mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 14:36:36 +08:00
generalize number of channels
plus minor edits and fixes
This commit is contained in:
parent
913a2dbdaa
commit
39954cc6af
@ -591,7 +591,7 @@ public:
|
||||
@param samples number of pixel locations to use
|
||||
@param lambda smoothness term weight. Greater values produce smoother results, but can alter the
|
||||
response.
|
||||
@param random if true sample pixel locations are chosen at random, otherwise the form a
|
||||
@param random if true sample pixel locations are chosen at random, otherwise they form a
|
||||
rectangular grid.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false);
|
||||
|
@ -43,7 +43,6 @@
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/photo.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
//#include "opencv2/highgui.hpp"
|
||||
#include "hdr_common.hpp"
|
||||
|
||||
namespace cv
|
||||
@ -57,7 +56,7 @@ public:
|
||||
samples(_samples),
|
||||
lambda(_lambda),
|
||||
random(_random),
|
||||
w(tringleWeights())
|
||||
w(triangleWeights())
|
||||
{
|
||||
}
|
||||
|
||||
@ -65,6 +64,7 @@ public:
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
// check inputs
|
||||
std::vector<Mat> images;
|
||||
src.getMatVector(images);
|
||||
Mat times = _times.getMat();
|
||||
@ -72,62 +72,88 @@ public:
|
||||
CV_Assert(images.size() == times.total());
|
||||
checkImageDimensions(images);
|
||||
CV_Assert(images[0].depth() == CV_8U);
|
||||
CV_Assert(times.type() == CV_32FC1);
|
||||
|
||||
// create output
|
||||
int channels = images[0].channels();
|
||||
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
||||
int rows = images[0].rows;
|
||||
int cols = images[0].cols;
|
||||
|
||||
dst.create(LDR_SIZE, 1, CV_32FCC);
|
||||
Mat result = dst.getMat();
|
||||
|
||||
std::vector<Point> sample_points;
|
||||
// pick pixel locations (either random or in a rectangular grid)
|
||||
std::vector<Point> points;
|
||||
points.reserve(samples);
|
||||
if(random) {
|
||||
for(int i = 0; i < samples; i++) {
|
||||
sample_points.push_back(Point(rand() % images[0].cols, rand() % images[0].rows));
|
||||
points.push_back(Point(rand() % cols, rand() % rows));
|
||||
}
|
||||
} else {
|
||||
int x_points = static_cast<int>(sqrt(static_cast<double>(samples) * images[0].cols / images[0].rows));
|
||||
int x_points = static_cast<int>(sqrt(static_cast<double>(samples) * cols / rows));
|
||||
CV_Assert(0 < x_points && x_points <= cols);
|
||||
int y_points = samples / x_points;
|
||||
int step_x = images[0].cols / x_points;
|
||||
int step_y = images[0].rows / y_points;
|
||||
|
||||
CV_Assert(0 < y_points && y_points <= rows);
|
||||
int step_x = cols / x_points;
|
||||
int step_y = rows / y_points;
|
||||
for(int i = 0, x = step_x / 2; i < x_points; i++, x += step_x) {
|
||||
for(int j = 0, y = step_y / 2; j < y_points; j++, y += step_y) {
|
||||
if( 0 <= x && x < images[0].cols &&
|
||||
0 <= y && y < images[0].rows )
|
||||
sample_points.push_back(Point(x, y));
|
||||
if( 0 <= x && x < cols && 0 <= y && y < rows ) {
|
||||
points.push_back(Point(x, y));
|
||||
}
|
||||
}
|
||||
}
|
||||
// we can have slightly less grid points than specified
|
||||
//samples = static_cast<int>(points.size());
|
||||
}
|
||||
|
||||
// we need enough equations to ensure a sufficiently overdetermined system
|
||||
// (maybe only as a warning)
|
||||
//CV_Assert(points.size() * (images.size() - 1) >= LDR_SIZE);
|
||||
|
||||
// solve for imaging system response function, over each channel separately
|
||||
std::vector<Mat> result_split(channels);
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
Mat A = Mat::zeros((int)sample_points.size() * (int)images.size() + LDR_SIZE + 1, LDR_SIZE + (int)sample_points.size(), CV_32F);
|
||||
for(int ch = 0; ch < channels; ch++) {
|
||||
// initialize system of linear equations
|
||||
Mat A = Mat::zeros((int)points.size() * (int)images.size() + LDR_SIZE + 1,
|
||||
LDR_SIZE + (int)points.size(), CV_32F);
|
||||
Mat B = Mat::zeros(A.rows, 1, CV_32F);
|
||||
|
||||
int eq = 0;
|
||||
for(size_t i = 0; i < sample_points.size(); i++) {
|
||||
// include the data−fitting equations
|
||||
int k = 0;
|
||||
for(size_t i = 0; i < points.size(); i++) {
|
||||
for(size_t j = 0; j < images.size(); j++) {
|
||||
// val = images[j].at<Vec3b>(points[i].y, points[i].x)[ch]
|
||||
int val = images[j].ptr()[channels*(points[i].y * cols + points[i].x) + ch];
|
||||
float wij = w.at<float>(val);
|
||||
A.at<float>(k, val) = wij;
|
||||
A.at<float>(k, LDR_SIZE + (int)i) = -wij;
|
||||
B.at<float>(k, 0) = wij * log(times.at<float>((int)j));
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
int val = images[j].ptr()[3*(sample_points[i].y * images[j].cols + sample_points[i].x) + channel];
|
||||
A.at<float>(eq, val) = w.at<float>(val);
|
||||
A.at<float>(eq, LDR_SIZE + (int)i) = -w.at<float>(val);
|
||||
B.at<float>(eq, 0) = w.at<float>(val) * log(times.at<float>((int)j));
|
||||
eq++;
|
||||
}
|
||||
}
|
||||
A.at<float>(eq, LDR_SIZE / 2) = 1;
|
||||
eq++;
|
||||
// fix the curve by setting its middle value to 0
|
||||
A.at<float>(k, LDR_SIZE / 2) = 1;
|
||||
k++;
|
||||
|
||||
for(int i = 0; i < 254; i++) {
|
||||
A.at<float>(eq, i) = lambda * w.at<float>(i + 1);
|
||||
A.at<float>(eq, i + 1) = -2 * lambda * w.at<float>(i + 1);
|
||||
A.at<float>(eq, i + 2) = lambda * w.at<float>(i + 1);
|
||||
eq++;
|
||||
// include the smoothness equations
|
||||
for(int i = 0; i < (LDR_SIZE - 2); i++) {
|
||||
float wi = w.at<float>(i + 1);
|
||||
A.at<float>(k, i) = lambda * wi;
|
||||
A.at<float>(k, i + 1) = -2 * lambda * wi;
|
||||
A.at<float>(k, i + 2) = lambda * wi;
|
||||
k++;
|
||||
}
|
||||
|
||||
// solve the overdetermined system using SVD (least-squares problem)
|
||||
Mat solution;
|
||||
solve(A, B, solution, DECOMP_SVD);
|
||||
solution.rowRange(0, LDR_SIZE).copyTo(result_split[channel]);
|
||||
solution.rowRange(0, LDR_SIZE).copyTo(result_split[ch]);
|
||||
}
|
||||
|
||||
// combine log-exposures and take its exponent
|
||||
merge(result_split, result);
|
||||
exp(result, result);
|
||||
}
|
||||
@ -161,11 +187,11 @@ public:
|
||||
}
|
||||
|
||||
protected:
|
||||
String name;
|
||||
int samples;
|
||||
float lambda;
|
||||
bool random;
|
||||
Mat w;
|
||||
String name; // calibration algorithm identifier
|
||||
int samples; // number of pixel locations to sample
|
||||
float lambda; // constant that determines the amount of smoothness
|
||||
bool random; // whether to sample locations randomly or in a grid shape
|
||||
Mat w; // weighting function for corresponding pixel values
|
||||
};
|
||||
|
||||
Ptr<CalibrateDebevec> createCalibrateDebevec(int samples, float lambda, bool random)
|
||||
|
@ -59,8 +59,9 @@ void checkImageDimensions(const std::vector<Mat>& images)
|
||||
}
|
||||
}
|
||||
|
||||
Mat tringleWeights()
|
||||
Mat triangleWeights()
|
||||
{
|
||||
// hat function
|
||||
Mat w(LDR_SIZE, 1, CV_32F);
|
||||
int half = LDR_SIZE / 2;
|
||||
for(int i = 0; i < LDR_SIZE; i++) {
|
||||
|
@ -50,7 +50,7 @@ namespace cv
|
||||
|
||||
void checkImageDimensions(const std::vector<Mat>& images);
|
||||
|
||||
Mat tringleWeights();
|
||||
Mat triangleWeights();
|
||||
|
||||
void mapLuminance(Mat src, Mat dst, Mat lum, Mat new_lum, float saturation);
|
||||
|
||||
|
@ -52,7 +52,7 @@ class MergeDebevecImpl : public MergeDebevec
|
||||
public:
|
||||
MergeDebevecImpl() :
|
||||
name("MergeDebevec"),
|
||||
weights(tringleWeights())
|
||||
weights(triangleWeights())
|
||||
{
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user