mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Merge pull request #24898 from Abdurrahheem:ash/yolo_ducumentation
Documentation for Yolo usage in Opencv #24898 This PR introduces documentation for the usage of yolo detection model family in open CV. This is not to be merge before #24691, as the sample will need to be changed. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
8e43c8f200
commit
372b36c1d3
@ -9,46 +9,224 @@ YOLO DNNs {#tutorial_dnn_yolo}
|
||||
| | |
|
||||
| -: | :- |
|
||||
| Original author | Alessandro de Oliveira Faria |
|
||||
| Compatibility | OpenCV >= 3.3.1 |
|
||||
| Extended by | Abduragim Shtanchaev |
|
||||
| Compatibility | OpenCV >= 4.9.0 |
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
In this text you will learn how to use opencv_dnn module using yolo_object_detection (Sample of using OpenCV dnn module in real time with device capture, video and image).
|
||||
Running pre-trained YOLO model in OpenCV
|
||||
----------------------------------------
|
||||
|
||||
We will demonstrate results of this example on the following picture.
|
||||
![Picture example](images/yolo.jpg)
|
||||
Deploying pre-trained models is a common task in machine learning, particularly when working with
|
||||
hardware that does not support certain frameworks like PyTorch. This guide provides a comprehensive
|
||||
overview of exporting pre-trained YOLO family models from PyTorch and deploying them using OpenCV's
|
||||
DNN framework. For demonstration purposes, we will focus on the [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/blob/main)
|
||||
model, but the methodology applies to other supported models.
|
||||
|
||||
Examples
|
||||
--------
|
||||
@note Currently, OpenCV supports the following YOLO models:
|
||||
- [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/blob/main),
|
||||
- [YoloNas](https://github.com/Deci-AI/super-gradients/tree/master),
|
||||
- [YOLOv8](https://github.com/ultralytics/ultralytics/tree/main),
|
||||
- [YOLOv7](https://github.com/WongKinYiu/yolov7/tree/main),
|
||||
- [YOLOv6](https://github.com/meituan/YOLOv6/blob/main),
|
||||
- [YOLOv5](https://github.com/ultralytics/yolov5),
|
||||
- [YOLOv4](https://github.com/Tianxiaomo/pytorch-YOLOv4).
|
||||
|
||||
This support includes pre and post-processing routines specific to these models. While other older
|
||||
version of YOLO are also supported by OpenCV in Darknet format, they are out of the scope of this tutorial.
|
||||
|
||||
|
||||
Assuming that we have successfully trained YOLOX model, the subsequent step involves exporting and
|
||||
running this model with OpenCV. There are several critical considerations to address before
|
||||
proceeding with this process. Let's delve into these aspects.
|
||||
|
||||
### YOLO's Pre-proccessing & Output
|
||||
|
||||
Understanding the nature of inputs and outputs associated with YOLO family detectors is pivotal.
|
||||
These detectors, akin to most Deep Neural Networks (DNN), typically exhibit variation in input
|
||||
sizes contingent upon the model's scale.
|
||||
|
||||
| Model Scale | Input Size |
|
||||
|--------------|--------------|
|
||||
| Small Models <sup>[1](https://github.com/Megvii-BaseDetection/YOLOX/tree/main#standard-models)</sup>| 416x416 |
|
||||
| Midsize Models <sup>[2](https://github.com/Megvii-BaseDetection/YOLOX/tree/main#standard-models)</sup>| 640x640 |
|
||||
| Large Models <sup>[3](https://github.com/meituan/YOLOv6/tree/main#benchmark)</sup>| 1280x1280 |
|
||||
|
||||
This table provides a quick reference to understand the different input dimensions commonly used in
|
||||
various YOLO models inputs. These are standard input shapes. Make sure you use input size that you
|
||||
trained model with, if it is differed from from the size mentioned in the table.
|
||||
|
||||
The next critical element in the process involves understanding the specifics of image pre-processing
|
||||
for YOLO detectors. While the fundamental pre-processing approach remains consistent across the YOLO
|
||||
family, there are subtle yet crucial differences that must be accounted for to avoid any degradation
|
||||
in performance. Key among these are the `resize type` and the `padding value` applied post-resize.
|
||||
For instance, the [YOLOX model](https://github.com/Megvii-BaseDetection/YOLOX/blob/ac58e0a5e68e57454b7b9ac822aced493b553c53/yolox/data/data_augment.py#L142)
|
||||
utilizes a `LetterBox` resize method and a padding value of `114.0`. It is imperative to ensure that
|
||||
these parameters, along with the normalization constants, are appropriately matched to the model being
|
||||
exported.
|
||||
|
||||
Regarding the model's output, it typically takes the form of a tensor with dimensions [BxNxC+5] or
|
||||
[BxNxC+4], where 'B' represents the batch size, 'N' denotes the number of anchors, and 'C' signifies
|
||||
the number of classes (for instance, 80 classes if the model is trained on the COCO dataset).
|
||||
The additional 5 in the former tensor structure corresponds to the objectness score (obj), confidence
|
||||
score (conf), and the bounding box coordinates (cx, cy, w, h). Notably, the YOLOv8 model's output
|
||||
is shaped as [BxNxC+4], where there is no explicit objectness score, and the object score is directly
|
||||
inferred from the class score. For the YOLOX model, specifically, it is also necessary to incorporate
|
||||
anchor points to rescale predictions back to the image domain. This step will be integrated into
|
||||
the ONNX graph, a process that we will detail further in the subsequent sections.
|
||||
|
||||
|
||||
### PyTorch Model Export
|
||||
|
||||
Now that we know know the parameters of the pre-precessing we can go on and export the model from
|
||||
Pytorch to ONNX graph. Since in this tutorial we are using YOLOX as our sample model, lets use its
|
||||
export for demonstration purposes (the process is identical for the rest of the YOLO detectors).
|
||||
To exporting YOLOX we can just use [export script](https://github.com/Megvii-BaseDetection/YOLOX/blob/ac58e0a5e68e57454b7b9ac822aced493b553c53/tools/export_onnx.py). Particularly we need following commands:
|
||||
|
||||
@code{.bash}
|
||||
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
|
||||
cd YOLOX
|
||||
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth # download pre-trained weights
|
||||
python3 -m tools.export_onnx --output-name yolox_s.onnx -n yolox-s -c yolox_s.pth --decode_in_inference
|
||||
@endcode
|
||||
|
||||
**NOTE:** Here `--decode_in_inference` is to include anchor box creation in the ONNX graph itself.
|
||||
It sets [this value](https://github.com/Megvii-BaseDetection/YOLOX/blob/ac58e0a5e68e57454b7b9ac822aced493b553c53/yolox/models/yolo_head.py#L210C16-L210C39)
|
||||
to `True`, which subsequently includes anchor generation function.
|
||||
|
||||
Below we demonstrated the minimal version of the export script (which could be used for models other
|
||||
than YOLOX) in case it is needed. However, usually each YOLO repository has predefined export script.
|
||||
|
||||
@code{.py}
|
||||
import onnx
|
||||
import torch
|
||||
from onnxsim import simplify
|
||||
|
||||
# load the model state dict
|
||||
ckpt = torch.load(ckpt_file, map_location="cpu")
|
||||
model.load_state_dict(ckpt)
|
||||
|
||||
# prepare dummy input
|
||||
dummy_input = torch.randn(args.batch_size, 3, exp.test_size[0], exp.test_size[1])
|
||||
|
||||
#export the model
|
||||
torch.onnx._export(
|
||||
model,
|
||||
dummy_input,
|
||||
"yolox.onnx",
|
||||
input_names=["input"],
|
||||
output_names=["output"],
|
||||
dynamic_axes={"input": {0: 'batch'},
|
||||
"output": {0: 'batch'}})
|
||||
|
||||
# use onnx-simplifier to reduce reduent model.
|
||||
onnx_model = onnx.load(args.output_name)
|
||||
model_simp, check = simplify(onnx_model)
|
||||
assert check, "Simplified ONNX model could not be validated"
|
||||
onnx.save(model_simp, args.output_name)
|
||||
@endcode
|
||||
|
||||
### Running Yolo ONNX detector with OpenCV Sample
|
||||
|
||||
Once we have our ONNX graph of the model, we just simply can run with OpenCV's sample. To that we need to make sure:
|
||||
|
||||
1. OpenCV is build with -DBUILD_EXAMLES=ON flag.
|
||||
2. Navigate to the OpenCV's `build` directory
|
||||
3. Run the following command:
|
||||
|
||||
@code{.cpp}
|
||||
./bin/example_dnn_yolo_detector --input=<path_to_your_input_file> \
|
||||
--classes=<path_to_class_names_file> \
|
||||
--thr=<confidence_threshold> \
|
||||
--nms=<non_maximum_suppression_threshold> \
|
||||
--mean=<mean_normalization_value> \
|
||||
--scale=<scale_factor> \
|
||||
--yolo=<yolo_model_version> \
|
||||
--padvalue=<padding_value> \
|
||||
--paddingmode=<padding_mode> \
|
||||
--backend=<computation_backend> \
|
||||
--target=<target_computation_device>
|
||||
@endcode
|
||||
|
||||
VIDEO DEMO:
|
||||
@youtube{NHtRlndE2cg}
|
||||
|
||||
Source Code
|
||||
-----------
|
||||
- --input: File path to your input image or video. If omitted, it will capture frames from a camera.
|
||||
- --classes: File path to a text file containing class names for object detection.
|
||||
- --thr: Confidence threshold for detection (e.g., 0.5).
|
||||
- --nms: Non-maximum suppression threshold (e.g., 0.4).
|
||||
- --mean: Mean normalization value (e.g., 0.0 for no mean normalization).
|
||||
- --scale: Scale factor for input normalization (e.g., 1.0).
|
||||
- --yolo: YOLO model version (e.g., YOLOv3, YOLOv4, etc.).
|
||||
- --padvalue: Padding value used in pre-processing (e.g., 114.0).
|
||||
- --paddingmode: Method for handling image resizing and padding. Options: 0 (resize without extra processing), 1 (crop after resize), 2 (resize with aspect ratio preservation).
|
||||
- --backend: Selection of computation backend (0 for automatic, 1 for Halide, 2 for OpenVINO, etc.).
|
||||
- --target: Selection of target computation device (0 for CPU, 1 for OpenCL, etc.).
|
||||
- --device: Camera device number (0 for default camera). If `--input` is not provided camera with index 0 will used by default.
|
||||
|
||||
Use a universal sample for object detection models written
|
||||
[in C++](https://github.com/opencv/opencv/blob/4.x/samples/dnn/object_detection.cpp) and
|
||||
[in Python](https://github.com/opencv/opencv/blob/4.x/samples/dnn/object_detection.py) languages
|
||||
Here `mean`, `scale`, `padvalue`, `paddingmode` should exactly match those that we discussed
|
||||
in pre-processing section in order for the model to match result in PyTorch
|
||||
|
||||
Usage examples
|
||||
--------------
|
||||
To demonstrate how to run OpenCV YOLO samples without your own pretrained model, follow these instructions:
|
||||
|
||||
Execute in webcam:
|
||||
1. Ensure Python is installed on your platform.
|
||||
2. Confirm that OpenCV is built with the `-DBUILD_EXAMPLES=ON` flag.
|
||||
|
||||
@code{.bash}
|
||||
|
||||
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --rgb
|
||||
Run the YOLOX detector(with default values):
|
||||
|
||||
@code{.sh}
|
||||
git clone https://github.com/opencv/opencv_extra.git
|
||||
cd opencv_extra/testdata/dnn
|
||||
python download_models.py yolox_s_inf_decoder
|
||||
cd ..
|
||||
export OPENCV_TEST_DATA_PATH=$(pwd)
|
||||
cd <build directory of OpenCV>
|
||||
./bin/example_dnn_yolo_detector
|
||||
@endcode
|
||||
|
||||
Execute with image or video file:
|
||||
This will execute the YOLOX detector with your camera. For YOLOv8 (for instance), follow these additional steps:
|
||||
|
||||
@code{.bash}
|
||||
|
||||
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --input=[PATH-TO-IMAGE-OR-VIDEO-FILE] --rgb
|
||||
@code{.sh}
|
||||
cd opencv_extra/testdata/dnn
|
||||
python download_models.py yolov8
|
||||
cd ..
|
||||
export OPENCV_TEST_DATA_PATH=$(pwd)
|
||||
cd <build directory of OpenCV>
|
||||
|
||||
./bin/example_dnn_yolo_detector --model=onnx/models/yolov8n.onnx --yolo=yolov8 --mean=0.0 --scale=0.003921568627 --paddingmode=2 --padvalue=144.0 --thr=0.5 --nms=0.4 --rgb=0
|
||||
@endcode
|
||||
|
||||
Questions and suggestions email to: Alessandro de Oliveira Faria cabelo@opensuse.org or OpenCV Team.
|
||||
|
||||
### Building a Custom Pipeline
|
||||
|
||||
Sometimes there is a need to make some custom adjustments in the inference pipeline. With OpenCV DNN
|
||||
module this is also quite easy to achieve. Below we will outline the sample implementation details:
|
||||
|
||||
- Import required libraries
|
||||
|
||||
@snippet samples/dnn/yolo_detector.cpp includes
|
||||
|
||||
- Read ONNX graph and create neural network model:
|
||||
|
||||
@snippet samples/dnn/yolo_detector.cpp read_net
|
||||
|
||||
- Read image and pre-process it:
|
||||
|
||||
@snippet samples/dnn/yolo_detector.cpp preprocess_params
|
||||
@snippet samples/dnn/yolo_detector.cpp preprocess_call
|
||||
@snippet samples/dnn/yolo_detector.cpp preprocess_call_func
|
||||
|
||||
- Inference:
|
||||
|
||||
@snippet samples/dnn/yolo_detector.cpp forward_buffers
|
||||
@snippet samples/dnn/yolo_detector.cpp forward
|
||||
|
||||
- Post-Processing
|
||||
|
||||
All post-processing steps are implemented in function `yoloPostProcess`. Please pay attention,
|
||||
that NMS step is not included into onnx graph. Sample uses OpenCV function for it.
|
||||
|
||||
@snippet samples/dnn/yolo_detector.cpp postprocess
|
||||
|
||||
- Draw predicted boxes
|
||||
|
||||
@snippet samples/dnn/yolo_detector.cpp draw_boxes
|
||||
|
370
samples/dnn/yolo_detector.cpp
Normal file
370
samples/dnn/yolo_detector.cpp
Normal file
@ -0,0 +1,370 @@
|
||||
/**
|
||||
* @file yolo_detector.cpp
|
||||
* @brief Yolo Object Detection Sample
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
//![includes]
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include "iostream"
|
||||
#include "common.hpp"
|
||||
#include <opencv2/highgui.hpp>
|
||||
//![includes]
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
void getClasses(std::string classesFile);
|
||||
void drawPrediction(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
|
||||
void yoloPostProcessing(
|
||||
std::vector<Mat>& outs,
|
||||
std::vector<int>& keep_classIds,
|
||||
std::vector<float>& keep_confidences,
|
||||
std::vector<Rect2d>& keep_boxes,
|
||||
float conf_threshold,
|
||||
float iou_threshold,
|
||||
const std::string& test_name
|
||||
);
|
||||
|
||||
std::vector<std::string> classes;
|
||||
|
||||
|
||||
std::string keys =
|
||||
"{ help h | | Print help message. }"
|
||||
"{ device | 0 | camera device number. }"
|
||||
"{ model | onnx/models/yolox_s_inf_decoder.onnx | Default model. }"
|
||||
"{ yolo | yolox | yolo model version. }"
|
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
|
||||
"{ classes | | Optional path to a text file with names of classes to label detected objects. }"
|
||||
"{ thr | .5 | Confidence threshold. }"
|
||||
"{ nms | .4 | Non-maximum suppression threshold. }"
|
||||
"{ mean | 0.0 | Normalization constant. }"
|
||||
"{ scale | 1.0 | Preprocess input image by multiplying on a scale factor. }"
|
||||
"{ width | 640 | Preprocess input image by resizing to a specific width. }"
|
||||
"{ height | 640 | Preprocess input image by resizing to a specific height. }"
|
||||
"{ rgb | 1 | Indicate that model works with RGB input images instead BGR ones. }"
|
||||
"{ padvalue | 114.0 | padding value. }"
|
||||
"{ paddingmode | 2 | Choose one of computation backends: "
|
||||
"0: resize to required input size without extra processing, "
|
||||
"1: Image will be cropped after resize, "
|
||||
"2: Resize image to the desired size while preserving the aspect ratio of original image }"
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"3: OpenCV implementation, "
|
||||
"4: VKCOM, "
|
||||
"5: CUDA }"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU, "
|
||||
"4: Vulkan, "
|
||||
"6: CUDA, "
|
||||
"7: CUDA fp16 (half-float preprocess) }"
|
||||
"{ async | 0 | Number of asynchronous forwards at the same time. "
|
||||
"Choose 0 for synchronous mode }";
|
||||
|
||||
void getClasses(std::string classesFile)
|
||||
{
|
||||
std::ifstream ifs(classesFile.c_str());
|
||||
if (!ifs.is_open())
|
||||
CV_Error(Error::StsError, "File " + classesFile + " not found");
|
||||
std::string line;
|
||||
while (std::getline(ifs, line))
|
||||
classes.push_back(line);
|
||||
}
|
||||
|
||||
void drawPrediction(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
|
||||
{
|
||||
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
|
||||
|
||||
std::string label = format("%.2f", conf);
|
||||
if (!classes.empty())
|
||||
{
|
||||
CV_Assert(classId < (int)classes.size());
|
||||
label = classes[classId] + ": " + label;
|
||||
}
|
||||
|
||||
int baseLine;
|
||||
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
||||
|
||||
top = max(top, labelSize.height);
|
||||
rectangle(frame, Point(left, top - labelSize.height),
|
||||
Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED);
|
||||
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
|
||||
}
|
||||
|
||||
void yoloPostProcessing(
|
||||
std::vector<Mat>& outs,
|
||||
std::vector<int>& keep_classIds,
|
||||
std::vector<float>& keep_confidences,
|
||||
std::vector<Rect2d>& keep_boxes,
|
||||
float conf_threshold,
|
||||
float iou_threshold,
|
||||
const std::string& test_name)
|
||||
{
|
||||
// Retrieve
|
||||
std::vector<int> classIds;
|
||||
std::vector<float> confidences;
|
||||
std::vector<Rect2d> boxes;
|
||||
|
||||
if (test_name == "yolov8")
|
||||
{
|
||||
cv::transposeND(outs[0], {0, 2, 1}, outs[0]);
|
||||
}
|
||||
|
||||
if (test_name == "yolonas")
|
||||
{
|
||||
// outs contains 2 elemets of shape [1, 8400, 80] and [1, 8400, 4]. Concat them to get [1, 8400, 84]
|
||||
Mat concat_out;
|
||||
// squeeze the first dimension
|
||||
outs[0] = outs[0].reshape(1, outs[0].size[1]);
|
||||
outs[1] = outs[1].reshape(1, outs[1].size[1]);
|
||||
cv::hconcat(outs[1], outs[0], concat_out);
|
||||
outs[0] = concat_out;
|
||||
// remove the second element
|
||||
outs.pop_back();
|
||||
// unsqueeze the first dimension
|
||||
outs[0] = outs[0].reshape(0, std::vector<int>{1, 8400, 84});
|
||||
}
|
||||
|
||||
for (auto preds : outs)
|
||||
{
|
||||
preds = preds.reshape(1, preds.size[1]); // [1, 8400, 85] -> [8400, 85]
|
||||
for (int i = 0; i < preds.rows; ++i)
|
||||
{
|
||||
// filter out non object
|
||||
float obj_conf = (test_name == "yolov8" || test_name == "yolonas") ? 1.0f : preds.at<float>(i, 4) ;
|
||||
if (obj_conf < conf_threshold)
|
||||
continue;
|
||||
|
||||
Mat scores = preds.row(i).colRange((test_name == "yolov8" || test_name == "yolonas") ? 4 : 5, preds.cols);
|
||||
double conf;
|
||||
Point maxLoc;
|
||||
minMaxLoc(scores, 0, &conf, 0, &maxLoc);
|
||||
|
||||
conf = (test_name == "yolov8" || test_name == "yolonas") ? conf : conf * obj_conf;
|
||||
if (conf < conf_threshold)
|
||||
continue;
|
||||
|
||||
// get bbox coords
|
||||
float* det = preds.ptr<float>(i);
|
||||
double cx = det[0];
|
||||
double cy = det[1];
|
||||
double w = det[2];
|
||||
double h = det[3];
|
||||
|
||||
// [x1, y1, x2, y2]
|
||||
if (test_name == "yolonas"){
|
||||
boxes.push_back(Rect2d(cx, cy, w, h));
|
||||
} else {
|
||||
boxes.push_back(Rect2d(cx - 0.5 * w, cy - 0.5 * h,
|
||||
cx + 0.5 * w, cy + 0.5 * h));
|
||||
}
|
||||
classIds.push_back(maxLoc.x);
|
||||
confidences.push_back(static_cast<float>(conf));
|
||||
}
|
||||
}
|
||||
|
||||
// NMS
|
||||
std::vector<int> keep_idx;
|
||||
NMSBoxes(boxes, confidences, conf_threshold, iou_threshold, keep_idx);
|
||||
|
||||
for (auto i : keep_idx)
|
||||
{
|
||||
keep_classIds.push_back(classIds[i]);
|
||||
keep_confidences.push_back(confidences[i]);
|
||||
keep_boxes.push_back(boxes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @function main
|
||||
* @brief Main function
|
||||
*/
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
parser.about("Use this script to run object detection deep learning networks using OpenCV.");
|
||||
if (parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_Assert(parser.has("model"));
|
||||
CV_Assert(parser.has("yolo"));
|
||||
// if model is default, use findFile to get the full path otherwise use the given path
|
||||
std::string weightPath = findFile(parser.get<String>("model"));
|
||||
std::string yolo_model = parser.get<String>("yolo");
|
||||
|
||||
float confThreshold = parser.get<float>("thr");
|
||||
float nmsThreshold = parser.get<float>("nms");
|
||||
//![preprocess_params]
|
||||
float paddingValue = parser.get<float>("padvalue");
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
Scalar scale = parser.get<float>("scale");
|
||||
Scalar mean = parser.get<Scalar>("mean");
|
||||
ImagePaddingMode paddingMode = static_cast<ImagePaddingMode>(parser.get<int>("paddingmode"));
|
||||
//![preprocess_params]
|
||||
|
||||
// check if yolo model is valid
|
||||
if (yolo_model != "yolov5" && yolo_model != "yolov6"
|
||||
&& yolo_model != "yolov7" && yolo_model != "yolov8"
|
||||
&& yolo_model != "yolox" && yolo_model != "yolonas")
|
||||
CV_Error(Error::StsError, "Invalid yolo model: " + yolo_model);
|
||||
|
||||
// get classes
|
||||
if (parser.has("classes"))
|
||||
{
|
||||
getClasses(findFile(parser.get<String>("classes")));
|
||||
}
|
||||
|
||||
// load model
|
||||
//![read_net]
|
||||
Net net = readNet(weightPath);
|
||||
int backend = parser.get<int>("backend");
|
||||
net.setPreferableBackend(backend);
|
||||
net.setPreferableTarget(parser.get<int>("target"));
|
||||
//![read_net]
|
||||
|
||||
VideoCapture cap;
|
||||
Mat img;
|
||||
bool isImage = false;
|
||||
bool isCamera = false;
|
||||
|
||||
// Check if input is given
|
||||
if (parser.has("input"))
|
||||
{
|
||||
String input = parser.get<String>("input");
|
||||
// Check if the input is an image
|
||||
if (input.find(".jpg") != String::npos || input.find(".png") != String::npos)
|
||||
{
|
||||
img = imread(findFile(input));
|
||||
if (img.empty())
|
||||
{
|
||||
CV_Error(Error::StsError, "Cannot read image file: " + input);
|
||||
}
|
||||
isImage = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
cap.open(input);
|
||||
if (!cap.isOpened())
|
||||
{
|
||||
CV_Error(Error::StsError, "Cannot open video " + input);
|
||||
}
|
||||
isCamera = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int cameraIndex = parser.get<int>("device");
|
||||
cap.open(cameraIndex);
|
||||
if (!cap.isOpened())
|
||||
{
|
||||
CV_Error(Error::StsError, cv::format("Cannot open camera #%d", cameraIndex));
|
||||
}
|
||||
isCamera = true;
|
||||
}
|
||||
|
||||
// image pre-processing
|
||||
//![preprocess_call]
|
||||
Size size(inpWidth, inpHeight);
|
||||
Image2BlobParams imgParams(
|
||||
scale,
|
||||
size,
|
||||
mean,
|
||||
swapRB,
|
||||
CV_32F,
|
||||
DNN_LAYOUT_NCHW,
|
||||
paddingMode,
|
||||
paddingValue);
|
||||
|
||||
// rescale boxes back to original image
|
||||
Image2BlobParams paramNet;
|
||||
paramNet.scalefactor = scale;
|
||||
paramNet.size = size;
|
||||
paramNet.mean = mean;
|
||||
paramNet.swapRB = swapRB;
|
||||
paramNet.paddingmode = paddingMode;
|
||||
//![preprocess_call]
|
||||
|
||||
//![forward_buffers]
|
||||
std::vector<Mat> outs;
|
||||
std::vector<int> keep_classIds;
|
||||
std::vector<float> keep_confidences;
|
||||
std::vector<Rect2d> keep_boxes;
|
||||
std::vector<Rect> boxes;
|
||||
//![forward_buffers]
|
||||
|
||||
Mat inp;
|
||||
while (waitKey(1) < 0)
|
||||
{
|
||||
|
||||
if (isCamera)
|
||||
cap >> img;
|
||||
if (img.empty())
|
||||
{
|
||||
std::cout << "Empty frame" << std::endl;
|
||||
waitKey();
|
||||
break;
|
||||
}
|
||||
//![preprocess_call_func]
|
||||
inp = blobFromImageWithParams(img, imgParams);
|
||||
//![preprocess_call_func]
|
||||
|
||||
//![forward]
|
||||
net.setInput(inp);
|
||||
net.forward(outs, net.getUnconnectedOutLayersNames());
|
||||
//![forward]
|
||||
|
||||
//![postprocess]
|
||||
yoloPostProcessing(
|
||||
outs, keep_classIds, keep_confidences, keep_boxes,
|
||||
confThreshold, nmsThreshold,
|
||||
yolo_model);
|
||||
//![postprocess]
|
||||
|
||||
// covert Rect2d to Rect
|
||||
//![draw_boxes]
|
||||
for (auto box : keep_boxes)
|
||||
{
|
||||
boxes.push_back(Rect(cvFloor(box.x), cvFloor(box.y), cvFloor(box.width - box.x), cvFloor(box.height - box.y)));
|
||||
}
|
||||
|
||||
paramNet.blobRectsToImageRects(boxes, boxes, img.size());
|
||||
|
||||
for (size_t idx = 0; idx < boxes.size(); ++idx)
|
||||
{
|
||||
Rect box = boxes[idx];
|
||||
drawPrediction(keep_classIds[idx], keep_confidences[idx], box.x, box.y,
|
||||
box.width + box.x, box.height + box.y, img);
|
||||
}
|
||||
|
||||
const std::string kWinName = "Yolo Object Detector";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
imshow(kWinName, img);
|
||||
//![draw_boxes]
|
||||
|
||||
outs.clear();
|
||||
keep_classIds.clear();
|
||||
keep_confidences.clear();
|
||||
keep_boxes.clear();
|
||||
boxes.clear();
|
||||
|
||||
if (isImage)
|
||||
{
|
||||
waitKey();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user