mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #11567 from alalek:code_quality
This commit is contained in:
commit
3654fb10d7
@ -142,7 +142,7 @@ public:
|
||||
PyGILState_Release(gstate);
|
||||
if (!res)
|
||||
CV_Error(Error::StsNotImplemented, "Failed to call \"getMemoryShapes\" method");
|
||||
pyopencv_to_generic_vec(res, outputs, ArgInfo("", 0));
|
||||
CV_Assert(pyopencv_to_generic_vec(res, outputs, ArgInfo("", 0)));
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -163,7 +163,7 @@ public:
|
||||
CV_Error(Error::StsNotImplemented, "Failed to call \"forward\" method");
|
||||
|
||||
std::vector<Mat> pyOutputs;
|
||||
pyopencv_to(res, pyOutputs, ArgInfo("", 0));
|
||||
CV_Assert(pyopencv_to(res, pyOutputs, ArgInfo("", 0)));
|
||||
|
||||
CV_Assert(pyOutputs.size() == outputs.size());
|
||||
for (size_t i = 0; i < outputs.size(); ++i)
|
||||
|
@ -1530,10 +1530,12 @@ struct Net::Impl
|
||||
LayerData *eltwiseData = nextData;
|
||||
// go down from the second input and find the first non-skipped layer.
|
||||
LayerData *downLayerData = &layers[eltwiseData->inputBlobsId[1].lid];
|
||||
CV_Assert(downLayerData);
|
||||
while (downLayerData->skip)
|
||||
{
|
||||
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
|
||||
}
|
||||
CV_Assert(downLayerData);
|
||||
|
||||
// second input layer is current layer.
|
||||
if ( ld.id == downLayerData->id )
|
||||
@ -1548,9 +1550,7 @@ struct Net::Impl
|
||||
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
|
||||
}
|
||||
|
||||
Ptr<ConvolutionLayer> convLayer;
|
||||
if( downLayerData )
|
||||
convLayer = downLayerData->layerInstance.dynamicCast<ConvolutionLayer>();
|
||||
Ptr<ConvolutionLayer> convLayer = downLayerData->layerInstance.dynamicCast<ConvolutionLayer>();
|
||||
|
||||
// first input layer is convolution layer
|
||||
if( !convLayer.empty() && eltwiseData->consumers.size() == 1 )
|
||||
|
@ -119,9 +119,10 @@ public:
|
||||
if (blobs.size() > 3)
|
||||
{
|
||||
CV_Assert(blobs.size() == 6);
|
||||
const int N = Wh.cols;
|
||||
for (int i = 3; i < 6; ++i)
|
||||
{
|
||||
CV_Assert(blobs[i].rows == Wh.cols && blobs[i].cols == Wh.cols);
|
||||
CV_Assert(blobs[i].rows == N && blobs[i].cols == N);
|
||||
CV_Assert(blobs[i].type() == bias.type());
|
||||
}
|
||||
}
|
||||
|
@ -504,7 +504,7 @@ static bool ocl4dnnFastBufferGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
oclk_gemm_float.set(arg_idx++, (float)alpha);
|
||||
oclk_gemm_float.set(arg_idx++, (float)beta);
|
||||
|
||||
bool ret;
|
||||
bool ret = true;
|
||||
if (TransB == CblasNoTrans || TransA != CblasNoTrans) {
|
||||
int stride = 256;
|
||||
for (int start_index = 0; start_index < K; start_index += stride) {
|
||||
|
@ -40,17 +40,18 @@ TEST(Padding_Halide, Accuracy)
|
||||
{
|
||||
static const int kNumRuns = 10;
|
||||
std::vector<int> paddings(8);
|
||||
cv::RNG& rng = cv::theRNG();
|
||||
for (int t = 0; t < kNumRuns; ++t)
|
||||
{
|
||||
for (int i = 0; i < paddings.size(); ++i)
|
||||
paddings[i] = rand() % 5;
|
||||
paddings[i] = rng(5);
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size()));
|
||||
lp.type = "Padding";
|
||||
lp.name = "testLayer";
|
||||
|
||||
Mat input({1 + rand() % 10, 1 + rand() % 10, 1 + rand() % 10, 1 + rand() % 10}, CV_32F);
|
||||
Mat input({1 + rng(10), 1 + rng(10), 1 + rng(10), 1 + rng(10)}, CV_32F);
|
||||
test(lp, input);
|
||||
}
|
||||
}
|
||||
@ -633,7 +634,7 @@ TEST_P(Eltwise, Accuracy)
|
||||
eltwiseParam.set("operation", op);
|
||||
if (op == "sum" && weighted)
|
||||
{
|
||||
RNG rng = cv::theRNG();
|
||||
RNG& rng = cv::theRNG();
|
||||
std::vector<float> coeff(1 + numConv);
|
||||
for (int i = 0; i < coeff.size(); ++i)
|
||||
{
|
||||
|
@ -376,7 +376,8 @@ TEST(Test_TensorFlow, memory_read)
|
||||
class ResizeBilinearLayer CV_FINAL : public Layer
|
||||
{
|
||||
public:
|
||||
ResizeBilinearLayer(const LayerParams ¶ms) : Layer(params)
|
||||
ResizeBilinearLayer(const LayerParams ¶ms) : Layer(params),
|
||||
outWidth(0), outHeight(0), factorWidth(1), factorHeight(1)
|
||||
{
|
||||
CV_Assert(!params.get<bool>("align_corners", false));
|
||||
CV_Assert(!blobs.empty());
|
||||
|
@ -285,7 +285,8 @@ struct CvtHelper
|
||||
template< typename VScn, typename VDcn, typename VDepth, SizePolicy sizePolicy = NONE >
|
||||
struct OclHelper
|
||||
{
|
||||
OclHelper( InputArray _src, OutputArray _dst, int dcn)
|
||||
OclHelper( InputArray _src, OutputArray _dst, int dcn) :
|
||||
nArgs(0)
|
||||
{
|
||||
src = _src.getUMat();
|
||||
Size sz = src.size(), dstSz;
|
||||
|
@ -357,20 +357,22 @@ void CV_RotatedRectangleIntersectionTest::test13()
|
||||
void CV_RotatedRectangleIntersectionTest::test14()
|
||||
{
|
||||
const int kNumTests = 100;
|
||||
const int kWidth = 5;
|
||||
const int kHeight = 5;
|
||||
const float kWidth = 5;
|
||||
const float kHeight = 5;
|
||||
RotatedRect rects[2];
|
||||
std::vector<Point2f> inter;
|
||||
cv::RNG& rng = cv::theRNG();
|
||||
for (int i = 0; i < kNumTests; ++i)
|
||||
{
|
||||
for (int j = 0; j < 2; ++j)
|
||||
{
|
||||
rects[j].center = Point2f((float)(rand() % kWidth), (float)(rand() % kHeight));
|
||||
rects[j].size = Size2f(rand() % kWidth + 1.0f, rand() % kHeight + 1.0f);
|
||||
rects[j].angle = (float)(rand() % 360);
|
||||
rects[j].center = Point2f(rng.uniform(0.0f, kWidth), rng.uniform(0.0f, kHeight));
|
||||
rects[j].size = Size2f(rng.uniform(1.0f, kWidth), rng.uniform(1.0f, kHeight));
|
||||
rects[j].angle = rng.uniform(0.0f, 360.0f);
|
||||
}
|
||||
rotatedRectangleIntersection(rects[0], rects[1], inter);
|
||||
ASSERT_TRUE(inter.size() < 4 || isContourConvex(inter));
|
||||
int res = rotatedRectangleIntersection(rects[0], rects[1], inter);
|
||||
EXPECT_TRUE(res == INTERSECT_NONE || res == INTERSECT_PARTIAL || res == INTERSECT_FULL) << res;
|
||||
ASSERT_TRUE(inter.size() < 4 || isContourConvex(inter)) << inter;
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user