mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Added smile detector
This commit is contained in:
parent
39baa2237e
commit
379dcf87d5
8353
data/haarcascades/haarcascade_smile.xml
Normal file
8353
data/haarcascades/haarcascade_smile.xml
Normal file
File diff suppressed because it is too large
Load Diff
282
samples/c/smiledetect.cpp
Normal file
282
samples/c/smiledetect.cpp
Normal file
@ -0,0 +1,282 @@
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static void help()
|
||||
{
|
||||
cout << "\nThis program demonstrates the smile detector.\n"
|
||||
"Usage:\n"
|
||||
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n"
|
||||
" [--smile-cascade[=smile_cascade_path]]\n"
|
||||
" [--scale=<image scale greater or equal to 1, try 1.3 for example. The larger the faster the processing>]\n"
|
||||
" [--try-flip]\n"
|
||||
" [filename|camera_index]\n\n"
|
||||
"Example:\n"
|
||||
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=1.3\n\n"
|
||||
"During execution:\n\tHit any key to quit.\n"
|
||||
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
||||
}
|
||||
|
||||
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||||
CascadeClassifier& nestedCascade,
|
||||
double scale, bool tryflip );
|
||||
|
||||
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml";
|
||||
|
||||
// The number of detected neighbors depends on image size, these are for performing an approximate mapping to a maximum number of neighbors
|
||||
const float coef1 = 0.3190;
|
||||
const float coef2 = -48.7187;
|
||||
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
CvCapture* capture = 0;
|
||||
Mat frame, frameCopy, image;
|
||||
const string scaleOpt = "--scale=";
|
||||
size_t scaleOptLen = scaleOpt.length();
|
||||
const string cascadeOpt = "--cascade=";
|
||||
size_t cascadeOptLen = cascadeOpt.length();
|
||||
const string nestedCascadeOpt = "--smile-cascade";
|
||||
size_t nestedCascadeOptLen = nestedCascadeOpt.length();
|
||||
const string tryFlipOpt = "--try-flip";
|
||||
size_t tryFlipOptLen = tryFlipOpt.length();
|
||||
string inputName;
|
||||
bool tryflip = false;
|
||||
|
||||
help();
|
||||
|
||||
CascadeClassifier cascade, nestedCascade;
|
||||
double scale = 1;
|
||||
|
||||
for( int i = 1; i < argc; i++ )
|
||||
{
|
||||
cout << "Processing " << i << " " << argv[i] << endl;
|
||||
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
|
||||
{
|
||||
cascadeName.assign( argv[i] + cascadeOptLen );
|
||||
cout << " from which we have cascadeName= " << cascadeName << endl;
|
||||
}
|
||||
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 )
|
||||
{
|
||||
if( argv[i][nestedCascadeOpt.length()] == '=' )
|
||||
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
|
||||
if( !nestedCascade.load( nestedCascadeName ) )
|
||||
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
|
||||
}
|
||||
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
|
||||
{
|
||||
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
|
||||
scale = 1;
|
||||
cout << " from which we read scale = " << scale << endl;
|
||||
}
|
||||
else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 )
|
||||
{
|
||||
tryflip = true;
|
||||
cout << " will try to flip image horizontally to detect assymetric objects\n";
|
||||
}
|
||||
else if( argv[i][0] == '-' )
|
||||
{
|
||||
cerr << "WARNING: Unknown option " << argv[i] << endl;
|
||||
}
|
||||
else
|
||||
inputName.assign( argv[i] );
|
||||
}
|
||||
|
||||
if( !cascade.load( cascadeName ) )
|
||||
{
|
||||
cerr << "ERROR: Could not load classifier cascade" << endl;
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
|
||||
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
||||
{
|
||||
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
|
||||
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
||||
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
|
||||
}
|
||||
else if( inputName.size() )
|
||||
{
|
||||
image = imread( inputName, 1 );
|
||||
if( image.empty() )
|
||||
{
|
||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
||||
if(!capture) cout << "Capture from AVI didn't work" << endl;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
image = imread( "lena.jpg", 1 );
|
||||
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
|
||||
}
|
||||
|
||||
cvNamedWindow( "result", 1 );
|
||||
|
||||
if( capture )
|
||||
{
|
||||
cout << "In capture ..." << endl;
|
||||
for(;;)
|
||||
{
|
||||
IplImage* iplImg = cvQueryFrame( capture );
|
||||
frame = iplImg;
|
||||
if( frame.empty() )
|
||||
break;
|
||||
if( iplImg->origin == IPL_ORIGIN_TL )
|
||||
frame.copyTo( frameCopy );
|
||||
else
|
||||
flip( frame, frameCopy, 0 );
|
||||
|
||||
detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip );
|
||||
|
||||
if( waitKey( 10 ) >= 0 )
|
||||
goto _cleanup_;
|
||||
}
|
||||
|
||||
waitKey(0);
|
||||
|
||||
_cleanup_:
|
||||
cvReleaseCapture( &capture );
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "In image read" << endl;
|
||||
if( !image.empty() )
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
|
||||
waitKey(0);
|
||||
}
|
||||
else if( !inputName.empty() )
|
||||
{
|
||||
/* assume it is a text file containing the
|
||||
list of the image filenames to be processed - one per line */
|
||||
FILE* f = fopen( inputName.c_str(), "rt" );
|
||||
if( f )
|
||||
{
|
||||
char buf[1000+1];
|
||||
while( fgets( buf, 1000, f ) )
|
||||
{
|
||||
int len = (int)strlen(buf), c;
|
||||
while( len > 0 && isspace(buf[len-1]) )
|
||||
len--;
|
||||
buf[len] = '\0';
|
||||
cout << "file " << buf << endl;
|
||||
image = imread( buf, 1 );
|
||||
if( !image.empty() )
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
|
||||
c = waitKey(0);
|
||||
if( c == 27 || c == 'q' || c == 'Q' )
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "Aw snap, couldn't read image " << buf << endl;
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cvDestroyWindow("result");
|
||||
return 0;
|
||||
}
|
||||
|
||||
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||||
CascadeClassifier& nestedCascade,
|
||||
double scale, bool tryflip)
|
||||
{
|
||||
int i = 0;
|
||||
vector<Rect> faces, faces2;
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
|
||||
const int max_neighbors = MAX(0, cvRound((float)coef1*smallImg.cols + coef2));
|
||||
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
|
||||
cascade.detectMultiScale( smallImg, faces,
|
||||
1.1, 2, 0
|
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
,
|
||||
Size(30, 30) );
|
||||
if( tryflip )
|
||||
{
|
||||
flip(smallImg, smallImg, 1);
|
||||
cascade.detectMultiScale( smallImg, faces2,
|
||||
1.1, 2, 0
|
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
,
|
||||
Size(30, 30) );
|
||||
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
||||
{
|
||||
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
|
||||
}
|
||||
}
|
||||
for( vector<Rect>::iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
{
|
||||
Mat smallImgROI;
|
||||
vector<Rect> nestedObjects;
|
||||
Point center;
|
||||
Scalar color = colors[i%8];
|
||||
int radius;
|
||||
|
||||
double aspect_ratio = (double)r->width/r->height;
|
||||
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
||||
{
|
||||
center.x = cvRound((r->x + r->width*0.5)*scale);
|
||||
center.y = cvRound((r->y + r->height*0.5)*scale);
|
||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
||||
circle( img, center, radius, color, 3, 8, 0 );
|
||||
}
|
||||
else
|
||||
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
|
||||
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
|
||||
color, 3, 8, 0);
|
||||
if( nestedCascade.empty() )
|
||||
continue;
|
||||
|
||||
const int half_height=cvRound((float)r->height/2);
|
||||
r->y=r->y + half_height;
|
||||
r->height = half_height;
|
||||
smallImgROI = smallImg(*r);
|
||||
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
||||
1.1, 0, 0
|
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
//|CV_HAAR_DO_CANNY_PRUNING
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
,
|
||||
Size(30, 30) );
|
||||
|
||||
// Draw rectangle reflecting confidence
|
||||
const int smile_neighbors = nestedObjects.size();
|
||||
cout << "Detected " << smile_neighbors << " smile neighbors" << endl;
|
||||
const int rect_height = cvRound((float)img.rows * smile_neighbors / max_neighbors);
|
||||
CvScalar col = CV_RGB((float)255 * smile_neighbors / max_neighbors, 0, 0);
|
||||
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
|
||||
}
|
||||
|
||||
cv::imshow( "result", img );
|
||||
}
|
Loading…
Reference in New Issue
Block a user