>KAs*i_&Fl4z!=Hywe5Ogm+ABz)4;`xtTc3^p7s<>z47n+r~BZb60Z&^N>-ZS$@M5CE{(Jw>ySr`wm{@z z!-CG7EH?RMj6+Z#IW#wHDj3@ugq)wkgkIi#NAhQh}vQx*Zn5dz`jDo=z~ zQzkv9r47E8jX{j+lH0J=n@xeKMq7rbYykBdOoi=9up~urCW%Yo4$HC|eJutO9a=JDN?&4fe_y+Yw5McucF&Uc))xXneBRdz7`^ngJ{;q>C6n^4jFl1f(52$bV=~I8-#RKEldp|6T&k?p zvmU;*!+tXjW~Lfu%!-;ZxXv0bZ_a7*)#HiNnXQx24Qjs3qf_juLt&ZMOR>8stWr*X_-&H37@3^#G-qt8kleb3+%K`}b-jSi%rZ0J+I z*jw5!h*OcM#b9x`CaHi<%Y!BJq|pdN|aM%oWy^!*8n&24lr{3l`k|HRzhabu#}P8KG`YjV3U zYY`n?_v$)wd$!k=E~K;aq&6FZp|XGa;9%BplI}Xq={TzX~$}~nqMvJ86L9{e^DQOpFIf$pEg=%urUSA~<;GcFVBp~`H z2yjJK>%g3a9)3eS*2oDWmkcuYZ{KHN@liMq0>Iow@sajwJE`0jBy!TDJX z(qu|YG}RC5GlXUg)xvm&^+N)Pu_jFH{F;>U)mg%b=t9=qpmwkJz3g6{Yl=oQo5S&8m6wjWGkY!KM3!5XQUSG^ zR(E!c-Uw1ing?$-gW)IG$7x+h%w*OuHDXdh1PQ&7cERcEmk+{oNhMUPEBo*UDJ^Xx z7B(>z9@um$spd@myc8?4Q2jC5z;Bn=4)j;@M`QHpV&??yrh!# zA!}TEl>iTZ{c860^fLE%BVhfZk;hMM7JHGJ9T5kRwp~s2GQ*i`!lnCq{C(OFhVM9I zBR&lF2>zQecwT0o-UiuR^!CjG)42D>vO={V5+XqQRhosgX~XaRTiK0L#9H{cp`5Ha+&R(fA4Ufp zH=^%gu;IaWs@su$2ztt-gxU>e6=Mxv@j=-WE>C(osPEIhXJU-P{K%Rub+JJY-5zW zpkb7!gd()n*u15rwpl7}Ak-ipBlAH*Lhb=3HlHA#yiZ`5w(|W3;;euO8hlkqU zd00BUkP-S}F*O0xEd7tj219QSLs>Z~jVrR92`TzB5#o{qF*vrGLqj?7#qHcZ9wIw!KOWCyM2$Jh694n5tR{Af;2nn=;+^giN-L z@d-I=>_;+9F=kF85k8T4wRs7sDmdqbQ{a) zb3!?`!V@rQ6eKNWBFJu5{4_bhKQvAnTfBYu5v_}srZM$JL_~}sAmp-mzDS|>Iw8xZ zuXbI#Y$VQb(kyf7O%2}V@J&yxWi}r=L6IvfMySox@gp^T$z+sT%`%KYXm_%4YY!O# zzS&Fk3PDCBHqe-Axg$6RqHlYv?0vc#muAYd)eUJWh?H-`iy@qrgRytOGqZ0ak7)|N z>_1|>w0A@);aJiVcdXM_`kjB&v!24FvHH`>XyiO(^6gKY4Pn0Vlyt_Ce44&2dFi3q(f0tjoyFuid$&|V)GAEp_sgxIIBfp%%#H#MO zB0icf5HH5>+=Z%qM8B<971mz~oWD_kz6whdfMH9P^zsoHxoHm?Sp(vo@?4&m9*TAD zq*KuNz&L!#u-rnXS;z6#$JnTJ-tPVKDOBlr#gncxpr2hK{-OE_F?t-XY#qqx2RdZ)z=nJgJvo|(F z3+X(Tb>gAn<#nNgJr6GY@Xkc{RYty;LQPcrtROk%F*_(TvCMu0J}FKG68%<*e@L`} zv(RZq?D4+~iRD=gcgmk|dH?K08f<-4J*oy1veD@0Y4k_jxy&`}UC|6?O{Vu6E;*OS zuh?|*xw2lyL*-%TFr?ZAm59oSIBPOBG?blNsryH@4 diff --git a/modules/contrib/doc/retina/images/retinaOutput_default.jpg b/modules/contrib/doc/retina/images/retinaOutput_default.jpg deleted file mode 100644 index 0b14a5308f12c9773ba9fa6827b76a2cf5174d5b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 22461 zcmb5VWk4KFur|8*;)}aG!7V^=ch}(V?iSp2ad&qJ4#C|mf#B{CJUAbD&-w1Xe{aoB zP4`GmPjz?o*3;GR%kNtNkc@=11ONg80wDFV0p3>uq5#N`ECj?q4*8Fuq5g3gXlN*C zSQuE?|8_WdAS@g_94ssl5eSd)k3LdJhzLmkGXI49&!dnqP*5-kaIkRy-SYp7z4rsq zfPhN~At(qm03;d&6dJ_)AbjBuYq#h*E-ti;0ES+enF}f={0Q6GiQ&uJH9?NNZIofE3^e z2XG{>d}DCY2X4GCqfQK@}R4uu)82HGG?A_0GWYMf(0{8q5xO1x&1 zIq)g@H=x5&8(9xl(|PL9quOo3>-O>Sx9YV=IQ@?Yu|uadZ}&^Tp{tS-b)30D1_pWt z2Ey%3&FZWr<`VprSo6rGWa9djJ&XhhSjeDbxm;{wKUX>TMXy_{O{AA+3k%oLU1<}? z*LJa0h{JP|Shn-1Lw)rb=0a58?apf>H`K#(v>B!K_Fs)rnX_(rg#-gSnuE~qA-u!Y+}*viLG`@oHM^P z8t(zyt>mj2qJMK5LpquMa#%U=F*sN*lPAfuQ~eUj3QN1PFDD+^WIjJQFH$KcwR6Zl zqX(y(Ro%&9zF+KNnlovA%U6$;kl9R9M5kIIW+{8h-Z56<*}``_ceScEyko=Gb)0!H zm$sl1D=o9{DU1vDU~NTG??6K!r-W?;!1pS_0qFXuxZ$(_1wY?v;`upz-4?IfDyQnW zp}oJ~s6H;5HrcnQjL5<=TwI}53l)E1po7&>#f&q9rcFiWYa{mDsy4E4BACoT!YIC?A)aBFzXfYh;%ICIC~g zEzez10%_M`VI2@qT^r>sV^1!>6Lp6^DjktF(U!#p@x?G{|0iJb#jntuUJwlW4!HYv`*$YsJ#^hF%rF*Vmd%9M!14NA##{%hy@{}{L#4;pOSES0(pgQKN}fznYQYZG2P_g zSOp|HIybx%x^kOTL!fzoG2w;>r9kURjJ&bYftfzJvjZ(mEjJskM@iH=LGhyN6-v{j ziV{}JFkDy%g`!uq5H7RSk`}G9P(NPvd{558sqO}&|;^o+4}T&t-L?(4Han3DOExx`%Azb=z3+ujtmUp=uoMzTZn;zVCxr9S$e}0z z+VcE}6}$!XD(#xwtee|g_l8`rzk0i++Qrim089|XEw;Xn$@z@P?V-v!UtqG~PXy;u zT4?N4v|uQ4ZkBu@Xk&rO=Jedq!-a+Kcz^TMH*_R9Fi}GC6VeS&o~5T>ZkZ+dMXRqK z36PH=L_>_el9Cx-S_2B=Fkm|<=&Q}2vaoMX-vI(g-|Pl=Wf04?w5(z|h7-`!3Vtp8 zXz;zgS@1C#MZ@Em-s?j_Kq79FL2()({3MkFJrW$GjD;qwL+#NDGI+_mM^x4I|rAD13ZU@`hPVw4c2~bLANzv1+?q zZTo4zT8p$)kU!ET2ooHZR@I`~m)*Ro1#hO-GJ z*kQ226mt-vR=h{{B8lfxo$UGvQQi-MB_Rn8ZK!krFzwB$9^U0{!%Ea#EC4EGj>@*po|1(pd}2hOM_@1y6bhr&Gllr2rBBC>dAXKrEOS zoI*+Gv_R;@m9LDAR26ewkMN-J^wiL$Az ztsQy&NN{n@X^0<~J}SueXHN#{kVSD{iN1$9uMFEYNxEGS*4Ek!R0bn77)rIB^Da)xOWgCY{@(<%>FR{Dei|DAO)*+|10RSPc? zJyv+c8M7;t7B7SZ9Q0>DFrJ)rH1Mwiy+2pp<7tk%WU~_>@8+OqWiy|JP&N7GF+uqd$QosJF>>y#Hn1VE-rwevV!-)wVg3oBH zm^t3hdUJhKP>vTiauE(o8M}cI{yb1REJEnH3`;OeaQLN@nopjY+^l<>z1)El!XS~z zFWyyUe)s)xte(hnuC+qGjfV#+5 zd)0p9Y{?ETpFWiDum6$Na>p#6(b{zLY0C9+YGrm6!>AfhZ@QdCS&>%nWK=@a-4AfBbpEs|JL z{d)YQ)#03d>!XynB z5&qdrT0qBJAIiQ=Y9!dM%o-so3l~~AiJ|wo97|BcKU(GD*^4d496!h$ubLfM9hW|L zM8(KW*v(w{WS86>FG1I2jKySjR8?4tL=K{}ti-4T|K%6e$ob43WI&PJzC= z`W=96IrgloJW|66{0R}|F{=M?_ADFQ`9+lxg&FhVu>}lz=EkGsJ^})`Hd7Lbl-C-^f@0W-Gf*7bg?1H@fo+ z4ZC^s6{0Y$%45^{4qW-;H=?)>v>wrS8hRp2W$SgT5~A4+Iueme`=;r#kUIsD6UdJZ z>W-RHJp--)4=T*)s5GDnmksyA9KGIv)KnlTK#X*t}O|!)r&U z-oE+{@UK~1#3Yrd{Tj@vm!uA!7uGP9Ddr%|Oju=&?kC@dchGC=FTm_G_A2*{SJoJaYYMq}-ar5NBQgR-#C ztVsuD`T6==GV(~Q36A?`nRuJs^W5gx_7(l%&WIG82*2;7W~)z$kGN9r0D}|Xo{~FU z;pg(_%9onP-Ja+A`;x}GI=RWP})U@=WzWp9hFSrX4S z*C0MjnEV6YXLlqU2`G^EOx0!US88Cf8kdry!i z5u^#clAcAi%V}&OSl9F`s?O?pY4L)0Zn*y3OdW<{2E6iQaO@UC;G@4_Pp@IjfPtgH ziNHzEmn1KWuP2u3rsRE;Npgvjqa(#7kXBw)bkucA#7rdyICEo2Wr=z=Sz4UvYS*G` zYS^2V*h|I4;U}2m3%gcd3mLoDzPvWJ&1F8z+KanB%?Y$Z>Y7M>WhoNgg@uO-U=8d= zgYDjma#DYEZVOf(BP*>>WQfy(ZN8?-L9S|lV=3WI9I#U4;P?%a`6f{(Z{-7FPi95k zt&47i#8H2s!cbT!Vrvs>meZZyv>@=wgf5++xrH~D4UDbhY;wg(>3sc$XK2zQjBA4z zL=U667$yzD2+jcG?qOVOmde1^k|{u{q&89(J1R221Jr!ga!=fPo&`lyp=j1tg=9Zj z{hngEx&BI-d_UJeBrVf49lH3mqmX-9FRkvLS1`{xpG)x>QvwrH6mXMzjd<3b@%qsS zunaQt&?fQ2%i$+sb%k_8sOUX^NN5BBy$})kz;uKLu8FB@dk&u(xbtPC?otW-VOu9% z95%l4S&K(cxA>S85v=*y$(A-KD(v0sp5c?)0fp(WoI;1#6;IXY?H21F^5M;lV z;_X-&CLK%4BrhtZX6&S2{zBn!g^cT$EL_n@=18t7T`V+94l)YOYX}qlEwNKR1qVKc zy6K?(+;&&phc_6uO zas3W3_K47TT1|uuA5E@{Fqq_$;0|%(x-KqTR0)c?_E#v|+C?Bw$Sxfsszv9c?xa$- z6WhJGRAPe_8YLkc#0wsk3FZNPJAu(W5DDt;A$y5m%ej3iIai$O+0Cb zTiaU)mtpUj@-cK+{kpHfAh;++ngUH?Lc!@8ZsEG)g-WmyM+RF`B_ZbzQhHR9X+HYD z14w%`$LJ9s>BLI#7Xti)dY_qin7EmrF;gfPtBa{{1*pN-dvy!38SqCBt1W!2%whZ5 z%}L+rDm0R8=(L*GMFwN_s?4}+?5Y=2{~~G*tE24y)WWb6PoF>S&riP(BZv&dW(6;C z23J2N#mk$GGSZ|@qEQa3)fYWNkzf{o0@L}8%zZc89J@mW59M`JlOJTa34HHTpSoX4_5Db5v63)Ww9=b%lS{(N-!Qn;W^|Ar_A6L8R+v zlk8gWlgM9ztU#fvgVfW--AqLZ9PX-;BZ1otdjx{aVy}vl6sz&lz8FL@D3Si*O}>mpc&UBDG#+fOqFUb7lhf%$T#{l$pm2#lbAj`FL}YOx zCIvwy$m;lF+!9H3lIUD)2p}~!PE7lK47f8Di?a!V33@p>sOTixoN0Wgv*%<|r3g%c zjS&c?KoN##NG{=X`44zNqm64Q| zI;JC{BCVVk2Emi1w&8quEwpF=s1HCC8WQTm8TlW`5dsYo9Rx*6#)2V4&MIsK%_iy; z_@BS>;nfI2gpdIhb!k|#mET70wtfdMXQ*Y9NOw6`F4GirL$C`L)wNz9YG?X723cl_-NovS&>LP0VzuKHB1IEe>MC1Hq;JR1Txk@ALXbE8#bV z$R^u!VtZ8Tt1#_1eV8PPiv=3-q+DHvHEHgthRE?A5VC<4mv2W5)@ zL&%^b`_HAc76_%pcm~M0V-^=bs!YV`o zNwh=DKe)GIW_wKZ`PqNCL{&&2WbkTmt>FRMwc2t#Iod6>z5q|)A@X~m3|~$fhU8ny5xS; zBHr5{vOIrWhMeW5-5MNez40;Ykl29U(k^=FMybTcH(z!qN?cA^R+av6DY2?magesagH_xeZG z#YlXbd*U)3o+wsH?kuI|Umy`1eqOKfUo#hdpc9*v`=)s*Pe$lJIXY@e2LBs3{rpak zM6z6A0)sUn9NWnPV#kRLNP$7rJ!7jQdJ!@i#!SR|iP-BeLJ~01&xb-WxZ{M5e$uq5 z{o751fLqx!#xVq&k~@CbY+Eqje}v>}xr@PIM6j07Lu_K@UN2!Tt{py_0{l_X+<3`? zhVFzc<45y@V;R*X9`=mMJ!c*qMN7Zg=YH1_#`)wDrehhE(~lM_@&Pw}Oj*G~K?9*- z|EJCVgPYLMSz*Z7U_ltsa0yzi#CHRt`xrbHys!;`hV#HoZh{&wn2vQ0vY)$(n>O7Mj#a-b%u1$%g?Us z9iU|2*@%*X^K4%r`Gm_+Wy~s_@>X1L5o!BkgSi=vQamcRVsITZX@fu9P;T?DIJzH2 zX(+eGK^_ni<&NOp#~@JrWVW>U5{yfXjFQYXAeLE@Idene0+-&_)9kmfna(&nS~*Em zm(cc$6P}SyPz82jR<4FxyF@;rkiyJyAH0?V%sZq05i#%$R6%N^KSmn!fn1$3uc^eq z48P1__pJ4CA|qlU6}|(M(~~mZ0URSg@53=9D`)**B!9YJnXR-5zV&v;tkP=wf5uCa z{7a%a;yCowR`?o{9yyTv1`K{3rCjaPiJ*|12}IBC`cCL}7JQvuoKifq&(gM>6B|#x zs+Q^tHL<-qiEhGzJ3J*-L)qqrxv+-ri?N_QCUACxToVJa?CHiN6A}H_RD44+;|0R- zi@-|4;;Ei2J13L&hc=#(eiW{S+zWrGJyuj{krVmqU=Zk)ld%-Nz&i z6!&Ibt+J!IZQZB;Q%nDzVPaz9L`r5?T4cWG^!dD|Gl8~(`v+xweY?b$>QknK^FGCy zk@fEvbu>bLGwI@qtwM@*#Lz)8l^3&bM3{M;RGi+X0+E-jB>NBDG~pL@^wuxyW~;8R zX)j2U7z1K-;q7u2PM;b6>heSxgZZfOQ*4T-Re4-*_?Pg?b!9|!US#)*Dh69ZC{z}U zz-abSm*q|Z=&X*@PQdRf4$KUHnIVINqFq)WVx53y{%s;1g#zGAL{=HgFACU>EH5n5*C3eAEf$)s0zT2v6-zUYA=fJ`sxkI2 zifw~Vwl*jVc=(G5xO}`Fu~L=3s_H4Lqz5e5_Z3WZL!PeNN6`l}mYyzegCzzmoHh8Gx@Ofi^c?i8Gfm@GVJ82pTd;QLQB%v%auWF7?lk>y;&m z3J4v@usjaZLv)j+oAwKvGn^RCbz7r5at@D^sc=rI;K55%ArOQeG@f4_!Wy>vw6B{* zC)W`pA$U9~u8)HkVG~rI=YB7yUR^R-{bx_~<*Sbsp<;i_&Wb}c2N6AA8o%V}9vSB8 zsjM;qTlh5b_xx0QeZAq?PK-z~hJuz*U-Df%aA7eT#e-KF)1I(Wp3Ja>+P<#T;X@Qd zG~N9u1$6idu$t~zNh1ASOZti%CUl{B6_}Pig3H^KJckW|eW~;+$0c*At7Z zh~e*msMxlWOB1Y!hD7x0Dw!ULlwr;|v2zLXal;1M)b6L^@;zy)3bq5?pEu;7bQdSw zmF-;}=fYu~R4aLPQajO$kxpGcS7R;Z4j0=t{*{{>)MVH5u#%S*V zd1Hjjwn0%{EHURVU@TcWmrq|FLGfYCoffzeq9g-6Z--|f#!U#gT|GAeD3CpCE?TOM z*q$U?i!qL+XKgbEP$E&4TK@{}K|R%!Fgjp}l|eA3BiA01JuEcO3n&FGF2Uj`qf)S= z9m(cKU86g)#u?|?mS$jsLQB`RO=Lx-uDqXFw&)+kC#D$s4sb5M61a)+SxJD z)~S#&{u&<1L3aHKeWKg~DnO^oDyl+tSfYB-`bd0@29rCzjk~xoI5N;btc0c^A_jti z(RN5~N7uWKT{*VK~Q?rfz0T3Znv zUZ%e?-0kK(=!9K)NZ3hjMK>ub#Y&J4mVD|VUDF6GLKx%|=K9S*81MVBY#B2CV@Fek zx7@yiG>DsH2kazfQ=W!@XRRO(_A=!L1EZ{xw;Ju)2&XW4hK_2l*++@dxZ^D2cnjM$ zo+BSCF9b5o*%%L}ae|r$f9RR19egvY#)r43E47gB@cmsrQ&!GcS+ODb?1qChb8{!@E;xHp!xoEW8yzL9K;CdD;dx&p0} zveHZ8f@FwJH=wJ(Vhp(hU8n+o+$SLGzB_!EKCAaOf zs%+4rbp9l!n9*xIfJ^Qb^UeoH{IY3fdc3>U0B!!obA}Ua$VI&g5LqZ1y}bFLA_3%o~bE6TNzK671T=vEew8Z5pSebV1}oQzv$QZ>v)4_2dMD~w{9tVnzb zur8%&Y@REffN{2pF@Vr#WY@c*`$z+-SUI4D@1>OM4>#~ zJo!!R4f6$P;_3BUzNwK}rl*ZBG_-rU^%Hb}$7#b62Nq41n)q2GS(W}qER;u*Y+yapO+VbZ`CzXQh2 zEjHa=lkR0*M`~Y1GYl7#(hp9M)LAQglZ{tnWb;RzW5xU-NX@tJ5UKa{%~4r?!C?*2 zs)%Gq>S)TyE=>#7+vNnvBBfeUn{9?+J z$#BMDj$+vEuguZB#5XL>H&L)m^i?iQng=%_18r0_J0zC=F|L?L&6)5!v9SZ#SGYK) z8!Eg-N2naAwl+UkzO=uGe%~iLK=`HP%`CWl?M_q4@HH~`<+X54#LE=5o`P--J(~59 z%xGd+rFKA|h$$$={{bmdloKh!Y)!#SO2&iKPm(S^;1(`nge-Mus+g`wM(&z|w-j}` zwSoPfeNCr~@uhRm9|}&STcq$I;Xpl_ETB|tu&=x3AdP!rY2n%^sK_gc(^H&j_OkK^q-()#HHJVg|n|=o+9_tz6EDbya`L4 zAqlKw)FJEpwI?EJ5h_rCl5s@XC;OU%j5gxFyoTd>7S4S_XTyA@uiGP)(N)o9nh=r` zV3`Sby(pZAe~?VrQ5ct={D|bh#@;+aoRpRs^^#K;6h08ZLBBvOK#+SA$+Y#8Og)is zuFrE)aL2nNRl7sy#2TUZ{tKrfyoYBOf|e}D9^1}#Oy5%h`Wpi-8^w2g;H3NWm@0neu=Qchbd;@Krr0Nwe|-)W3@(g)lub$QK13)uiNDUJtrAW>xP6UNx}xO{VG`! zO@J~!Q$l4Zi2_Ag^`%+Sk**hpKj%%x{lq%+l;t`g$#~*a+EIlpX3;yKlnyYivFIfX z8&4Ni6$}&oFIKAVUewa>UFFoawkm5DP6Z zD@)_(4sje%)`rnA5Arw{52+n!-e6-)meOGhlF9Rcqhcw_>%r+1Ck&>>8NQ|rE*D69 z@IMvTMHt0j1)Yp|#g6b{!Nr!?_+l0Kuz??Db)EHFp-vUW9nJ~!qWYJ}_#;YoGM?qH zTce?^imo%R6|kujEPEzn6a92lH;nh#*x2_U_0PcA^AAV@eT08NLO^{0s{b3r2?0PO zV-;35asmZ{3mW?7wlDv$>kT1D)&omS)%2|w>MP@^kH+Vn-{Q8e~5e#muTIp?pc9}>>S37vC3>Z*VGCRpWL++aJf7EJ9UBo^b?>hs7pulOFXKL;yW zfclgUC4lWwRkXkw{Q`P#S*Z9%^nh&c`eErcX|kO#oVT&J7{5LLuK3ram-KQ8r2@&p zMZY4FahtM9!Q;HYTZk`*%8#jpUvy_*^1p`#-hA1ev}H)}6fle5;FWNrd1}Mar8aeL zJF#wR&!c|oJMkiGd9kVE5YG%fM=wtJ8%YzRIe%D~^~d;DzB^eb9BELwZm>f&No1<2 z$2;4z(kE#XmTAS8PQwh<@xuKa%Kbb0o=mU82?5#OzkixD=lBixDKj+tg6nw~(~8qB z0++ncvfljr7>{y@_bHhvBBJ%3yZ4r5)RT2pf$+^-c4kMLZXQtunm*A5IU4y39#{pj zeB@26uD*Sa7Xrgnz=l|Ta+ROV%wxCWm+?0yN@+o65N8pJ5zmHDggKihC|76a&1;sd zscar`yg3w2lO@3lsO9?hd46Z_0JLBGEI7m)Dg}eCOeymDP)TE9GtUPq!9FxQ!7#=0 z8zSsG)7LXFM`>nNU6Qqp9E?_ZMO_%_4X~k^e-O3$8fFKv4=<4OJ=wx4o6D)L=gQ>= zx|pUWXehV%3-5<|hj!>iPt$at<;0GtaZ0KN^Vb>gs`h4mk^ERwVO1aD@S;=Z`J-!LGOTa1JrSQ_R*+XMw1AdS=r4MmaAK~mo;3P&kQyZcRA4Z7ff(2U1R5T zE;bvbBKRhn5vPQr)%jRfFl648oA61tR`tK@=AjI4g_-K6QT_dezKDPVX8+z~kD#Hc znlA8y*ZX`gJjgZX1_m`Ej8jbu?eHOW=!yo9T$8={4*JAwxEfeiu{Lg-QSSK0rbEBf z29>uf%=r&&who>I4~Wn~lsaSV%V=6Ib4FLOnRJ~9#GOwo1P9fAm<5sUgoZdB)X)6e z)XMX8QUXDQBCw_EsXkMffw=C4_e{C-<7wc!NcFRi$tfBjSs$&ZPL(;K(z9ev6^ss& z-B^x=)6dAsvhYGHa$Y<$xn%hW+_@dA7>=O3O>sBuJ`b36iDi0GTK%78(Ir~ddwXxpX+!S$Y-fGUC2nY5|#) zPnv#u#`P@VPkD+tVT0ZVPdlz zLNjl~u5khJK_?@TiDzjaf$vvdf}uW*qOU&@7ckSSK6|=nCb1h|5y7^_?e*qY>Qzmi zh#44AAZ4@9raj|1YKC`x>MrQsVpj5o%_EMMTE^j)oib8%R;PI-fUQ-VXN+lA=909o zeO5EpY)jE*nl?{I6ldHk;wmc^9G-npm`MkXDmTH3o0wC(0|K2ax!Tg?%b!Z5a+jDT z$T}}Sd<#+zibQ0X(jgBzlz>&`>%-K3W!c-fK~1;GYUt??r;S4(rA;x*Y)1l@rFPBC zm?;)k*$vav!^pUg&jD8XJalkMPioXHTJCCMvNKp;ika$&pptX4ADO#~K*-LC+h}tG zV#tGO+ut>mOQNr1n)o;}E?c6~kr8|~Z=hOpC7>9l%hh-c4XvucFHmA8Kbja;T1 z)mhRQQbS6rw4#YI_WQ$!yaUjulkFbG$L+&kdq5uah-Gc}sclwn8|^)dATRZrb(Yqq z0z(F#7(pR_rQ5&}v<3{+^gL-V_KCSe_PDWdRn0tcZw$>y={V}h7$wjG9r}Al_)X%X=NdcZ|7B|13Nfl%YX(9 z$8rYtV0(WGIYL?QDohutmw2g4V14GKs)E_)+iBt?t0zU^Sza+~Yb}14uvT?w#;Uuc zhvnsSE;v+Y1rz$#^PB8;zKY=ye$c!1CNpPnEsQZct7ON-3^}_z$}!c>=vJq z+huI&F0y?gu)-$*(Iy_uj&mB$zs#zmGebNI%_+_i(-*_I`_g~zxD~00)LU(NKcshr z!r}%br@WAM%1doEEEi~!9;&yMbRX`kG=){NK8mRZ|MH1qo&nm+0A?7Exdh9B+1K~OkBThKH41cYlg(`dj} zqHAr=UzHkzVct#4MR;OyO=5@xu;mB9_u;kD?>|$2g9AONK*WWE$l^-Q?uaOz0ozJ{ z0{8UEvw3M$%vO3aOQ#A%X6Z5CD&pkf_m6vNv7tXQu`(4Lwm+wCxZu{%eBh2n->`PoLL z?2YUc4uWmF-%C7?`5C1~{v!Vv2YyKq8H{hzLvx+F%;b}?-q9R%9=!Skr)ZFBgNtWQ zbqTs6uBhjXh(%fu8k%I<~$do?^?c$Ntj<)e;6SK&usf zGpp{rKaMyqN(1sIJY_$dN(BAIgu9G0YQcUU+>9gox&zB>pV(qjx%C0;v^X(74{PHm zG$2mo28R}H#TA@mc!f9ZlKH3q1jqa$&0pdr93*RwFVEc3Kj-kw3(x5Rjc+=fxTN_? zEYXGjO>X)!5?3GU)jh|q4=m#E2>#hE*5^~M3Nz+MUCLSZmw>TUj98X*b>;%mVX*Zq z+TrWmVt`SPsj6yIe-R4%0Lz*P2NZ698a$w7AFS}fEponyD>~Yf=h3^Q0v}>Z#A;K7h z^_QJv7vQvTqqz*Z7(7Dt92o{ak0g_1Lv{n-CcO(h%am7ad6B;vn+oKBIoJbgxuAS8 znC{%r;3v&I{8PM5O@7pM{Xk7?a&yUx%$zW}UGsxk_sX!<$5~X`;}v@cuwGN3;^Kcf z<=ws;nB}Ijo>nOY3$XOa|?r>tzfD7y}9}e$+(_k5uQNZJbw?h&O>6#(|8z^Cjb>MH4hOa(UthapM^KJg2e7$T? zxniSK+>g3w6Cm+{->?fxcb*MijG~kU-=zuavbZ;3kBW7}I+oF?f$rzCR#{;{s zb_#V(56iRz$%mqEqZUj@Qt1XvhFBe7Nq@4$r@X;y)PHf0UTuJLrSCRt7LRH-6M)~~ zTP;!^aJUVLPQJn8P#QY2g$w5QrQ$@Vp6M`i2RF6qsgxr}z>l=ocNes2}9{rF_*re)HJM z7T20umJ||8=%X**9}?5M(w!pDmPO9sZhC6X4sImLPb_{OJS44}lo0QK^bd^EC-Q<~UQa0VxxN6N4ZWIbzQb zm5jJDC;@{)G&cbNxrI0;)(F3p_&=a8(g()EcoYN54pgaXgDat_Td`P3HYOGER!$L?Q z=m7Zu3?n|iAN@??8keLYfj?3)%-|F~L%#8Kn_z|{*)=ASAvQr2kep#be#n6!2>|eF z;8KQ`%7LUw0l+U|^89Cz-csn4A21#`uYb|2nB-s z8s`2NsQ4H51-cd__&mtI1$1QR=17ZW{9ocjy6o@om%AFA3HVFo2#T+1zj`}gZN)4i zQk)MULs#*;>#eiRKyir;4UNx&j@vb-w)SlkAw;=ajGGtw(PiosXx;BQ|7&g6WpePo zG4+>0z{O|J6FSSBnbw#mQ#rHjXv{EiRz~)=m_w`Wkr*u}rWdH}xQkZL6YhqgW20uI z?`8qZq+h^yk&pv{+Z!^BNey`PO~z*++EgwuP$*=jjCQQT24CdwRMK@e^FDKW=1ua>;PJ1g}2} zf$kk#js+*$L?H1VFPv_D-T}ptX7R65c1SP7g(Aas8>4!E%74x@w;7!YUKyS2vb-1% zV>HgSkyIITZr&01{_*=($SYVei>TPUDw^2&DhfUI!{F{6z!JUOxpuF5;#zVAj(stsVn4Ms;F*-={8##Ln6c>ULxxU!0q`THncR=-0&jZJJ5lWQLl z-(LN4N!7(W7UKlf)D8YFukWn!>5zzc;ncR5*1(4Vr>h1`(v{yaBbmEVhZtM9tF54G zTxX-+KYdAS4h-BFcC2ezV^A1rY?L@nJ0>jkkNid5#HBjC1Gy#V<(?a5J%A)`tdM&L z4AX{da_0oe3SlBqv9fP!=+fY5u`LWTYNzlxbLr^>VK|=8TV|skgHSyBkUn{H8Sb~H zzjpVJ`~I|TMsx$H`?6`iuzI3Ma>KPJZQ_1R0TBQ44}ngk>2)I-Q8|O=dTtvYN%Bo! zUWv~}UD20RUUS1(2v)QuFq%M-v$a(ub=S?UVPvETmX($MyWifI+s4Z<%GTS^5U)>= zbTK@+eS#eB3)}E#L`VD1W)FJwP9R~IgEZKdf$|c#EPdfenZz&yw+ics6tYkHFueAe z=n^&XuL)35pSZR8nD|A5Brz%CG~kAR*%4#u8e73nuc#L0>o_NJNm-=J(v@G?YT%;f z7?s_h*nmes8}HU$ms|70jM-U(*qyy%*Ol?5k;R`;?P9Tp^3$}6z!%URgMA{~Z#$h< z>v5nlTtG}Ps{Wft`RPnaXz_4Yy;fE_3q^!Kz&ozZ=L&hZe=-s#8v8}Z-4n$8VFM`s zvjP7Wj{o1Fw|_Q(jFt4C4G;=+0$=_=5pN)?8z}!A8={pBlg;tQ>46^VejeC?2T7Cx z20O+qv;>- zY}^+{qu&!Isc0KewjanTH%a*DU0g%DB=EIuozQ-RA++%Ga$Yz4!+uAXhwIiPm(JhOY9|W!UUcDu~BPN3z2kQ)$7+gnCHH5N8q+kI7P^dkk2DckI@UMFBItn zB5IDE9V4SaZ?IOHE~WF|JjiP(#_FA4zjWaOOwmQ=ku6RGZh3@I54d=qVw%Fw*nGa; zU$_zATRioo2)qMa^c1!mn`DO8{zCpS>A6i(V`y-prXA4D;94sCGto-0w-S>r8|)kA z@))jXx7dlB^Y>-o9nf+94#-<{((|jwc;2srn@04p@G&0BIggn@US=7C9X5qzafhpb z9bh}=ZI20X2bjhELIAiSCw3Y}Z?>?K#*Jyr2$r+X`6X zj$1``oG&sX)u_i2nnxJU=~~99q4x3Ooe6I`-he;I{j1CTsz+eS{|V|9 z73!ot*mL01fsXAC2e~^G;G3PPWV>+2@xb%(i-r~u*k>=2}^8tE@Pqroy zpBzI7dc;=G4x$wNkSqhG#5ll6bO*55t>x5+;0anUM71%fMkzM_EI1bITht@j9)-*GnW#AS@0gL2ls3|zKDxN;agki$Q?2SA+0 z69^L9^!*^eU`4x`yPdZqd!SA z8ZExlsb=Oqj2qM5;n?ztn5BJ8k^{Z0Oa`@OT`M?o8+A5`P|2sNaP==J)Ix_F!N59T z%;69fl_q;@s5}TO3qYn8>KtL@=N#9k?8ka&OSv&hgM7epGUnkk$L=kVS^%K}zR+N! zaLqBpUB)zpS)^D~u26LuHFKEHVMcAp)}jRHx*Dv?FHtmB$j-w2O8qTc%tqd=7Yo_! z$RwY*5QS#Jh5rD`e%M0+OI$EbzR7~mw6|U>i%*%D^*M;U>-b0TpG!b({{S=oqF~kT zAg}Ed!z2U@gnv&6^uXi5A~Z}Ngt9@<&55U@{{U1EdLuyH-T-#^yhEuWJ>Y?j0k&#~ z(l~e@j$Yxe!YdS@(zM_w1BIk#YGpDM`??4fm>YFN@=Bq6CAS<76HI1qYA3?I&LD?w#kD`>Qal5rmLXuIde0a+M3de?>X{^dB_v}$>p`lBebuWaRFS$zx z#Ee_{!EpdDq$iEcClvnRSHno}%_u{Kk&*UoPb>IM2$8nFPx*jCBVb>#)B{Ij^^UX zh_AT15g<>AI1~lrxKcQ$u+Wx0l!a~y>yios#HhI*nUt#e#HYL@NpB#sl%f9snw&Eq zjpuE)4Hsx4GjwmY03<^Nm2nH4Be&>(@>-+0b!QMb6v_Vpsy@-gG**%#xpy0@Y2IM< z!(%rEKs6)XG)cq-~A_y`NUPLc5@!o`(^Q);Ub zs{#6MQp+N_5fE;hWx}wmcQLGZ#j$CeKwDy?BynnPotqZ6mp*+Fhf7C5cPFs#@9v%WpW8pImNX;z>jyIx4- z(sq#{w19D?#3i3m2HJHTxcQQ}3W#SIS^{uoc4hn9IySS-MEAT+=bX`g+@% z$`EK-R$0#7U*-I#piD0uw*vVgs6`A0+@K{?FbFfaCXNQLGWn+MrIiACtK#SZ{BCvt zw}8+Ank{aG-n8wB=SCLE(SyqNh7A&ZkFMZey+$<_o2sA-C#`|EI zrj_Iai9m+;9NpSxm)n9EFdlyztUe_SJAxdh6s7o_^#-@kk)qGZy8f^MU(zIR`3!0N z)BqRcRN?Y`A1!i=tfF&Y!6viu{^1VAfQ1hs-3S|MiGZ(-k*GaFs{A7|A@-Qss>(F# zB3pZ@?z zK&f1%1Qk5n4_5T=7#zj}3RtyzK^ub>d{|-}M^z$~eTZ{KjKO@q4G?0M0YnvL-w!6PtvL zhaqME0J$3g^xG;iW9 zxB$bj7z->mhVY=kyB5A%(wExJT5#sl$m*&tzi9?0ufx zi<_&q6SsA!C75b)0V9N)wH&>qUfnS9sJm zJko1yut#?wpK0%6hffJ`-2N=1$^!u=LhhVMPTXx+OsOV zF_&6}z?n@Eegf_P0GWOMkkL(bFq7VuR+QU;~Tv%nd2Tx~+aL7Q(ow1P@w@q~px9PbI0{$1tNL z{{T5Tw}>U$iXcuk4sMdX!f>Vrj)F^R9qDc|V{5OmVHmuzjRl}|jgWap@JV5(sZ zgUWNxCd{H?jwNKiSky2Dypa0?esdz<5LCt(nQ?|uKnao%;cC=eBw!0Iyl4+W!ii)W zB`Mh2?Nkjq<~))1POUL`ifBPDquGfX4d-JQ`@O zp-=>OOnpehDLE0xu{fVG64LFA?;A8rSra(o9IIi}K7)!QtL?6dvtGenhH3e9GMKkJyL`FWf6g_Hp>`!);3x-phRgQ zOWBSgL@dhKWDX+D^gK9H>wUOEwY4Jb1}_@6wG=@_^SNbzp{P1G!}SvqoW-h~YAh&& zCG@O7Dy`HWAp(=>D6hT2h=CB4%%v4ZRz6w5a8|FiL=7xyf4>k!RC#4Zl|u6bTQW#l za&;{29SBudi-Pm6SeB}k%m(zJy=r1Izy8p}wfO+5)Wz`~OE-2S72$7J1bd^=l--VS zatzUM4G@uKYN3#1h4pu7L2agn2qo2ogClLQeGI)MXGKzVO3Q=&gmdmzLw4q81b$Nj zryRw1{^ePGp{}p}aVFlQQrGPaHu&ZWJsisx^!@^c8d0E$WE_})ZTA<1WtEd9?@$Xv z&0Ro;Lj-cbR0M3#^(z{@gIoB^9(h249l> zR@jBY-QZsYtHo4Dk*V}3(WjIJBg%V$Zl?26u+nIjccj@~TQgP|GP43~zGv3}h!T2O zk0?K+d4-aLBoD>qRZG2N`N3q2qTyQ3r|@5a&E!>{2hyJM)xLY#9mQZD_$0iQu} zF|SuHQw6^vUC(WF?~$|DjsEzBr73c2RD#JvtBR4;P4bD)SVk{Jj`A&!zx-gaRQlZ zkg1$iF4j3eu!VnX%qyQRIOG+132DT;=AjmVB*7)ptHh4Pu!{5tx3Oq3vSORfetA#`_Ylc}t+PV{ zh58B3G`l41DhK%4MYoLTLIjzSDz4U@QK@8+#wl?)X{RZvK^t0}sIW$xdPLtZ;D`>` zls`rH01;Cz-3@c%*m&OH*c8Fu z;d!%YtI8p6RZp$K=*38q8&b5YQx__ESuaQX%n87u4ybOi1yy484e*1=;Dt@p1119r z2QqVa!ZBdi)90}(NA0uFzqTD$bR5`)1#zkT|xWswejb*0a^nK1FUjk_DmzrBd zug4e`yzUYq7QCUP)-&7u!jpws)IJdzBB$}3{sjkywWnjB8!WKn^`rKBo~T*+{%=KlM==>S+Te+ zV!#6w_@wJ$saStluus$`!4IGKO0{&aBc)X4r53?kJirQ=7RB-)8iTeUmMj&I#3G-F zZKynqSYc?3@jh_?0W+diqzf##N9c-O8Os&wiZ&~9Nf_N7s6Cg^^{5;2j~95#X}!LS7tmy zZxxJ}*8|3)6==?6(=k&o@ZdkmKiZ&;(c_YgGUey~BP;&^!Z`r#54ib4yHEewr(=C4 diff --git a/modules/contrib/doc/retina/images/retinaOutput_realistic.jpg b/modules/contrib/doc/retina/images/retinaOutput_realistic.jpg deleted file mode 100644 index 1bd60f80cced8cf6afbf3f351caf3ae507b8d56c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 19131 zcmb5VbzB}j&^Ed^?(Qzd-QC^Y-6;;m-Q8UZMT)z-yK8ZZyA&uc?V-SI-I3yf26!d>t{(l932LMzU z;2I!1BU=0p`c-4KOW=!Yxw_q_>t+~^S|o= z0yqc&LjgzmxbaLucPx5DDjlNnBf3vs`f|X`)IfGO6}zZs`o!X%V7s;R76Stgqzo1a z3FMO}OehI?Oy{YXLx`Jh_RDBotgPu95KWTd=%cKezG!loc6@qAJfBejAVI-_V1Y3C z+C{goAEWw7*C<9WA|$^FdIZTY*{O0{FWT47cI!~CvO@WF@O8{#n|TADO9SnNU8t1ZB4(TqE0;^AZqgngesjF2@PA#bCa+XtGcuC~yw>l_ zXR1T;1XC4Zey5$K%xKlh%GK~eoK_ro^4_0T8s5&5W-L{`(4S2(hnIbY+?RJ96$B-4 z3vgGF4&|1IHMA?AASwUMc0qdtvAh%VPil!UtPEvVPpD^riKF(TnRb`ph0APUtkZ;WjK*9hOfdEFlVUfySIIr*I(Vg#2?sKa@ zuYZc6PDa^&{!)fOyy2Rac1-&ZTfwNRdoFSv04zuXEZn&mK$XW7#sy27T+%@n{DyUV z{##AI)X_;VxZhi+cSu&4To)O{ zqOM2OsvnL182IWS0H&ntFA!lgTXi1%EBi%K(av;*!mt6dcVOw9a@owL-y^#vozXpe z)+k4(R`uZ3%5(jGVB({1>psqW2x^$ax8=i)@m4x(8%%^A}rHX}Dr?9ef5}eaGVCnqIZ5%j43nxO$(qj2sTW7ZYvX80@Bq}QdBmk!TjA_SP z-cXiVy+%XyxCJeJlL%UP>X3^@FYr13;nF!4*37QeX}} zNxBafQNLY#gAE`ay)2dek^;kThg^Yurr0(T8YCVF2NK2Tg9Br`4S+2vST;ui6Px6S zqlT+ZJ;pcnXBLXbG(4%=T-speZ`jjN}bMw^V|#UV;*3;{lfaw-g_o7|F|W| zK8apURuseLv*9>o-O&s~%Eqr{Kj-qas`eNiVK`8+mmS)%j=6N0+gs;;k?qlF)mSZ^ z48e~$E1FSO3KjF@)p~hpP3!bYtXGHn`wV#s>QGAnEILRe@Pj>BJ^s_QbP}PH2!(kA zawM&!a+nuv7Rx54Zn5b8H#5*-oJ^sRpJ>@3+hBY4A6!UZcZIYe`wIf3o! zV~7u^BQ9ebMr=B%UM@>&holKEW5Z=cqBw zF+iwzN(6KH$$A9pNp=o_=iqTLH@S#vx2;m^4?!(R#t11(n_wDjx=6W6jSnU1``VP{ zfpI&Z#(P1)d5rapmZ$rmN$bA*_6c#QtbN?MhEexIjB$X%EL1P?J7hpg9%wiH41r(q zHOdOBs{2QjWqQ}V=_CB*^6;A@Pj1b4+RIK>Zmn{?kz!uj9a;V&{6q+Q!^`k&$z}te zepJJyhwsRm#f0DcuSc%xKR5V9_1cc84RpjsxM~(z?K|81Kfv!uiq|Y4u3!v^& z{8|mwoLm{29k>kc$CqvP%JGdeq)%i%#dF_`{bJY@BVUzOI+#wAJhrT#4dH`0Dt_$0 z*I|7JZ6>qfS*;YCCoO3oES4~Is&6!Hd z)M<3W^O5JSb|Q2XGFcW?06Aem&;;9^$#Z3L(_W1MM zbpWYbsJ%B5+GG8G7C*Z>tA@=(y_!x*_b(tZ3-uQuXqOjFsCtRl`jX{Y<$fSb&S;dO zQO~&-Zwx!?C8{>Tf5p}P=ZuSCdC9gZq|!y=XxHF?+1sa*!-Vy>3*NZP7|y;bb=o{cm=%{# zl5xC3x;-t}9`DKadN59zFc@V)Yw-YQg0P-AVLFu9*gx z5zYu)Zozg_yY%-N`ximb;o>|T zgu|t9FBs1#zTy=^W?M6XUlHzr6BxZmxFJ{vwRlTo=jX^VF04G;g$Ie7q3tb(dN3Kk zf)|3L4>PFZfizg-aoc!m(4K}xj*|5n?i5PpVryc-|sDX%E8rmS+QzeGkrhi=UyxG zap#eU?6f6ffJ!0_O4XJ&lU$R=I@YR-+!Do5R*#*_WFL#EUuS)&@Atu((Yo{Tqj_Ox zh_Fjgzq654;cDBe;ZrBurM%YDh_{%;YBqC!b=>|k@GapzVj})RYNb?U6DGqArc*8V z&L&L*1D|%q6A>Yf*kFjTwsGwu76satUFASCMugaF(rEijpZ>GjKyF2^Mn2MDAsA!s z(XW}9+vW}NxhrPK)(S9k0FSAROl;HM4FLP>bVtfi!?IXA_&eVI^~w{)Ec zX(JK#V`oByGqZ)>6F#lyVsJOkyV4(|BxHg^43`W!*zUg`prT`}R7`r_L7txzy}3`g zq!?j}yET3pspq|;tM#QJ$haA38SNZLIJW*SNSIC*YxrO?Ipgl#C8|W5{2$vlt-pXl zr;VQ6P|Ka32iDJ$?E~~}1>{WUhG-?m8hx6%O)9z{nw1r29TmK$;d%q*F3ze4w5_BX z?P%4*Ll?)9cw4PaTG=Rj`OV$PPT7bfT^UZb71AE0&rH{1iVIi5dg&`F4jWCaE(>9b zouM59g}wB(6=#(i8oKX!l@+uP2`*@tOmKwOq??t8e}R>8JA+MQ4)zmr4E&1Daz&0? z4YG~BR=8(4Dj(fnx-7C-IzQb07z89}tjxU$pX8LmWCh{KI(qhi46Cxfu=OT2F#7_s zViqdCT=*B4$8d?fF!Ct;d^`{;9WaKrW!y-V)6HG9^!Vz!%=@krkI_HrJgfIwKQ4(_ zH+sX4m|dFxUB;+m-Twj~YbA120Q|!O|IY^hw^I5b5Goi78VR#7Iw?4dvWU}vi=z(< zT?ix{N($qA2_x!&t}ktbKnmL?VjIPU^obNk)W>s=-gP9Q@gjmylt5Y(T}{0wPbkqS z@fkX^mvkJHVE!|&C`#xOsQ|zCLaGii=`F!(gP_;}&)0Hv!D#-l#I3uG0;O)LzW~f% zAfObh@DDu}#?uTmSO65xAI{;Y1u}vSvA!JzCBF5GmZW$XdsB-XD@sj+1+}2Q9VhO4 zQ&K(##z`6YlM-D$u^&9CO6s<9;1qlVZlNckrack!_6Qaq_es98zTO$fIui%6CNyu6 zCf}*}BHG_uoc$mY48B=7J-ruYvDE&GPsHGrkskXh_)-8gocFu7 z!mg(lGsPoo$LbZIbRiV~l2uDmlp@cNjPwuNHH1FfB7MyEW8BVo2&F85Ze2jJ z{-|CQy^0hf;eR;vk3at#BmtqIf_-p^R2UqcMTAWGKMsAMJ3=5YEV~b~ADE~{Kf71rXIT=l zY;)AUc5v&(kOLc2;M&L|#zE_b1ywW@fLm}+Y=E`IK8=W=;)~O0 zO5=xIJb_a(dFnL05OLXNx^FRo^L{^k9dNDQgPbeT>v!w*&Ex@}?ERP_%QuSH)+$|% zLx|LpK52Kl*B~CBbvkqB7JDSAkOmP^0%NYh^cit_dh%Z1A{X1TL=YaQh@BL}#+Kbw z`?i4ZE-Png{9?+Py0ByvCk??VI=pK1E#st-|ABdAV)sp`UW^$ZWh9!GmemqzwjVhL zo1IO>Gdev$AqF?fl11Onl1atF*RegCezkRA7uMNKOi~m}a_b5woRchZZi2c9b9_Wh zrIKZ^=ZU2NW*je7Mf6Z5MMymC=VT0qim2sq9x{6U2U*0WQozyoj1Ekq6Wi=`vvW5* zk=_Zy=Vox~SX|d5h@G0A$U3IIOzGo(iJh0gP*KreEs#_#OqjuD#D=3QjHX^%Dr}?F zdEr*^wT%upJ5|wFuVH7z8(_Y}b&74%9-=lywTQHcoB7AehNH1QWhw5GFA~46K50*Omem)XcA#j)1U&ZPt2<9VlKfU_5Bo- z;>v|LYU*yuP4m0|ugL=?1cqeC)X`g18>}@@cyMb3>%t%;alJCAUzs5>QEiL*C`W=7 zWc$o$0QRWxTfdBFy1=s>?j(SgMnrg{5XJVOU5oZmzcQ6kW8!~eX)ZMy6A5q^RkPFD z`t7!RYwM_W`-{`#%oqB2DKgRa(pEHa{&Zp&iNAQ48F`#U6P3;7NtZLJ)@oD{dgC5!&1BA zqy3a&9DIc#vEP;Xb+rcGu}nN`@Xk8v8ud%(Tq_Rr8T6ZUE6aZyowU0t?+t|?$!z^1 zR}mdNFb;1(2bX|eg$w>U7qL{7jY&v9`2NH8dX?&pxf0##Q0a*j&D|fUH7>vK4zM`X zWj<~ku7`V6IWl<`@QJnI7K+QS-FgUWdQ;B0TAhOa3w-|0=JdSd!V@$>~+Isr%1P!?pCnz;4g@SWbTqLq^f0mt&O@nsj%H? zz9{V3d}UG%i`Uw_(moPsBl}*Ema-)~oEf=Bg}pQqx}r<=c~F<2Q|-)NamplzrzdM| z740g6s0IJLHU?q{VM>+Abp5zmy=$2&;^q64G=l3;&7F|TEt|z4mGYrR$VKcD%vILN zyV(yT#KMs)9iN(+BJwnl;pF?bzkro@{Ns90({`L67hkuRXU$^iQtmqJvcR0V1)02r z9qEwnNCuu(jjWvYr_6``ywnI5*m@}x+jRmu#r79VPF4pkH_Qh4?9`~PvdjoQgGI6x z*BeOUPy8A4cl=l`h7jWqHCOaY_0j#WophQJbzgf?jHHvVd?hcxONwU2urQ>MkHfLl z8zbuCB6PGTBO7jTH0zPlHEN6Fd~x!#MM+zSNivEO_E!u)n{4&`tt>Ip%21gb(dg+z z^@(%AALFYDWj~rBA|Bo{oe5ZDvD*Bz9L{CXC-TRa}w&_ZDYAEZ^ zXEO3|M1Q#v?-~Q)FniP!(cK(8J~fcJ_EcBmXJb%{3M89^uW0FVCquiam(1?DsP2h9 zV2Fm1X+vOxSkG9u7y!+0q4a1bi;Vv0VSaRjIIdGtOPnGJPPR2du4tlJgM|$kQ^c#} zU^eLM1S^_$8sFW5})M7KN<9E-IcfT~BY$h1@BplXjEf{{1mq`Ng z@Yb2cC{}QxVp!tXRsFeht41i<5qb`BGu&Ex0LKKDEqg$a@M_(kong7n$qkwenzj- z_n)b*fA~iOj;>ZbXK(57H*za75!W+OOJYAC4}YJk+AzFaq9oL2wSt-Cz?d5R z;`})-+x@1g039h~_Rn_%8o2;dQ*fmtv?0FxinR+RAgqJ?D?dZ#-ASxT`$CJ~Q$E^q zOo(kRUH}EOeO(n5XyAHPTYWxv;5ydi28qg!95pO%li3j7tGR&AgmYby6Pbo3&djCS zm7dd(s)`pv{_E=e7RIj*@GrK8?Mx*~?@%9W;UHAIy!qXPerIlN|1sH@ky*2ZM{^wG zUlGC=)sE1nv)LwW62PB z4H1~Z_18i=tsN&Rf-m`d_893nm~^rphpUD@2M>1J=2n&u54aY4(|xyr|TLr&jV10FfF-`R zJ^$u4lEl9WX35D&lZh09VD*PgP}+;eSJe?QBZiI2qe5Oh7=CAy`rM$>hL!z?*vS4a z>uhcaLIc7^KKrnlVl~ndDG|YRcD*Mz!4hvrSF;ri zrO?UySpyqy(A`DS(1n|feG^ua^OLZGG$U9kGuG54(^YNK06zcPvsZKqhEy;PfKhN$ zjk@-v$49mXZA-Q$>7evTBR<~6WOYznIGAzo=}d8`J<5r>;?NIHxs}UaVTl`JQb$2i zu;RhQ0KpPhUY?JOFp-%%;G`pCy_nGBK;PA52TikNZ` zBfvZDPTuaWi|`_J%6gXd3&4x7hw@{tuarV&Y$b~eK8OM~c`B5Y)u67=Oh;DFA+=Qe z^eeh0^C@@2aTMLBF^iuT1<0Cf^sI!93|aQcD8uAj>6BjwN@Mhw4zzX}!d7FzS)g&< zmn{lfg3uXRU5boc(_G-+@UdNp1BCorE=Irz=4ZrQy=-N7QWk9o3rj!C5P-4 z(#5QUw*G}HY*Rqc#@41L3eCaNkN|FoEU|#IWW*gJSt*l|%e0#T4D#C_;vj0-1Qz|+*#Uo9nNXugsy&oTa zm5)~nQ{&9O+eX`$^M$~t`hurW?`_JZLk}x%kLX~{&Myw)FQ7mBCowbmtGQ%ewa5C$ zD-9zQ6-N-l`&DJR9gqn`Lmq!3S?G}LoXk%DayPHYtbL2_xb=OBhbJh82Is%N6NXf>we3iti=_AA=c zY$Kuz{G*95t=lYsyo3 z3t(ro1~{%Trzbn=kB3O`E;z zURY1MSARfiTAg%uYJHfd{8lFnlk#crq7_eW`st~Bm3U_!A|nD?ti>)0#%^=DvoN`u ze?*PZAG4PH0t(5mp?yL} zVY~VbW^m>!WW`uXcSX%&KFE7`37m8hBHSk{wYibkq zUu;4W#HDQtU0Mrw^+8CSDF@}ZQr>4)$&srVmioi`Hb+Q~7^`fE9+l0l{LQfRg8D3R zCqnUB=%7i_-l7;E-Gr;1@Y<8=*^Ds!!;QR{U8^qYMBy!3YYp-8KdJD+RN&ym-UaIUu^cu5i442+$z4yN0$ldKa(zpFk#TFsFocc zbkT{{Agz!db-5ZUtaO0)nDvA5FRG~ysu8A$${q}U^w9BI*IZT4N__i?`&8g)SP>eM zXB*b-Q$xAXK}K^>9S%Yc6d8Ah?A!b?Bcw;g=+bDdub{(WK0JXsTiCL$B{3~a!s{V` z>LEL?CAm^7;gBYv(Q+mz&DE^TA=zK{%mgYEzxx60TCC!sTj0{!uWv1jt6EyovW|iG zYpQSsAwpyNTe3q~F{*#^F;g9;ty{5mocDpSMCj+K7-;`b+E7-t7Pj$WT8d2bPUasx z(#t%$fpMqqWYMrW7b|Sp?4QQQDyY_aq2<{^;Z1de)O(pnv~hu;i?e1|^ixzlE?tE~ z>PcJD0Pmi-#LR#@*U$@^J!-9v<|qm@!ofrF{lS%=Xrtm8%{EpUQ?9@-dW=zH2)A)7 z`9jxP7$<;AJoR;?vm~aZozdn|qpZLP#p0zhrh)nr{IN>yd7?X5|O$L51=GbAW-sA^xFY{{vD2sH7|?|KN_Gqym!b`u^SdoB#70 zSBTV8$nJ_d;dh2j!3}TstL2uF^}{!`3>WV`E@P>lr_^eJdi#W^V5TUU+PAz{?b!4% zfuvK+^^CUeBwj(%;XcO1NjU++dy@PW* z^AV}GS7P)Ozsdf7UMa3zDz#$}-$Bo}rPE+O$TT|s&#yT8tC{mWqmJe51~CZWNEeCs zA7Ggc33x;}KNVFtKcYct4A|Of`7RIGTd_<+WkCBDjJ;uO+hkK&9{U&3v)!#3oj+yW zQm(QQ^c_QvMV{GH7KLtQ0wx_w`bs_fqz>@t#!;8*cnv_EwT2zvblMA4T#u)z5i;x` z5s}UvrP%y-f>zkhB$KKJ#~KSjW%d_f1Wdk9*H1a!)n4h69_5=zYeM~z-Z_oLhp=;e zWsG8!9U$R*@}o5xtpxYK=W3PRdONdv{3TJdVuv4UxIMH|fjxCu1}5h|+^DCpNI6S& z9J))(&l2ltHi&yq6*qbQ8~xhT)3FwDltQY?pZo+b0hQY`06Uz&3pp5$+wHlF3K@3T zSv4~XJtD$+_wWtDi`j9c?kw){fquq*xn|&7i(6x&Wb5d(!5baz!eS@-0D9NZp#z~= zWAyGmEq6`Jy4@Ajc|e4C?PJ|GrX1$!fKyQjek@ijM12m;n2ant>zY>~zgq>|NWp-1 zT$%>EG)Ki_a1o*o+fL}YUCGRjL#vQq+UPIA1GhnNq)5f!pu$SgmqhE6Kx-N}_+q9? zB2JA%_(9n~yZxG?*jk;GFZ=M2%0=1VsXFNpO`+BdRtY)qnLQ1ogCq%NZHtIUn%;)FI8&8&ioXgBOGpZE}vkpr_BZnvzhnI~lNDo>f}KGB)G;{M>mHRX^! z#IMPyW?5<|`B|o-E0T^%;S$z;2RAog2#bw%o&c(t7g;q_GH-f(*#$1usBSd{yjq@<*_SSG)TpIk&+t+*+;1 zQ#Tvr^8WY(^{)FC8txEg`ru?Oa#xo5WM)o;mu%B{PgM-22cT@r>N@a6uI<#T$K=vY z;|4gBbp7OgopgpeTNY7N@eF(7rmM5_6t|ySO-mSrc)_x?*7mjZ4ko(qtnYH^Hu~NL z3~JgBK{j7daM6;ukex{%yTGsFB@7nZ!phm>`kHe{%%=ipr&{)8wbACx|=HN=yJJR8(9^5hWqWaP0XDHw#S5;i>15CF7u z&c=ci%p&JMT6exxB`5N|?b8yWE-{=A0MKaA9C|uZH(;1Si1oEhMM9t$XJ-f^^#8K< zvVb&|*b>z*OD{F^cIrvvkV5ez>Gfo>=A(pkbl>P=(u5}`HAPFM362_ft1(!%Y>1bG z{VoiQEmT~9o-FwJc2|&*+C1fUR}kHHcM}lY1_#^DL(9%XbKWdwk$v(k=7cww8x#lD zt5E08aI-+W2{ig$yl=6dHE8@)2#UCO?bT;w1M$C0s#kjjO6K%uAH%VxI!0@Bf?JHq zx6$hp=>!WZQ4FwOvhCbVY7vw4bzS}THQ)oq8@Qgd5I$auU`T}iF`coz;nr+L6j~6- zlb+);TIY?sVW>0Cxz9SmwAmDgFQGKRVZT~zB5#M9e5wP7fJX%THWj5L_A490NdA0J z8|o_ASD0SvO$CJOs@@a$5YBIo_sEQ+i~WD3!lIcNl6Ip8oUV9xcQ@Sz zM;GEAfDeBVHVKpYfXe4gl?)Zf-$ZiQWwuVwmaU$xtd>a~4k#QHhe)1`AD*^yVuv`! zQxTnVO4>B#8L`4qiHlYp)%+d1+erIQd@)3fe%dVrP*$Z{yMcYtZQsWRn;+ApwlHVg z;bO!td0eT4)&)YxE!ij6EwatpPPuDggx#PpV%#N;kd_~qTyU7#+F!Mh|5de{K>xBx znr{)*6d0)-l~OWpMgI@ zXepA>hi*MpvyK&*TMHi7WOwYXZ=d%kB z23q1VwZn^4trPoA^j2W|^7FIxezbfLE~ZQtAN2_0Ib!Ja_$Rh5S~m;Tg5Ts+K>q6 zMX6Z8a@&rXJ-^UBs&YX$W|)%>&Jg{3XFFeKnDM0{Uy87VEEydyh;A`I+y@?I*Fe(0 zRKKiLRyi^$ovh`CuJ$ph?5-b&SF-AGuG;4@GAKCY%6pc@F|39utjB@%$@06~bkadT zz0k=ZPV2KAUXVPNkWNOY-E0A)@e%oALYaq05*joJ?oNssiTDR~-jrZ?5LTfpO#RX#IEo&$qKTNe}j@OA58R_eV3=~ttbD1{}Q!7`s>dnCb; z-3hl|FpF*+cV=wFSjCS8YE-+u{hp3uqF*bU?wOJ_%U@st0{7b@{A)eFsOSyJMQW6l zfAV0=(8IK!%-cyxE65@zJjF=~=%6Zf4IgMB1rW9Gyc!oL``vg681 z9^+i9pe8dI>3fKwP#kOh-ezNQR z1<(qLZv%z`Os5d?qqGn-c}k8WiHOGr5cK#gjli?|-^`D8WNezQCzL%MLw4)2mDZp%6kAY-BTX5kY!5g5DP z*t6XDg`FQy9aKVuwpTBh#GDsm_kE@4x zrRJ};o>EbGjt@sQw0oZ@tIvWqy14;Mctl4qm$f>tVrt-Zgl%P*grSS^$oF3u?WFej z`qb((sGjjhgDZny^xIl-?Q}Da^!ii$U~ZPLsf2~S;$BE0tF~xT-(mF2oJuv%v9Pd> zC@l_1I>!;~Ot_5x0XlgW5guYWQ=AL8sZQ7eS^YqbTg#gQqr+_N>g#~?Y&St4c%5=SpP+&oRVx<3B8u%&GDz%I ztp9nvEsjWckju@}to_mY=XmY2fDiNIzfB1r4ix}^^0jw0yAFcGPSPBqI#J9#t#@>wodkgU z-UkB&i;5$^ei3r&`k@duP6L3!0J~bI2sHm9Bh6dYz8-B zTQtwVJs@BZtkOUrhy|F1PfCDfPRxQ$;TVf00=-B1Qzr8HkAjU z5l4doz!FKIq{bqodNphS6c9wBINns@M z78P=RbhzCCc6k`e%dg@IrMGFS*2vBm7Y)OzDuZSx^9f8MF)(}q3`DX6;ynBKWQH_gc@Yg3I4#9NkqAuQb5Df% zq`N4yHzx!@1O^WZqey>BhLsOBPehxlDzFX$1AR&a$T&6|g5`sljDbXemFk)E!|o(O z{kQq#Ki7-@&+bGaC1GX}5mr%l{?Fk2=Nf~OyV2^fRroylqc+maYz(zr+%<6nnSh>O z3?50u#5gM~G-`#?{zZ7q#h}sZSEHPwH#bWN9nh)QBC~m)dwt5XH*&tmbYrkg+LGS5 zGc{?#^Xj^FWRV%S-?c0t_eRdW5~PUVN>7qIp*%n_M#@aKJ z$K=C%uj9{v89vUp%rE`V{@Y298{MA%p64UKYpXp4U%+dhK#xOL9PEaA85}Hs1}_Lc zQA(n>;o^D(HKnu0;2Mfuvee%~HgbobJtd|<5~hm};ImS4a4RW)`g8~CGLH9d>QCH# z?Hg4d*F3ZsC-|J6HzGuSOk$TcYHf?4LpbVU-sXS(lqV|9nM_K5(y1*Fb1UeAOL=QN zTg!1kM+}*Xfa~7r6fHDx%J>58c$Vwgf5$}%=tIE@jq>EH>vV!zFrIxtBHsuLCnBUw zWQ7v@iFM{iY9k2qZLs@dz~c{Z{`N zxD&s|ikKn*;zVe=Ayo4HX7!8Lr;qA8qd_rJKb3&P+c&D?>}5i!{D44~1OD8XkY6}X zZwYzLtvW}`d?|hBeZ;7TE@p~s3xdw&=ADC0{1Ugs+{=q$vps=Rk`JAdMaSSRNq?T) zucmI1QGdtUaT^xTLYS{|-|hAU`N2Ww=6b0uBq^4l46CS}s$+ACTZ+!MBjL2Z1MI^4Uv#N2adG zJfn-=>%q0h0E#$1Jv;Ot@G-gmZxD0WktW3v_-0Be#K&wcG9Etlp{YC; z?psH|r*m0UizS+e|XYkRBD?Y0y01Qy{*(S(*aL@26WdbZ(4FAzr;<_PTY|-G@Bm?|0^xD@;%`C2KN&Xwt6$SjgWi}A zqgeVkS|j{q^LA*pUxV&`3HJ6@*Hj};xPq%P-^hsJELjft4t7549x1)QA%|Z;ouu;6 zeC@biSUj0|b`a@}3}LBdt|mOjZRZv1>U0i^I6&&}4ga-#**@5p1=XMOYkuB!^h=o; z<#?jq9&h-!5$sGC!VK~QUV}F7ofhp;2h@nl4)R+>1|IgNC-{K>3*~`<{)6)Vljjd{ zCS?&(LHQ5LtM8w`zS$-Dzfc}Z#Y53Xz-H~`!TnvT-iy$ciH~)A)i~Hn=lN+{yFT5- zA%v*bPJ1G(Wk(o>~F= z{X{G#8O(bQVF@d2qM+qD3#-?m`P~u?FmXV^aD5%=Pq`SGRe&sUe`OD33{u zospw%h~X_kN2j)ITAboqYFE^8$3BM3b@Etaa4Z{)?YEXr zk<*t(%79qMsR2uX=Gs~G>$eJb5pT$Z3!e7mG*Z?vgoppifY8QK-PEC!DOs=iU75(U zz6|e|+f0jn>zi-~Vsasu@gdrYr!l!TguzehmUB0!Xx=(~N174xn@OSDTJ6yMoDO-^ zpiE1h&F!*3m)6s@yXBr;3w0SMUu68QV))XHoI%QsK1WR9{u&unW(x8WZL9HDX9N|9( zltodoq$dcC?=pt#o!;Zcx#I~rZ>(h~eUDHo=N^!Ns}8G9AgbD)Q8Kb|W`L{t3k;1O zS!SlQ7UihjKqHh1t|%(qV9v<}5}LNX3sYGp{m|;Yft|Ywr6JgeZ=W7Qn5(Ds%OmF) zXodYQ|06a_jtnfsrU`N0gl8MigW!u^HoOFM8UHXWrhM#|P#oG8H|WwVyD=vUTN%`_ zp+r`$DlBjVyQ0`)ot&R~yvL(ln{qTk-}#^T`z=YJBI&O|g|@%e1vg`K^~jX;|)&_Fd+#P0;i ze!h2Wru)LCGQ^Q9O^V%U?kEdpwFE-{Dm@2a459?ZX{e;jiM~&|t@!}$vkK(&QYrmi zKHVo=;VAMQ0IT8zc2-IM+tQz|4Ixm;Yuqx`ej{?}sv}qi#ETVidYUB;Ebnv>#v3RR zR-QEA^{3Hpb;&RMHwh6XXYSqL$htAC%33M{W)yZ@i98G}jYYPsD|tDwTa}-R=+c}Y zTS*Ay`|!%alTOZdKMXcVky~YA^gqz>C};#2%6pG~D9WGuq?ifeZ6U#+;;eZvLV*p9P%!8a?qAB<4_c#xad7Uy_Z=ToPF%>A zpqU@q$SW4XHQGjzadN~1F#zcA8pch&tl@FV;lUmR|MeY0o$rF)+*HPt4PV@^>8fAl(F@~XlG`tD}kzk6gYEJr##~HZrQva8)6zx zwE=BRwi~E^(5Q5^nO(<)aK$K{eWwJ@jvr^zdUFmv4Kk+=oeL{0*jRHtiq@+EK~{!Y z!w!?K^8i+B&AAg{)HsR*qMGq$exZxLD4l|tjcFVyMo{e5FN%CzkSq&Ip#0PT_+%_e zygzOOK6fM~DS{NgYmDqQ)V$eLNJ`hkq;;ZzpXpMwwynT4y7jR3qs_TT=YLT#g3; z0RWnmr~6ug90!`m#i8U+O_QMvwlDS3x<9-mAQEFKd5_Eo002S)=eewog1QKb)VXqZ zBw+wXIK{?w{;K|qyAj($)%gVe4=rvAmpf>$!r!pxDiU)z0B&MX z^&MCrOt%K&#WucAaAm)fUe+93Xta6k?3Q>Iw-^7@*1ku`H~cQ^SI-O2yDsBv3Zo!- zP9INSg`XVHHysWi`hrB4pQ1`wjrK9+I?sp*wi#J_Y3?tu#8RG{N}P;Qh9&Xi64{Q6 zYH#OfhXIoz+C*+-y4ntnRFL&;>eB9x8e|f>x%ZQ81BeZkc}DGwVmCNDvIUh}+Ur}& zw}|WARBdJkMVJv;pr~S{0!wWXzOS0-CZgTfcfU-Z7&9UBtG|&-Tw+bWF58os4USHG70;@8-|9oF-S%5}9=%>W z`}aU{!1m(5iCNsUJf_^_5fNGMXfcw{om>e)16iQQSZxjQGQ;UFK}QTT)}+mLG#z*Z z7CM3imI%6Vwq@=)CB+LBJ*fGuM4`?Hk@kZwi;t#HGoK73V&nkAeTAFnU}`S+95w~s z;XxXLx5Di`eAT_0ySY9_cu6!kW7Px#e%iwv!QTN1d?met^yC9rrK=n`J zvPFz7Ko-P1UoKtPDTVh1`FCi`NOC7}d+*~PkybVj8!V=Ww0&ocprW`l6AhCS?_oQh zANQ$j`QeX@QYr!(7*Hauk8F?q6q5Em(v9+Hy63ulujDdP;r~wn%03Y$?;E}a-~Rv`ym0ZlZt-hhkIBmv4X^~x#xn*`a&tKs z1UK!$Hn1UT7;23j#XwEEmjIfL@`nI(C{$BeSsv)_^p&R4%41{;462=@0~tXn6C{&| z12ua)h&E#WBC-J6L{%GRkQ9)Nq4zYYl%vOq5#C28y%)rI0HtYg!!%dBGMYp!)r0Z` zc&8o@GK`)8Eb+2#@ZEUb4~D-!KPMc))Yh_0;b>;<(%fT1yMF=$F3V$vC|b`E2G_LN zFA}oxsq1%7QHWVhBpQV!n1f;93_!F~8U0T16Kox34Ki)1NMn4NVR|;K`^>>CE1#*Q z0kq!}9IGVuhsiEDNsq@2Dgv3$uA8?Ul?g>^I!g`{!me4n#_t=Zzdk+uZj>0BKHeHN zQ}Q#MBwMLkGR*~Q2&;x`8YK;>k`TP{yM3iy0cGnkw%q$bp;|#G)+x)x%896P8_C&M z`?&WYXa|p2m;yUS7BJYHK*hyXx{Eb2b|XazX0xSd`T zsj~Ni;gMqF(j4R!ATCD()--bgbpeWHu3qLC-R3h_<8%s98@$94pAW!OS2g+bd!L__ z3*eix-NXPuIKu}C-u>dL_T8f6Z;LR^N~5Jk-EibL`jir}Yt*GVn^i^aSQIv?vDxbj zm2kO+t>MX>zr@XtLBz7@^DnO80*i~^%xq%HYjN(u%UtpN&7K!O%&3s49Yye-3YHHu zQu7)w>i+<+N~VuS85rbA#iou=o0tZmzCopC@ha7{T-;z_q!SBcA09p8)?XXEZjTk* z_wicXIK5E8dbPpRqbf52WT+K>(%EV)<$jd_&}{m9jvM{7`b?{Dl;#yU7-0lKsYYgP zv_YOx)MB79K>CGPW537h4S`B#jr9)A1&+ZEumqwu_XilOn&avf3wl{h1RbtW$Bk^A z<1o}vTHHWkxxSDRtkrm^QRq!^kH1N|B8azT8@CTHaMh7@7YfVbpvK6O_f=Jjt+Dao z^W$gU9tpQR_*R*Lbw4>7@k>F8SR&ZHR8-0NVvrlQm5s!x4YysO1WNK@S)5ao5s6kC zta?Byim<*qltpxgrEVPtqw(Ol;#`4!<~x8K8`~>*n8qU2S2vi$3>>`0x&Z8J<^a^? z5|FrX#v){-VCo0S&+<4+%^oSQ9G9PCryO!6*B(-5#8q4?J9|SoX3N#yt1(9sudWAoHjvOLX>q8DWZOq#aCW< zgXwG*ZE0XtTTfP4dE)W*#Ml zBK_a%nGwHeFjpkO7lzF&4r((00D>D0Yf+3Jaiz@wYBQSW+yVxV@x)Qc+thluxtNaC z&q$VSn$ETQV`!B#oG0W|7iCiS1#0VKQmKFz%uMWv3VKSV?O7}m)JEDtuBrx&57brL z6f(uS#OO|h;26BDL8HYHRkmHx7nSf9i)D#irxg_?$xXY!tFp3vLQ7y8vi#+Py z;wxs>mJD(jprFmdK{Hw|aQdXJ78Z5sMMqQ&Ez8lWJ&3WYigyxgF>SUlh_#rSuN@B> z{P>|1GQ~KH?S7?-w9>eR0la$=Q|Yk?k7Oh=)V@-xddQ4YtK;t!JJemwKu<0{AlX@# zJi?}mkLdsv)#6I)`|vClt3I@rI_xgvNPwlOv2}akr&0vpywTLJ)){E(&_Z4f@u34) zjZAC9d|r;rFm~6;T|^sW)RtwBQZH<6;qhh&p|&rGjiUIRix%q<8%DQw{Xn~5rjlVz zHzQ9?x>F1>b|l!ezUBv&Ez&>&qoqowUVEIyg%&FueA5fm00|jZKGA`n7E2NpFIkj| zwrtr05wSHGYbn(9{^5?FgsmCGc8ugxC?Qb&WW8lzt~BC3@%SF4JBhCyE&+#n)kl)c za7Aas0_BvPjz6Ye#~@V-r@#>rFxWQ*wYCgOno|lU3`Bd*8~UEKWz+XIo>8nCR`HZ8 z98O7P4p}wdC`fLO7E!j1KoZ`%`yz&oV%T6st7NoMeeh{%jF^XD9W@vUVP{Z;c#J=U zt-h^bVd@w}(ZNKq*{(#cyl{fb&%yRUZX%B|Q`$F$FfHPET$o$w51n$tC>PL`?NAxM zw!|YW(a zLQAiMbGjha2)j!lY}@|;I$pBXOzD;hYGx(|kDt*7U~zfP5NAT?X!LCTDUP%YuiGma zBb}P{jRr5uKJbXEPu24J#@f`Xyhy?Y!Td!OII933k(=C*3V;Sc zFw9)0P?|y!<#7c~pkQOxiH+48dNXr%E=iCa5^7)jKZ$Tfa8cE`F`1RyINK7%Kg31E zMZ^JY=C2JKV%ucdn66mG<~F<|f(ru^XeScWUi1;1NF%0}<~JA}SR_wgGEGOBBjqc$ zIBj_oTBgDO08msqT$T-1rUV1Ac*+=Qt@ijMJvOE|z(%o$Hu5axg{o6obu8Eo6AGhO z+)N}vk3T1@s+T<9>A9faAlDM*5a|B^lp`T*NBfv!$t7P~2rgN$`}nT`m01S{W!q+5 j%tSFVfJ~qF!RzH<3`Mdm4}WY{sERfBM6ey3+|U2nzNtj9 diff --git a/modules/contrib/doc/retina/index.rst b/modules/contrib/doc/retina/index.rst deleted file mode 100644 index c19aa5be7d..0000000000 --- a/modules/contrib/doc/retina/index.rst +++ /dev/null @@ -1,474 +0,0 @@ -Retina : a Bio mimetic human retina model -***************************************** - -.. highlight:: cpp - -Retina -====== -.. ocv:class:: Retina : public Algorithm - -Introduction -++++++++++++ - -Class which provides the main controls to the Gipsa/Listic labs human retina model. This is a non separable spatio-temporal filter modelling the two main retina information channels : - -* foveal vision for detailled color vision : the parvocellular pathway. - -* peripheral vision for sensitive transient signals detection (motion and events) : the magnocellular pathway. - -From a general point of view, this filter whitens the image spectrum and corrects luminance thanks to local adaptation. An other important property is its hability to filter out spatio-temporal noise while enhancing details. -This model originates from Jeanny Herault work [Herault2010]_. It has been involved in Alexandre Benoit phd and his current research [Benoit2010]_ (he currently maintains this module within OpenCV). It includes the work of other Jeanny's phd student such as [Chaix2007]_ and the log polar transformations of Barthelemy Durette described in Jeanny's book. - -**NOTES :** - -* For ease of use in computer vision applications, the two retina channels are applied homogeneously on all the input images. This does not follow the real retina topology but this can still be done using the log sampling capabilities proposed within the class. - -* Extend the retina description and code use in the tutorial/contrib section for complementary explanations. - -Preliminary illustration -++++++++++++++++++++++++ - -As a preliminary presentation, let's start with a visual example. We propose to apply the filter on a low quality color jpeg image with backlight problems. Here is the considered input... *"Well, my eyes were able to see more that this strange black shadow..."* - -.. image:: images/retinaInput.jpg - :alt: a low quality color jpeg image with backlight problems. - :align: center - -Below, the retina foveal model applied on the entire image with default parameters. Here contours are enforced, halo effects are voluntary visible with this configuration. See parameters discussion below and increase horizontalCellsGain near 1 to remove them. - -.. image:: images/retinaOutput_default.jpg - :alt: the retina foveal model applied on the entire image with default parameters. Here contours are enforced, luminance is corrected and halo effects are voluntary visible with this configuration, increase horizontalCellsGain near 1 to remove them. - :align: center - -Below, a second retina foveal model output applied on the entire image with a parameters setup focused on naturalness perception. *"Hey, i now recognize my cat, looking at the mountains at the end of the day !"*. Here contours are enforced, luminance is corrected but halos are avoided with this configuration. The backlight effect is corrected and highlight details are still preserved. Then, even on a low quality jpeg image, if some luminance information remains, the retina is able to reconstruct a proper visual signal. Such configuration is also usefull for High Dynamic Range (*HDR*) images compression to 8bit images as discussed in [benoit2010]_ and in the demonstration codes discussed below. -As shown at the end of the page, parameters change from defaults are : - -* horizontalCellsGain=0.3 - -* photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89. - -.. image:: images/retinaOutput_realistic.jpg - :alt: the retina foveal model applied on the entire image with 'naturalness' parameters. Here contours are enforced but are avoided with this configuration, horizontalCellsGain is 0.3 and photoreceptorsLocalAdaptationSensitivity=ganglioncellsSensitivity=0.89. - :align: center - -As observed in this preliminary demo, the retina can be settled up with various parameters, by default, as shown on the figure above, the retina strongly reduces mean luminance energy and enforces all details of the visual scene. Luminance energy and halo effects can be modulated (exagerated to cancelled as shown on the two examples). In order to use your own parameters, you can use at least one time the *write(String fs)* method which will write a proper XML file with all default parameters. Then, tweak it on your own and reload them at any time using method *setup(String fs)*. These methods update a *Retina::RetinaParameters* member structure that is described hereafter. XML parameters file samples are shown at the end of the page. - -Here is an overview of the abstract Retina interface, allocate one instance with the *createRetina* functions.:: - - class Retina : public Algorithm - { - public: - // parameters setup instance - struct RetinaParameters; // this class is detailled later - - // main method for input frame processing (all use method, can also perform High Dynamic Range tone mapping) - void run (InputArray inputImage); - - // specific method aiming at correcting luminance only (faster High Dynamic Range tone mapping) - void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) - - // output buffers retreival methods - // -> foveal color vision details channel with luminance and noise correction - void getParvo (OutputArray retinaOutput_parvo); - void getParvoRAW (OutputArray retinaOutput_parvo);// retreive original output buffers without any normalisation - const Mat getParvoRAW () const;// retreive original output buffers without any normalisation - // -> peripheral monochrome motion and events (transient information) channel - void getMagno (OutputArray retinaOutput_magno); - void getMagnoRAW (OutputArray retinaOutput_magno); // retreive original output buffers without any normalisation - const Mat getMagnoRAW () const;// retreive original output buffers without any normalisation - - // reset retina buffers... equivalent to closing your eyes for some seconds - void clearBuffers (); - - // retreive input and output buffers sizes - Size getInputSize (); - Size getOutputSize (); - - // setup methods with specific parameters specification of global xml config file loading/write - void setup (String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true); - void setup (FileStorage &fs, const bool applyDefaultSetupOnFailure=true); - void setup (RetinaParameters newParameters); - struct Retina::RetinaParameters getParameters (); - const String printSetup (); - virtual void write (String fs) const; - virtual void write (FileStorage &fs) const; - void setupOPLandIPLParvoChannel (const bool colorMode=true, const bool normaliseOutput=true, const float photoreceptorsLocalAdaptationSensitivity=0.7, const float photoreceptorsTemporalConstant=0.5, const float photoreceptorsSpatialConstant=0.53, const float horizontalCellsGain=0, const float HcellsTemporalConstant=1, const float HcellsSpatialConstant=7, const float ganglionCellsSensitivity=0.7); - void setupIPLMagnoChannel (const bool normaliseOutput=true, const float parasolCells_beta=0, const float parasolCells_tau=0, const float parasolCells_k=7, const float amacrinCellsTemporalCutFrequency=1.2, const float V0CompressionParameter=0.95, const float localAdaptintegration_tau=0, const float localAdaptintegration_k=7); - void setColorSaturation (const bool saturateColors=true, const float colorSaturationValue=4.0); - void activateMovingContoursProcessing (const bool activate); - void activateContoursProcessing (const bool activate); - }; - - // Allocators - cv::Ptr createRetina (Size inputSize); - cv::Ptr createRetina (Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); - - -Description -+++++++++++ - -Class which allows the `Gipsa `_ (preliminary work) / `Listic `_ (code maintainer and user) labs retina model to be used. This class allows human retina spatio-temporal image processing to be applied on still images, images sequences and video sequences. Briefly, here are the main human retina model properties: - -* spectral whithening (mid-frequency details enhancement) - -* high frequency spatio-temporal noise reduction (temporal noise and high frequency spatial noise are minimized) - -* low frequency luminance reduction (luminance range compression) : high luminance regions do not hide details in darker regions anymore - -* local logarithmic luminance compression allows details to be enhanced even in low light conditions - -Use : this model can be used basically for spatio-temporal video effects but also in the aim of : - -* performing texture analysis with enhanced signal to noise ratio and enhanced details robust against input images luminance ranges (check out the parvocellular retina channel output, by using the provided **getParvo** methods) - -* performing motion analysis also taking benefit of the previously cited properties (check out the magnocellular retina channel output, by using the provided **getMagno** methods) - -Literature -========== -For more information, refer to the following papers : - -.. [Benoit2010] Benoit A., Caplier A., Durette B., Herault, J., "Using Human Visual System Modeling For Bio-Inspired Low Level Image Processing", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773. DOI - -* Please have a look at the reference work of Jeanny Herault that you can read in his book : - -.. [Herault2010] Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. - -This retina filter code includes the research contributions of phd/research collegues from which code has been redrawn by the author : - -* take a look at the *retinacolor.hpp* module to discover Brice Chaix de Lavarene phD color mosaicing/demosaicing and his reference paper: - -.. [Chaix2007] B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 - -* take a look at *imagelogpolprojection.hpp* to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. More informations in the above cited Jeanny Heraults's book. - -* Meylan&al work on HDR tone mapping that is implemented as a specific method within the model : - -.. [Meylan2007] L. Meylan , D. Alleysson, S. Susstrunk, "A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images", Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 - -Demos and experiments ! -======================= - -**NOTE : Complementary to the following examples, have a look at the Retina tutorial in the tutorial/contrib section for complementary explanations.** - -Take a look at the provided C++ examples provided with OpenCV : - -* **samples/cpp/retinademo.cpp** shows how to use the retina module for details enhancement (Parvo channel output) and transient maps observation (Magno channel output). You can play with images, video sequences and webcam video. - Typical uses are (provided your OpenCV installation is situated in folder *OpenCVReleaseFolder*) - - * image processing : **OpenCVReleaseFolder/bin/retinademo -image myPicture.jpg** - - * video processing : **OpenCVReleaseFolder/bin/retinademo -video myMovie.avi** - - * webcam processing: **OpenCVReleaseFolder/bin/retinademo -video** - - **Note :** This demo generates the file *RetinaDefaultParameters.xml* which contains the default parameters of the retina. Then, rename this as *RetinaSpecificParameters.xml*, adjust the parameters the way you want and reload the program to check the effect. - - -* **samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp** shows how to use the retina to perform High Dynamic Range (HDR) luminance compression - - Then, take a HDR image using bracketing with your camera and generate an OpenEXR image and then process it using the demo. - - Typical use, supposing that you have the OpenEXR image such as *memorial.exr* (present in the samples/cpp/ folder) - - **OpenCVReleaseFolder/bin/OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr [optionnal: 'fast']** - - Note that some sliders are made available to allow you to play with luminance compression. - - If not using the 'fast' option, then, tone mapping is performed using the full retina model [Benoit2010]_. It includes spectral whitening that allows luminance energy to be reduced. When using the 'fast' option, then, a simpler method is used, it is an adaptation of the algorithm presented in [Meylan2007]_. This method gives also good results and is faster to process but it sometimes requires some more parameters adjustement. - - -Methods description -=================== - -Here are detailled the main methods to control the retina model - -Ptr::createRetina -+++++++++++++++++++++++++ - -.. ocv:function:: Ptr createRetina(Size inputSize) -.. ocv:function:: Ptr createRetina(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0 ) - - Constructors from standardized interfaces : retreive a smart pointer to a Retina instance - - :param inputSize: the input frame size - :param colorMode: the chosen processing mode : with or without color processing - :param colorSamplingMethod: specifies which kind of color sampling will be used : - - * RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice - - * RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... - - * RETINA_COLOR_BAYER: standard bayer sampling - - :param useRetinaLogSampling: activate retina log sampling, if true, the 2 following parameters can be used - :param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak - :param samplingStrenght: only usefull if param useRetinaLogSampling=true, specifies the strenght of the log scale that is applied - -Retina::activateContoursProcessing -++++++++++++++++++++++++++++++++++ - -.. ocv:function:: void Retina::activateContoursProcessing(const bool activate) - - Activate/desactivate the Parvocellular pathway processing (contours information extraction), by default, it is activated - - :param activate: true if Parvocellular (contours information extraction) output should be activated, false if not... if activated, the Parvocellular output can be retrieved using the **getParvo** methods - -Retina::activateMovingContoursProcessing -++++++++++++++++++++++++++++++++++++++++ - -.. ocv:function:: void Retina::activateMovingContoursProcessing(const bool activate) - - Activate/desactivate the Magnocellular pathway processing (motion information extraction), by default, it is activated - - :param activate: true if Magnocellular output should be activated, false if not... if activated, the Magnocellular output can be retrieved using the **getMagno** methods - -Retina::clearBuffers -++++++++++++++++++++ - -.. ocv:function:: void Retina::clearBuffers() - - Clears all retina buffers (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal transition occuring just after this method call. - -Retina::getParvo -++++++++++++++++ - -.. ocv:function:: void Retina::getParvo( OutputArray retinaOutput_parvo ) -.. ocv:function:: void Retina::getParvoRAW( OutputArray retinaOutput_parvo ) -.. ocv:function:: const Mat Retina::getParvoRAW() const - - Accessor of the details channel of the retina (models foveal vision). Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while the non RAW method allows a normalized matrix to be retrieved. - - :param retinaOutput_parvo: the output buffer (reallocated if necessary), format can be : - - * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV - - * RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1, B2, ...Bn), this output is the original retina filter model output, without any quantification or rescaling. - -Retina::getMagno -++++++++++++++++ - -.. ocv:function:: void Retina::getMagno( OutputArray retinaOutput_magno ) -.. ocv:function:: void Retina::getMagnoRAW( OutputArray retinaOutput_magno ) -.. ocv:function:: const Mat Retina::getMagnoRAW() const - - Accessor of the motion channel of the retina (models peripheral vision). Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while the non RAW method allows a normalized matrix to be retrieved. - - :param retinaOutput_magno: the output buffer (reallocated if necessary), format can be : - - * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV - - * RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the original retina filter model output, without any quantification or rescaling. - -Retina::getInputSize -++++++++++++++++++++ - -.. ocv:function:: Size Retina::getInputSize() - - Retreive retina input buffer size - - :return: the retina input buffer size - -Retina::getOutputSize -+++++++++++++++++++++ - -.. ocv:function:: Size Retina::getOutputSize() - - Retreive retina output buffer size that can be different from the input if a spatial log transformation is applied - - :return: the retina output buffer size - -Retina::printSetup -++++++++++++++++++ - -.. ocv:function:: const String Retina::printSetup() - - Outputs a string showing the used parameters setup - - :return: a string which contains formated parameters information - -Retina::run -+++++++++++ - -.. ocv:function:: void Retina::run(InputArray inputImage) - - Method which allows retina to be applied on an input image, after run, encapsulated retina module is ready to deliver its outputs using dedicated acccessors, see getParvo and getMagno methods - - :param inputImage: the input Mat image to be processed, can be gray level or BGR coded in any format (from 8bit to 16bits) - -Retina::applyFastToneMapping -++++++++++++++++++++++++++++ - -.. ocv:function:: void Retina::applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) - - Method which processes an image in the aim to correct its luminance : correct backlight problems, enhance details in shadows. This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model (simplified version of the run/getParvo methods call) since it does not include the spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral whitening and many other stuff. However, it works great for tone mapping and in a faster way. -Check the demos and experiments section to see examples and the way to perform tone mapping using the original retina model and the method. - - :param inputImage: the input image to process (should be coded in float format : CV_32F, CV_32FC1, CV832F_C3, CV832F_C4, the 4th channel won't be considered). - :param outputToneMappedImage: the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format). - -Retina::setColorSaturation -++++++++++++++++++++++++++ - -.. ocv:function:: void Retina::setColorSaturation(const bool saturateColors = true, const float colorSaturationValue = 4.0 ) - - Activate color saturation as the final step of the color demultiplexing process -> this saturation is a sigmoide function applied to each channel of the demultiplexed image. - - :param saturateColors: boolean that activates color saturation (if true) or desactivate (if false) - :param colorSaturationValue: the saturation factor : a simple factor applied on the chrominance buffers - - -Retina::setup -+++++++++++++ - -.. ocv:function:: void Retina::setup(String retinaParameterFile = "", const bool applyDefaultSetupOnFailure = true ) -.. ocv:function:: void Retina::setup(FileStorage & fs, const bool applyDefaultSetupOnFailure = true ) -.. ocv:function:: void Retina::setup(RetinaParameters newParameters) - - Try to open an XML retina parameters file to adjust current retina instance setup => if the xml file does not exist, then default setup is applied => warning, Exceptions are thrown if read XML file is not valid - - :param retinaParameterFile: the parameters filename - :param applyDefaultSetupOnFailure: set to true if an error must be thrown on error - :param fs: the open Filestorage which contains retina parameters - :param newParameters: a parameters structures updated with the new target configuration. You can retreive the current parameers structure using method *Retina::RetinaParameters Retina::getParameters()* and update it before running method *setup*. - -Retina::write -+++++++++++++ - -.. ocv:function:: void Retina::write( String fs ) const -.. ocv:function:: void Retina::write( FileStorage& fs ) const - - Write xml/yml formated parameters information - - :param fs: the filename of the xml file that will be open and writen with formatted parameters information - -Retina::setupIPLMagnoChannel -++++++++++++++++++++++++++++ - -.. ocv:function:: void Retina::setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta = 0, const float parasolCells_tau = 0, const float parasolCells_k = 7, const float amacrinCellsTemporalCutFrequency = 1.2, const float V0CompressionParameter = 0.95, const float localAdaptintegration_tau = 0, const float localAdaptintegration_k = 7 ) - - Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel this channel processes signals output from OPL processing stage in peripheral vision, it allows motion information enhancement. It is decorrelated from the details channel. See reference papers for more details. - - :param normaliseOutput: specifies if (true) output is rescaled between 0 and 255 of not (false) - :param parasolCells_beta: the low pass filter gain used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), typical value is 0 - :param parasolCells_tau: the low pass filter time constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical value is 0 (immediate response) - :param parasolCells_k: the low pass filter spatial constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical value is 5 - :param amacrinCellsTemporalCutFrequency: the time constant of the first order high pass fiter of the magnocellular way (motion information channel), unit is frames, typical value is 1.2 - :param V0CompressionParameter: the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.95 - :param localAdaptintegration_tau: specifies the temporal constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation - :param localAdaptintegration_k: specifies the spatial constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation - -Retina::setupOPLandIPLParvoChannel -++++++++++++++++++++++++++++++++++ - -.. ocv:function:: void Retina::setupOPLandIPLParvoChannel(const bool colorMode = true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity = 0.7, const float photoreceptorsTemporalConstant = 0.5, const float photoreceptorsSpatialConstant = 0.53, const float horizontalCellsGain = 0, const float HcellsTemporalConstant = 1, const float HcellsSpatialConstant = 7, const float ganglionCellsSensitivity = 0.7 ) - - Setup the OPL and IPL parvo channels (see biologocal model) OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See reference papers for more informations. - - :param colorMode: specifies if (true) color is processed of not (false) to then processing gray level image - :param normaliseOutput: specifies if (true) output is rescaled between 0 and 255 of not (false) - :param photoreceptorsLocalAdaptationSensitivity: the photoreceptors sensitivity renage is 0-1 (more log compression effect when value increases) - :param photoreceptorsTemporalConstant: the time constant of the first order low pass filter of the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 1 frame - :param photoreceptorsSpatialConstant: the spatial constant of the first order low pass filter of the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 1 pixel - :param horizontalCellsGain: gain of the horizontal cells network, if 0, then the mean value of the output is zero, if the parameter is near 1, then, the luminance is not filtered and is still reachable at the output, typicall value is 0 - :param HcellsTemporalConstant: the time constant of the first order low pass filter of the horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is frames, typical value is 1 frame, as the photoreceptors - :param HcellsSpatialConstant: the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model) - :param ganglionCellsSensitivity: the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.7 - - -Retina::RetinaParameters -======================== - -.. ocv:struct:: Retina::RetinaParameters - - This structure merges all the parameters that can be adjusted threw the **Retina::setup()**, **Retina::setupOPLandIPLParvoChannel** and **Retina::setupIPLMagnoChannel** setup methods - Parameters structure for better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel. :: - - class RetinaParameters{ - struct OPLandIplParvoParameters{ // Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters - OPLandIplParvoParameters():colorMode(true), - normaliseOutput(true), // specifies if (true) output is rescaled between 0 and 255 of not (false) - photoreceptorsLocalAdaptationSensitivity(0.7f), // the photoreceptors sensitivity renage is 0-1 (more log compression effect when value increases) - photoreceptorsTemporalConstant(0.5f),// the time constant of the first order low pass filter of the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 1 frame - photoreceptorsSpatialConstant(0.53f),// the spatial constant of the first order low pass filter of the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 1 pixel - horizontalCellsGain(0.0f),//gain of the horizontal cells network, if 0, then the mean value of the output is zero, if the parameter is near 1, then, the luminance is not filtered and is still reachable at the output, typicall value is 0 - hcellsTemporalConstant(1.f),// the time constant of the first order low pass filter of the horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is frames, typical value is 1 frame, as the photoreceptors. Reduce to 0.5 to limit retina after effects. - hcellsSpatialConstant(7.f),//the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model) - ganglionCellsSensitivity(0.7f)//the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.7 - {};// default setup - bool colorMode, normaliseOutput; - float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity; - }; - struct IplMagnoParameters{ // Inner Plexiform Layer Magnocellular channel (IplMagno) - IplMagnoParameters(): - normaliseOutput(true), //specifies if (true) output is rescaled between 0 and 255 of not (false) - parasolCells_beta(0.f), // the low pass filter gain used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), typical value is 0 - parasolCells_tau(0.f), //the low pass filter time constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical value is 0 (immediate response) - parasolCells_k(7.f), //the low pass filter spatial constant used for local contrast adaptation at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical value is 5 - amacrinCellsTemporalCutFrequency(1.2f), //the time constant of the first order high pass fiter of the magnocellular way (motion information channel), unit is frames, typical value is 1.2 - V0CompressionParameter(0.95f), the compression strengh of the ganglion cells local adaptation output, set a value between 0.6 and 1 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 0.95 - localAdaptintegration_tau(0.f), // specifies the temporal constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation - localAdaptintegration_k(7.f) // specifies the spatial constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation - {};// default setup - bool normaliseOutput; - float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k; - }; - struct OPLandIplParvoParameters OPLandIplParvo; - struct IplMagnoParameters IplMagno; - }; - -Retina parameters files examples -++++++++++++++++++++++++++++++++ - -Here is the default configuration file of the retina module. It gives results such as the first retina output shown on the top of this page. - -.. code-block:: cpp - - - - - 1 - 1 - 7.5e-01 - 9.0e-01 - 5.3e-01 - 0.01 - 0.5 - 7. - 7.5e-01 - - 1 - 0. - 0. - 7. - 2.0e+00 - 9.5e-01 - 0. - 7. - - -Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page. - -.. code-block:: cpp - - - - - 1 - 1 - 8.9e-01 - 9.0e-01 - 5.3e-01 - 0.3 - 0.5 - 7. - 8.9e-01 - - 1 - 0. - 0. - 7. - 2.0e+00 - 9.5e-01 - 0. - 7. - diff --git a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp index 1c5108dbc7..8080d53087 100644 --- a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp +++ b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp @@ -227,7 +227,7 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i std::cout<<"Allocating fast tone mapper..."< fastToneMapper=createRetinaFastToneMapping(inputImage.size()); std::cout<<"Fast tone mapper allocated"<write("RetinaDefaultParameters.xml"); From c39159069e5b151d597dd0d8298b0f81c6a47c69 Mon Sep 17 00:00:00 2001 From: alexandre benoit Date: Thu, 13 Jun 2013 07:36:37 +0200 Subject: [PATCH 4/6] last warnings solved --- modules/bioinspired/src/retinafilter.hpp | 4 ---- modules/contrib/doc/contrib.rst | 1 - 2 files changed, 5 deletions(-) diff --git a/modules/bioinspired/src/retinafilter.hpp b/modules/bioinspired/src/retinafilter.hpp index 02ccdb89fb..7c64942ec5 100644 --- a/modules/bioinspired/src/retinafilter.hpp +++ b/modules/bioinspired/src/retinafilter.hpp @@ -546,7 +546,3 @@ private: }// end of namespace cv #endif /*RETINACLASSES_H_*/ - - - - diff --git a/modules/contrib/doc/contrib.rst b/modules/contrib/doc/contrib.rst index 798d38d5bb..de14d33efe 100644 --- a/modules/contrib/doc/contrib.rst +++ b/modules/contrib/doc/contrib.rst @@ -9,5 +9,4 @@ The module contains some recently added functionality that has not been stabiliz stereo FaceRecognizer Documentation - Retina Documentation openfabmap From 7fe78efda341319cca7204383e43999f57b30a60 Mon Sep 17 00:00:00 2001 From: alexandre benoit Date: Sun, 14 Jul 2013 19:28:37 +0200 Subject: [PATCH 5/6] retina included in namespace bioinspired + followed suggestions made by Vadim --- .../bioinspired/retina_model/retina_model.rst | 12 ++- .../retina_model/retina_model.rst~ | 18 ++-- modules/bioinspired/doc/retina/index.rst | 6 +- .../include/opencv2/bioinspired.hpp | 1 - .../include/opencv2/bioinspired/retina.hpp | 31 ++---- .../bioinspired/retinafasttonemapping.hpp | 7 +- modules/bioinspired/src/basicretinafilter.cpp | 8 +- modules/bioinspired/src/basicretinafilter.hpp | 8 +- .../bioinspired/src/imagelogpolprojection.cpp | 8 +- .../bioinspired/src/imagelogpolprojection.hpp | 8 +- modules/bioinspired/src/magnoretinafilter.cpp | 8 +- modules/bioinspired/src/magnoretinafilter.hpp | 8 +- modules/bioinspired/src/parvoretinafilter.cpp | 8 +- modules/bioinspired/src/parvoretinafilter.hpp | 8 +- modules/bioinspired/src/precomp.hpp | 2 +- modules/bioinspired/src/retina.cpp | 41 +++++-- modules/bioinspired/src/retinacolor.cpp | 10 +- modules/bioinspired/src/retinacolor.hpp | 12 +-- .../bioinspired/src/retinafasttonemapping.cpp | 102 +++++++++++++++++- modules/bioinspired/src/retinafilter.cpp | 10 +- modules/bioinspired/src/retinafilter.hpp | 10 +- modules/bioinspired/src/templatebuffer.hpp | 8 +- ...es_HighDynamicRange_Retina_toneMapping.cpp | 6 +- ...hDynamicRange_Retina_toneMapping_video.cpp | 6 +- samples/cpp/retinaDemo.cpp | 6 +- .../bioinspired/retina_tutorial.cpp | 6 +- 26 files changed, 229 insertions(+), 129 deletions(-) diff --git a/doc/tutorials/bioinspired/retina_model/retina_model.rst b/doc/tutorials/bioinspired/retina_model/retina_model.rst index 4f96a9ae13..32081dfd28 100644 --- a/doc/tutorials/bioinspired/retina_model/retina_model.rst +++ b/doc/tutorials/bioinspired/retina_model/retina_model.rst @@ -109,6 +109,8 @@ Code tutorial Please refer to the original tutorial source code in file *opencv_folder/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp*. +**Note :** do not forget that the retina model is included in the following namespace : *cv::bioinspired*. + To compile it, assuming OpenCV is correctly installed, use the following command. It requires the opencv_core *(cv::Mat and friends objects management)*, opencv_highgui *(display and image/video read)* and opencv_bioinspired *(Retina description)* libraries to compile. .. code-block:: cpp @@ -128,7 +130,7 @@ To compile it, assuming OpenCV is correctly installed, use the following command Here is a code explanation : -Retina definition is present in the bioinspired package and a simple include allows to use it +Retina definition is present in the bioinspired package and a simple include allows to use it. You can rather use the specific header : *opencv2/bioinspired.hpp* if you prefer but then include the other required openv modules : *opencv2/core.hpp* and *opencv2/highgui.hpp* .. code-block:: cpp @@ -229,20 +231,20 @@ Once all input parameters are processed, a first image should have been loaded, return -1; } -Now, everything is ready to run the retina model. I propose here to allocate a retina instance and to manage the eventual log sampling option. The Retina constructor expects at least a cv::Size object that shows the input data size that will have to be managed. One can activate other options such as color and its related color multiplexing strategy (here Bayer multiplexing is chosen using enum cv::RETINA_COLOR_BAYER). If using log sampling, the image reduction factor (smaller output images) and log sampling strengh can be adjusted. +Now, everything is ready to run the retina model. I propose here to allocate a retina instance and to manage the eventual log sampling option. The Retina constructor expects at least a cv::Size object that shows the input data size that will have to be managed. One can activate other options such as color and its related color multiplexing strategy (here Bayer multiplexing is chosen using *enum cv::bioinspired::RETINA_COLOR_BAYER*). If using log sampling, the image reduction factor (smaller output images) and log sampling strengh can be adjusted. .. code-block:: cpp // pointer to a retina object - cv::Ptr myRetina; + cv::Ptr myRetina; // if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) if (useLogSampling) { - myRetina = createRetina(inputFrame.size(), true, RETINA_COLOR_BAYER, true, 2.0, 10.0); + myRetina = cv::bioinspired::createRetina(inputFrame.size(), true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - myRetina = createRetina(inputFrame.size()); + myRetina = cv::bioinspired::createRetina(inputFrame.size()); Once done, the proposed code writes a default xml file that contains the default parameters of the retina. This is useful to make your own config using this template. Here generated template xml file is called *RetinaDefaultParameters.xml*. diff --git a/doc/tutorials/bioinspired/retina_model/retina_model.rst~ b/doc/tutorials/bioinspired/retina_model/retina_model.rst~ index 86e13e7324..50bdcbb629 100644 --- a/doc/tutorials/bioinspired/retina_model/retina_model.rst~ +++ b/doc/tutorials/bioinspired/retina_model/retina_model.rst~ @@ -107,14 +107,16 @@ This retina filter code includes the research contributions of phd/research coll Code tutorial ============= -Please refer to the original tutorial source code in file *opencv_folder/samples/cpp/tutorial_code/contrib/retina_tutorial.cpp*. +Please refer to the original tutorial source code in file *opencv_folder/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp*. -To compile it, assuming OpenCV is correctly installed, use the following command. It requires the opencv_core *(cv::Mat and friends objects management)*, opencv_highgui *(display and image/video read)* and opencv_contrib *(Retina description)* libraries to compile. +**Note :** do not forget that the retina model is included in the following namespace : *cv::bioinspired*. + +To compile it, assuming OpenCV is correctly installed, use the following command. It requires the opencv_core *(cv::Mat and friends objects management)*, opencv_highgui *(display and image/video read)* and opencv_bioinspired *(Retina description)* libraries to compile. .. code-block:: cpp // compile - gcc retina_tutorial.cpp -o Retina_tuto -lopencv_core -lopencv_highgui -lopencv_contrib + gcc retina_tutorial.cpp -o Retina_tuto -lopencv_core -lopencv_highgui -lopencv_bioinspired // Run commands : add 'log' as a last parameter to apply a spatial log sampling (simulates retina sampling) // run on webcam @@ -128,7 +130,7 @@ To compile it, assuming OpenCV is correctly installed, use the following command Here is a code explanation : -Retina definition is present in the contrib package and a simple include allows to use it +Retina definition is present in the bioinspired package and a simple include allows to use it. You can rather use the specific header : *opencv2/bioinspired.hpp* if you prefer but then include the other required openv modules : *opencv2/core.hpp* and *opencv2/highgui.hpp* .. code-block:: cpp @@ -229,20 +231,20 @@ Once all input parameters are processed, a first image should have been loaded, return -1; } -Now, everything is ready to run the retina model. I propose here to allocate a retina instance and to manage the eventual log sampling option. The Retina constructor expects at least a cv::Size object that shows the input data size that will have to be managed. One can activate other options such as color and its related color multiplexing strategy (here Bayer multiplexing is chosen using enum cv::RETINA_COLOR_BAYER). If using log sampling, the image reduction factor (smaller output images) and log sampling strengh can be adjusted. +Now, everything is ready to run the retina model. I propose here to allocate a retina instance and to manage the eventual log sampling option. The Retina constructor expects at least a cv::Size object that shows the input data size that will have to be managed. One can activate other options such as color and its related color multiplexing strategy (here Bayer multiplexing is chosen using *enum cv::bioinspired::RETINA_COLOR_BAYER*). If using log sampling, the image reduction factor (smaller output images) and log sampling strengh can be adjusted. .. code-block:: cpp // pointer to a retina object - cv::Ptr myRetina; + cv::Ptr myRetina; // if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) if (useLogSampling) { - myRetina = cv::createRetina(inputFrame.size(), true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0); + myRetina = cv::bioinspired::createRetina(inputFrame.size(), true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - myRetina = cv::createRetina(inputFrame.size()); + myRetina = cv::bioinspired::createRetina(inputFrame.size()); Once done, the proposed code writes a default xml file that contains the default parameters of the retina. This is useful to make your own config using this template. Here generated template xml file is called *RetinaDefaultParameters.xml*. diff --git a/modules/bioinspired/doc/retina/index.rst b/modules/bioinspired/doc/retina/index.rst index d81afc6bcf..fb36d5a739 100644 --- a/modules/bioinspired/doc/retina/index.rst +++ b/modules/bioinspired/doc/retina/index.rst @@ -7,6 +7,8 @@ Retina ====== .. ocv:class:: Retina : public Algorithm +**Note** : do not forget that the retina model is included in the following namespace : *cv::bioinspired*. + Introduction ++++++++++++ @@ -55,6 +57,8 @@ As observed in this preliminary demo, the retina can be settled up with various Here is an overview of the abstract Retina interface, allocate one instance with the *createRetina* functions.:: + namespace cv{namespace bioinspired{ + class Retina : public Algorithm { public: @@ -102,7 +106,7 @@ Here is an overview of the abstract Retina interface, allocate one instance with // Allocators cv::Ptr createRetina (Size inputSize); cv::Ptr createRetina (Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); - + }} // cv and bioinspired namespaces end Description +++++++++++ diff --git a/modules/bioinspired/include/opencv2/bioinspired.hpp b/modules/bioinspired/include/opencv2/bioinspired.hpp index 882331b3f7..5f2f8644d2 100644 --- a/modules/bioinspired/include/opencv2/bioinspired.hpp +++ b/modules/bioinspired/include/opencv2/bioinspired.hpp @@ -47,5 +47,4 @@ #include "opencv2/bioinspired/retina.hpp" #include "opencv2/bioinspired/retinafasttonemapping.hpp" -using namespace cv::hvstools; // used to avoid complex namespace inclusions cv::hvstools::Retina => cv::Retina preferred #endif diff --git a/modules/bioinspired/include/opencv2/bioinspired/retina.hpp b/modules/bioinspired/include/opencv2/bioinspired/retina.hpp index e0620efc3a..4b4c19f90a 100644 --- a/modules/bioinspired/include/opencv2/bioinspired/retina.hpp +++ b/modules/bioinspired/include/opencv2/bioinspired/retina.hpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** - ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** - ** For Human Visual System tools (hvstools) + ** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -73,13 +73,12 @@ */ #include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support -#include + namespace cv{ -namespace hvstools{ +namespace bioinspired{ -enum RETINA_COLORSAMPLINGMETHOD -{ +enum { RETINA_COLOR_RANDOM, //!< each pixel position is either R, G or B in a random choice RETINA_COLOR_DIAGONAL,//!< color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... RETINA_COLOR_BAYER//!< standard bayer sampling @@ -303,27 +302,9 @@ public: virtual void activateContoursProcessing(const bool activate)=0; }; CV_EXPORTS Ptr createRetina(Size inputSize); -CV_EXPORTS Ptr createRetina(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); +CV_EXPORTS Ptr createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); - /** - * exports a valarray buffer outing from HVStools objects to a cv::Mat in CV_8UC1 (gray level picture) or CV_8UC3 (color) format - * @param grayMatrixToConvert the valarray to export to OpenCV - * @param nbRows : the number of rows of the valarray flatten matrix - * @param nbColumns : the number of rows of the valarray flatten matrix - * @param colorMode : a flag which mentions if matrix is color (true) or graylevel (false) - * @param outBuffer : the output matrix which is reallocated to satisfy Retina output buffer dimensions - */ - void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer); - - /** - * convert a cv::Mat to a valarray buffer in float format - * @param inputMatToConvert : the OpenCV cv::Mat that has to be converted to gray or RGB valarray buffer that will be processed by the retina model - * @param outputValarrayMatrix : the output valarray - * @return the input image color mode (color=true, gray levels=false) - */ - bool _convertCvMat2ValarrayBuffer(InputArray inputMatToConvert, std::valarray &outputValarrayMatrix); - } } #endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */ diff --git a/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp b/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp index 62c88bd6eb..6c83f885c8 100644 --- a/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp +++ b/modules/bioinspired/include/opencv2/bioinspired/retinafasttonemapping.hpp @@ -7,7 +7,7 @@ ** copy or use the software. ** ** - ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) ** @@ -34,7 +34,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** - ** For Human Visual System tools (hvstools) + ** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -75,10 +75,9 @@ */ #include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support -#include namespace cv{ -namespace hvstools{ +namespace bioinspired{ /** * @class RetinaFastToneMappingImpl a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV. diff --git a/modules/bioinspired/src/basicretinafilter.cpp b/modules/bioinspired/src/basicretinafilter.cpp index 57f5c439ed..7e7b467faa 100644 --- a/modules/bioinspired/src/basicretinafilter.cpp +++ b/modules/bioinspired/src/basicretinafilter.cpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -72,7 +72,7 @@ namespace cv { -namespace hvstools +namespace bioinspired { // @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr Gipsa-Lab, France: www.gipsa-lab.inpg.fr/ @@ -884,5 +884,5 @@ void BasicRetinaFilter::_verticalAnticausalFilter_Irregular_multGain(float *outp } } -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv diff --git a/modules/bioinspired/src/basicretinafilter.hpp b/modules/bioinspired/src/basicretinafilter.hpp index ac779cf2df..323bff9408 100644 --- a/modules/bioinspired/src/basicretinafilter.hpp +++ b/modules/bioinspired/src/basicretinafilter.hpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -114,7 +114,7 @@ namespace cv { -namespace hvstools +namespace bioinspired { class BasicRetinaFilter { @@ -652,6 +652,6 @@ namespace hvstools }; -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv #endif diff --git a/modules/bioinspired/src/imagelogpolprojection.cpp b/modules/bioinspired/src/imagelogpolprojection.cpp index 4fa9802deb..0a4c1ed0de 100644 --- a/modules/bioinspired/src/imagelogpolprojection.cpp +++ b/modules/bioinspired/src/imagelogpolprojection.cpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -72,7 +72,7 @@ namespace cv { -namespace hvstools +namespace bioinspired { // constructor ImageLogPolProjection::ImageLogPolProjection(const unsigned int nbRows, const unsigned int nbColumns, const PROJECTIONTYPE projection, const bool colorModeCapable) @@ -447,5 +447,5 @@ std::valarray &ImageLogPolProjection::runProjection(const std::valarray &MagnoRetinaFilter::runFilter(const std::valarray namespace cv { diff --git a/modules/bioinspired/src/retina.cpp b/modules/bioinspired/src/retina.cpp index bb51e75672..2ec7286bcd 100644 --- a/modules/bioinspired/src/retina.cpp +++ b/modules/bioinspired/src/retina.cpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** - ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** - ** For Human Visual System tools (hvstools) + ** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -72,10 +72,11 @@ #include "retinafilter.hpp" #include #include +#include namespace cv { -namespace hvstools +namespace bioinspired { class RetinaImpl : public Retina @@ -96,7 +97,7 @@ public: * @param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak * @param samplingStrenght: only usefull if param useRetinaLogSampling=true, specifies the strenght of the log scale that is applied */ - RetinaImpl(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); + RetinaImpl(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); virtual ~RetinaImpl(); /** @@ -270,14 +271,32 @@ private: RetinaFilter* _retinaFilter; //!< the pointer to the retina module, allocated with instance construction //! private method called by constructors, gathers their parameters and use them in a unified way - void _init(const Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); + void _init(const Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); + + /** + * exports a valarray buffer outing from bioinspired objects to a cv::Mat in CV_8UC1 (gray level picture) or CV_8UC3 (color) format + * @param grayMatrixToConvert the valarray to export to OpenCV + * @param nbRows : the number of rows of the valarray flatten matrix + * @param nbColumns : the number of rows of the valarray flatten matrix + * @param colorMode : a flag which mentions if matrix is color (true) or graylevel (false) + * @param outBuffer : the output matrix which is reallocated to satisfy Retina output buffer dimensions + */ + void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer); + + /** + * convert a cv::Mat to a valarray buffer in float format + * @param inputMatToConvert : the OpenCV cv::Mat that has to be converted to gray or RGB valarray buffer that will be processed by the retina model + * @param outputValarrayMatrix : the output valarray + * @return the input image color mode (color=true, gray levels=false) + */ + bool _convertCvMat2ValarrayBuffer(InputArray inputMatToConvert, std::valarray &outputValarrayMatrix); }; // smart pointers allocation : Ptr createRetina(Size inputSize){ return new RetinaImpl(inputSize); } -Ptr createRetina(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght){return new RetinaImpl(inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);} +Ptr createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght){return new RetinaImpl(inputSize, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght);} // RetinaImpl code @@ -287,7 +306,7 @@ RetinaImpl::RetinaImpl(const cv::Size inputSz) _init(inputSz, true, RETINA_COLOR_BAYER, false); } -RetinaImpl::RetinaImpl(const cv::Size inputSz, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) +RetinaImpl::RetinaImpl(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) { _retinaFilter = 0; _init(inputSz, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrenght); @@ -594,7 +613,7 @@ const Mat RetinaImpl::getParvoRAW() const { } // private method called by constructirs -void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) +void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, int colorSamplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) { // basic error check if (inputSz.height*inputSz.width <= 0) @@ -619,7 +638,7 @@ void RetinaImpl::_init(const cv::Size inputSz, const bool colorMode, RETINA_COLO printf("%s\n", printSetup().c_str()); } -void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer) +void RetinaImpl::_convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer) { // fill output buffer with the valarray buffer const float *valarrayPTR=get_data(grayMatrixToConvert); @@ -657,7 +676,7 @@ void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConver } } -bool _convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray &outputValarrayMatrix) +bool RetinaImpl::_convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray &outputValarrayMatrix) { const Mat inputMatToConvert=inputMat.getMat(); // first check input consistency @@ -717,5 +736,5 @@ void RetinaImpl::activateMovingContoursProcessing(const bool activate){_retinaFi void RetinaImpl::activateContoursProcessing(const bool activate){_retinaFilter->activateContoursProcessing(activate);} -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv diff --git a/modules/bioinspired/src/retinacolor.cpp b/modules/bioinspired/src/retinacolor.cpp index 1498e36ab3..3fbc553852 100644 --- a/modules/bioinspired/src/retinacolor.cpp +++ b/modules/bioinspired/src/retinacolor.cpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -73,7 +73,7 @@ namespace cv { -namespace hvstools +namespace bioinspired { // init static values static float _LMStoACr1Cr2[]={1.0, 1.0, 0.0, 1.0, -1.0, 0.0, -0.5, -0.5, 1.0}; @@ -81,7 +81,7 @@ static float _LMStoACr1Cr2[]={1.0, 1.0, 0.0, 1.0, -1.0, 0.0, -0.5, -0.5, 1.0} static float _LMStoLab[]={0.5774f, 0.5774f, 0.5774f, 0.4082f, 0.4082f, -0.8165f, 0.7071f, -0.7071f, 0.f}; // constructor/desctructor -RetinaColor::RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod) +RetinaColor::RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod) :BasicRetinaFilter(NBrows, NBcolumns, 3), _colorSampling(NBrows*NBcolumns), _RGBmosaic(NBrows*NBcolumns*3), @@ -721,5 +721,5 @@ void RetinaColor::_applyImageColorSpaceConversion(const std::valarray &in } } -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv diff --git a/modules/bioinspired/src/retinacolor.hpp b/modules/bioinspired/src/retinacolor.hpp index 4e0139adec..3fb6be8f9e 100644 --- a/modules/bioinspired/src/retinacolor.hpp +++ b/modules/bioinspired/src/retinacolor.hpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -85,7 +85,7 @@ namespace cv { -namespace hvstools +namespace bioinspired { class RetinaColor: public BasicRetinaFilter { @@ -100,7 +100,7 @@ namespace hvstools * @param NBcolumns: number of columns of the input image * @param samplingMethod: the chosen color sampling method */ - RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod=RETINA_COLOR_BAYER); + RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod=RETINA_COLOR_BAYER); /** * standard destructor @@ -220,7 +220,7 @@ namespace hvstools protected: // private functions - RETINA_COLORSAMPLINGMETHOD _samplingMethod; + int _samplingMethod; bool _saturateColors; float _colorSaturationValue; // links to parent buffers (more convienient names @@ -383,7 +383,7 @@ namespace hvstools #endif }; -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv #endif /*RETINACOLOR_HPP_*/ diff --git a/modules/bioinspired/src/retinafasttonemapping.cpp b/modules/bioinspired/src/retinafasttonemapping.cpp index d72ae2fe76..468bedb9a1 100644 --- a/modules/bioinspired/src/retinafasttonemapping.cpp +++ b/modules/bioinspired/src/retinafasttonemapping.cpp @@ -7,7 +7,7 @@ ** copy or use the software. ** ** - ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) ** @@ -31,7 +31,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** - ** For Human Visual System tools (hvstools) + ** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -77,7 +77,7 @@ namespace cv { -namespace hvstools +namespace bioinspired { /** * @class RetinaFastToneMappingImpl a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV. @@ -176,6 +176,100 @@ private: std::valarray _temp2; float _meanLuminanceModulatorK; + +void _convertValarrayBuffer2cvMat(const std::valarray &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer) +{ + // fill output buffer with the valarray buffer + const float *valarrayPTR=get_data(grayMatrixToConvert); + if (!colorMode) + { + outBuffer.create(cv::Size(nbColumns, nbRows), CV_8U); + Mat outMat = outBuffer.getMat(); + for (unsigned int i=0;i(pixel)=(unsigned char)*(valarrayPTR++); + } + } + }else + { + const unsigned int nbPixels=nbColumns*nbRows; + const unsigned int doubleNBpixels=nbColumns*nbRows*2; + outBuffer.create(cv::Size(nbColumns, nbRows), CV_8UC3); + Mat outMat = outBuffer.getMat(); + for (unsigned int i=0;i(pixel)=pixelValues; + } + } + } +} + +bool _convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray &outputValarrayMatrix) +{ + const Mat inputMatToConvert=inputMat.getMat(); + // first check input consistency + if (inputMatToConvert.empty()) + throw cv::Exception(-1, "RetinaImpl cannot be applied, input buffer is empty", "RetinaImpl::run", "RetinaImpl.h", 0); + + // retreive color mode from image input + int imageNumberOfChannels = inputMatToConvert.channels(); + + // convert to float AND fill the valarray buffer + typedef float T; // define here the target pixel format, here, float + const int dsttype = DataType::depth; // output buffer is float format + + const unsigned int nbPixels=inputMat.getMat().rows*inputMat.getMat().cols; + const unsigned int doubleNBpixels=inputMat.getMat().rows*inputMat.getMat().cols*2; + + if(imageNumberOfChannels==4) + { + // create a cv::Mat table (for RGBA planes) + cv::Mat planes[4] = + { + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]) + }; + planes[3] = cv::Mat(inputMatToConvert.size(), dsttype); // last channel (alpha) does not point on the valarray (not usefull in our case) + // split color cv::Mat in 4 planes... it fills valarray directely + cv::split(Mat_ >(inputMatToConvert), planes); + } + else if (imageNumberOfChannels==3) + { + // create a cv::Mat table (for RGB planes) + cv::Mat planes[] = + { + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]), + cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]) + }; + // split color cv::Mat in 3 planes... it fills valarray directely + cv::split(cv::Mat_ >(inputMatToConvert), planes); + } + else if(imageNumberOfChannels==1) + { + // create a cv::Mat header for the valarray + cv::Mat dst(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]); + inputMatToConvert.convertTo(dst, dsttype); + } + else + CV_Error(Error::StsUnsupportedFormat, "input image must be single channel (gray levels), bgr format (color) or bgra (color with transparency which won't be considered"); + + return imageNumberOfChannels>1; // return bool : false for gray level image processing, true for color mode +} + + // run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated void _runGrayToneMapping(const std::valarray &grayImageInput, std::valarray &grayImageOutput) { @@ -218,5 +312,5 @@ CV_EXPORTS Ptr createRetinaFastToneMapping(Size inputSize return new RetinaFastToneMappingImpl(inputSize); } -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv diff --git a/modules/bioinspired/src/retinafilter.cpp b/modules/bioinspired/src/retinafilter.cpp index a666b1fbf3..e1e24c89bf 100644 --- a/modules/bioinspired/src/retinafilter.cpp +++ b/modules/bioinspired/src/retinafilter.cpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -73,10 +73,10 @@ namespace cv { -namespace hvstools +namespace bioinspired { // standard constructor without any log sampling of the input frame - RetinaFilter::RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode, const RETINA_COLORSAMPLINGMETHOD samplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) + RetinaFilter::RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode, const int samplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) : _retinaParvoMagnoMappedFrame(0), _retinaParvoMagnoMapCoefTable(0), @@ -522,5 +522,5 @@ namespace hvstools return true; } -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv diff --git a/modules/bioinspired/src/retinafilter.hpp b/modules/bioinspired/src/retinafilter.hpp index 7c64942ec5..3e204885fc 100644 --- a/modules/bioinspired/src/retinafilter.hpp +++ b/modules/bioinspired/src/retinafilter.hpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -110,7 +110,7 @@ //#define __RETINADEBUG // define RETINADEBUG to display debug data namespace cv { -namespace hvstools +namespace bioinspired { // retina class that process the 3 outputs of the retina filtering stages class RetinaFilter//: public BasicRetinaFilter @@ -127,7 +127,7 @@ public: * @param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak * @param samplingStrenght: only usefull if param useRetinaLogSampling=true, specifies the strenght of the log scale that is applied */ - RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode=false, const RETINA_COLORSAMPLINGMETHOD samplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); + RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode=false, const int samplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); /** * standard destructor @@ -542,7 +542,7 @@ private: }; -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv #endif /*RETINACLASSES_H_*/ diff --git a/modules/bioinspired/src/templatebuffer.hpp b/modules/bioinspired/src/templatebuffer.hpp index 33593f0449..827eb709fa 100644 --- a/modules/bioinspired/src/templatebuffer.hpp +++ b/modules/bioinspired/src/templatebuffer.hpp @@ -6,7 +6,7 @@ ** copy or use the software. ** ** -** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. +** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) @@ -32,7 +32,7 @@ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** -** For Human Visual System tools (hvstools) +** For Human Visual System tools (bioinspired) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. @@ -75,7 +75,7 @@ namespace cv { -namespace hvstools +namespace bioinspired { //// If a parallelization method is available then, you should define MAKE_PARALLEL, in the other case, the classical serial code will be used #define MAKE_PARALLEL @@ -550,6 +550,6 @@ public: return std::fabs(x); } -}// end of namespace hvstools +}// end of namespace bioinspired }// end of namespace cv #endif diff --git a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp index 8080d53087..21de69cb98 100644 --- a/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp +++ b/samples/cpp/OpenEXRimages_HighDynamicRange_Retina_toneMapping.cpp @@ -128,7 +128,7 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i normalize(imageInputRescaled, imageInputRescaled, 0.0, 255.0, cv::NORM_MINMAX); } - cv::Ptr retina; + cv::Ptr retina; int retinaHcellsGain; int localAdaptation_photoreceptors, localAdaptation_Gcells; static void callBack_updateRetinaParams(int, void*) @@ -218,10 +218,10 @@ static void drawPlot(const cv::Mat curve, const std::string figureTitle, const i */ if (useLogSampling) { - retina = createRetina(inputImage.size(),true, RETINA_COLOR_BAYER, true, 2.0, 10.0); + retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - retina = createRetina(inputImage.size()); + retina = cv::bioinspired::createRetina(inputImage.size()); // create a fast retina tone mapper (Meyla&al algorithm) std::cout<<"Allocating fast tone mapper..."< retina; + cv::Ptr retina; int retinaHcellsGain; int localAdaptation_photoreceptors, localAdaptation_Gcells; static void callBack_updateRetinaParams(int, void*) @@ -281,10 +281,10 @@ static void loadNewFrame(const std::string filenamePrototype, const int currentF */ if (useLogSampling) { - retina = createRetina(inputImage.size(),true, RETINA_COLOR_BAYER, true, 2.0, 10.0); + retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - retina = createRetina(inputImage.size()); + retina = cv::bioinspired::createRetina(inputImage.size()); // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" retina->write("RetinaDefaultParameters.xml"); diff --git a/samples/cpp/retinaDemo.cpp b/samples/cpp/retinaDemo.cpp index 3dbeb08b71..51e8408af3 100644 --- a/samples/cpp/retinaDemo.cpp +++ b/samples/cpp/retinaDemo.cpp @@ -106,15 +106,15 @@ int main(int argc, char* argv[]) { try { // create a retina instance with default parameters setup, uncomment the initialisation you wanna test - cv::Ptr myRetina; + cv::Ptr myRetina; // if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) if (useLogSampling) { - myRetina = createRetina(inputFrame.size(), true, RETINA_COLOR_BAYER, true, 2.0, 10.0); + myRetina = cv::bioinspired::createRetina(inputFrame.size(), true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : - myRetina = createRetina(inputFrame.size()); + myRetina = cv::bioinspired::createRetina(inputFrame.size()); // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" myRetina->write("RetinaDefaultParameters.xml"); diff --git a/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp b/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp index 428f8f618a..994d881dec 100644 --- a/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp +++ b/samples/cpp/tutorial_code/bioinspired/retina_tutorial.cpp @@ -95,16 +95,16 @@ int main(int argc, char* argv[]) { try { // create a retina instance with default parameters setup, uncomment the initialisation you wanna test - cv::Ptr myRetina; + cv::Ptr myRetina; // if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision) if (useLogSampling) { - myRetina = createRetina(inputFrame.size(), true, RETINA_COLOR_BAYER, true, 2.0, 10.0); + myRetina = cv::bioinspired::createRetina(inputFrame.size(), true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0); } else// -> else allocate "classical" retina : { - myRetina = createRetina(inputFrame.size()); + myRetina = cv::bioinspired::createRetina(inputFrame.size()); } // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup" From 12f65c61a8d7341c3151d8c0bf7c5970e19b2cf1 Mon Sep 17 00:00:00 2001 From: alexandre benoit Date: Mon, 15 Jul 2013 09:58:16 +0200 Subject: [PATCH 6/6] updated doc wrt new bioinspired namespace convention --- modules/bioinspired/doc/retina/index.rst | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/modules/bioinspired/doc/retina/index.rst b/modules/bioinspired/doc/retina/index.rst index fb36d5a739..608a93542d 100644 --- a/modules/bioinspired/doc/retina/index.rst +++ b/modules/bioinspired/doc/retina/index.rst @@ -197,8 +197,8 @@ Here are detailled the main methods to control the retina model Ptr::createRetina +++++++++++++++++++++++++ -.. ocv:function:: Ptr createRetina(Size inputSize) -.. ocv:function:: Ptr createRetina(Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod = RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0 ) +.. ocv:function:: Ptr createRetina(Size inputSize) +.. ocv:function:: Ptr createRetina(Size inputSize, const bool colorMode, cv::bioinspired::RETINA_COLORSAMPLINGMETHOD colorSamplingMethod = cv::bioinspired::RETINA_COLOR_BAYER, const bool useRetinaLogSampling = false, const double reductionFactor = 1.0, const double samplingStrenght = 10.0 ) Constructors from standardized interfaces : retreive a smart pointer to a Retina instance @@ -206,11 +206,11 @@ Ptr::createRetina :param colorMode: the chosen processing mode : with or without color processing :param colorSamplingMethod: specifies which kind of color sampling will be used : - * RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice + * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice - * RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... + * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... - * RETINA_COLOR_BAYER: standard bayer sampling + * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling :param useRetinaLogSampling: activate retina log sampling, if true, the 2 following parameters can be used :param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak