added support of 3 channels images to StereoBeliefPropagation_GPU

This commit is contained in:
Vladislav Vinogradov 2010-08-02 14:26:07 +00:00
parent 6da2573b77
commit 34565c281a
2 changed files with 65 additions and 28 deletions

View File

@ -65,11 +65,11 @@ const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
namespace cv { namespace gpu { namespace impl {
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
void comp_data(int msgType, const DevMem2D& l, const DevMem2D& r, DevMem2D mdata, const cudaStream_t& stream);
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msgType, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream);
void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msgType, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream);
void calc_all_iterations(int cols, int rows, int iters, int msgType, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream);
void output(int msgType, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream);
void comp_data(int msg_type, const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream);
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msg_type, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream);
void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msg_type, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream);
void calc_all_iterations(int cols, int rows, int iters, int msg_type, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream);
void output(int msg_type, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream);
}}}
cv::gpu::StereoBeliefPropagation_GPU::StereoBeliefPropagation_GPU(int ndisp_, int iters_, int levels_, int msg_type_, float msg_scale_)
@ -228,7 +228,7 @@ static void stereo_bp_gpu_operator(int ndisp, int iters, int levels,
datas[0].create(rows * ndisp, cols, msg_type);
impl::comp_data(msg_type, left, right, datas.front(), stream);
impl::comp_data(msg_type, left, right, left.channels(), datas.front(), stream);
for (int i = 1; i < levels; i++)
{

View File

@ -81,26 +81,60 @@ namespace cv { namespace gpu { namespace impl {
namespace beliefpropagation_gpu
{
template <typename T>
__global__ void comp_data(uchar* l, uchar* r, size_t step, T* data, size_t data_step, int cols, int rows)
__global__ void comp_data_gray(const uchar* l, const uchar* r, size_t step, T* data, size_t data_step, int cols, int rows)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < rows && x < cols)
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1)
{
uchar* ls = l + y * step + x;
uchar* rs = r + y * step + x;
const uchar* ls = l + y * step + x;
const uchar* rs = r + y * step + x;
T* ds = data + y * data_step + x;
size_t disp_step = data_step * rows;
for (int disp = 0; disp < cndisp; disp++)
{
if (x - disp >= 0)
if (x - disp >= 1)
{
int le = ls[0];
int re = rs[-disp];
float val = abs(le - re);
float val = abs((int)ls[0] - rs[-disp]);
ds[disp * disp_step] = saturate_cast<T>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
}
else
{
ds[disp * disp_step] = saturate_cast<T>(cdata_weight * cmax_data_term);
}
}
}
}
template <typename T>
__global__ void comp_data_bgr(const uchar* l, const uchar* r, size_t step, T* data, size_t data_step, int cols, int rows)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1)
{
const uchar* ls = l + y * step + x * 3;
const uchar* rs = r + y * step + x * 3;
T* ds = data + y * data_step + x;
size_t disp_step = data_step * rows;
for (int disp = 0; disp < cndisp; disp++)
{
if (x - disp >= 1)
{
const float tr = 0.299f;
const float tg = 0.587f;
const float tb = 0.114f;
float val = tb * abs((int)ls[0] - rs[0-disp*3]);
val += tg * abs((int)ls[1] - rs[1-disp*3]);
val += tr * abs((int)ls[2] - rs[2-disp*3]);
ds[disp * disp_step] = saturate_cast<T>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
}
@ -114,10 +148,10 @@ namespace beliefpropagation_gpu
}
namespace cv { namespace gpu { namespace impl {
typedef void (*CompDataFunc)(const DevMem2D& l, const DevMem2D& r, DevMem2D mdata, const cudaStream_t& stream);
typedef void (*CompDataFunc)(const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream);
template<typename T>
void comp_data_(const DevMem2D& l, const DevMem2D& r, DevMem2D mdata, const cudaStream_t& stream)
void comp_data_(const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@ -125,13 +159,16 @@ namespace cv { namespace gpu { namespace impl {
grid.x = divUp(l.cols, threads.x);
grid.y = divUp(l.rows, threads.y);
beliefpropagation_gpu::comp_data<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows);
if (channels == 1)
beliefpropagation_gpu::comp_data_gray<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows);
else
beliefpropagation_gpu::comp_data_bgr<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void comp_data(int msgType, const DevMem2D& l, const DevMem2D& r, DevMem2D mdata, const cudaStream_t& stream)
void comp_data(int msg_type, const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream)
{
static CompDataFunc tab[8] =
{
@ -145,10 +182,10 @@ namespace cv { namespace gpu { namespace impl {
0 // user type
};
CompDataFunc func = tab[msgType];
CompDataFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(l, r, mdata, stream);
func(l, r, channels, mdata, stream);
}
}}}
@ -200,7 +237,7 @@ namespace cv { namespace gpu { namespace impl {
cudaSafeCall( cudaThreadSynchronize() );
}
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msgType, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream)
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msg_type, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream)
{
static DataStepDownFunc tab[8] =
{
@ -214,7 +251,7 @@ namespace cv { namespace gpu { namespace impl {
0 // user type
};
DataStepDownFunc func = tab[msgType];
DataStepDownFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(dst_cols, dst_rows, src_rows, src, dst, stream);
@ -270,7 +307,7 @@ namespace cv { namespace gpu { namespace impl {
cudaSafeCall( cudaThreadSynchronize() );
}
void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msgType, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream)
void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msg_type, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream)
{
static LevelUpMessagesFunc tab[8] =
{
@ -284,7 +321,7 @@ namespace cv { namespace gpu { namespace impl {
0 // user type
};
LevelUpMessagesFunc func = tab[msgType];
LevelUpMessagesFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(dst_idx, dst_cols, dst_rows, src_rows, mus, mds, mls, mrs, stream);
@ -413,7 +450,7 @@ namespace cv { namespace gpu { namespace impl {
}
}
void calc_all_iterations(int cols, int rows, int iters, int msgType, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream)
void calc_all_iterations(int cols, int rows, int iters, int msg_type, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream)
{
static CalcAllIterationFunc tab[8] =
{
@ -427,7 +464,7 @@ namespace cv { namespace gpu { namespace impl {
0 // user type
};
CalcAllIterationFunc func = tab[msgType];
CalcAllIterationFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(cols, rows, iters, u, d, l, r, data, stream);
@ -496,7 +533,7 @@ namespace cv { namespace gpu { namespace impl {
cudaSafeCall( cudaThreadSynchronize() );
}
void output(int msgType, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream)
void output(int msg_type, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream)
{
static OutputFunc tab[8] =
{
@ -510,7 +547,7 @@ namespace cv { namespace gpu { namespace impl {
0 // user type
};
OutputFunc func = tab[msgType];
OutputFunc func = tab[msg_type];
if (func == 0)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
func(u, d, l, r, data, disp, stream);