mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 14:36:36 +08:00
Merge pull request #13055 from vpisarev:remove_old_haar
This commit is contained in:
commit
3a4bc0d41e
@ -1,166 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_OBJDETECT_C_H
|
||||
#define OPENCV_OBJDETECT_C_H
|
||||
|
||||
#include "opencv2/core/core_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
#include <deque>
|
||||
#include <vector>
|
||||
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @addtogroup objdetect_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/****************************************************************************************\
|
||||
* Haar-like Object Detection functions *
|
||||
\****************************************************************************************/
|
||||
|
||||
#define CV_HAAR_MAGIC_VAL 0x42500000
|
||||
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
|
||||
|
||||
#define CV_IS_HAAR_CLASSIFIER( haar ) \
|
||||
((haar) != NULL && \
|
||||
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
|
||||
|
||||
#define CV_HAAR_FEATURE_MAX 3
|
||||
#define CV_HAAR_STAGE_MAX 1000
|
||||
|
||||
typedef struct CvHaarFeature
|
||||
{
|
||||
int tilted;
|
||||
struct
|
||||
{
|
||||
CvRect r;
|
||||
float weight;
|
||||
} rect[CV_HAAR_FEATURE_MAX];
|
||||
} CvHaarFeature;
|
||||
|
||||
typedef struct CvHaarClassifier
|
||||
{
|
||||
int count;
|
||||
CvHaarFeature* haar_feature;
|
||||
float* threshold;
|
||||
int* left;
|
||||
int* right;
|
||||
float* alpha;
|
||||
} CvHaarClassifier;
|
||||
|
||||
typedef struct CvHaarStageClassifier
|
||||
{
|
||||
int count;
|
||||
float threshold;
|
||||
CvHaarClassifier* classifier;
|
||||
|
||||
int next;
|
||||
int child;
|
||||
int parent;
|
||||
} CvHaarStageClassifier;
|
||||
|
||||
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
|
||||
|
||||
typedef struct CvHaarClassifierCascade
|
||||
{
|
||||
int flags;
|
||||
int count;
|
||||
CvSize orig_window_size;
|
||||
CvSize real_window_size;
|
||||
double scale;
|
||||
CvHaarStageClassifier* stage_classifier;
|
||||
CvHidHaarClassifierCascade* hid_cascade;
|
||||
} CvHaarClassifierCascade;
|
||||
|
||||
typedef struct CvAvgComp
|
||||
{
|
||||
CvRect rect;
|
||||
int neighbors;
|
||||
} CvAvgComp;
|
||||
|
||||
/* Loads haar classifier cascade from a directory.
|
||||
It is obsolete: convert your cascade to xml and use cvLoad instead */
|
||||
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
|
||||
const char* directory, CvSize orig_window_size);
|
||||
|
||||
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
|
||||
|
||||
#define CV_HAAR_DO_CANNY_PRUNING 1
|
||||
#define CV_HAAR_SCALE_IMAGE 2
|
||||
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
|
||||
#define CV_HAAR_DO_ROUGH_SEARCH 8
|
||||
|
||||
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
|
||||
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
||||
double scale_factor CV_DEFAULT(1.1),
|
||||
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
|
||||
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
|
||||
|
||||
/* sets images for haar classifier cascade */
|
||||
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
|
||||
const CvArr* sum, const CvArr* sqsum,
|
||||
const CvArr* tilted_sum, double scale );
|
||||
|
||||
/* runs the cascade on the specified window */
|
||||
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
|
||||
CvPoint pt, int start_stage CV_DEFAULT(0));
|
||||
|
||||
/** @} objdetect_c */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
|
||||
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
||||
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
|
||||
double scale_factor = 1.1,
|
||||
int min_neighbors = 3, int flags = 0,
|
||||
CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0),
|
||||
bool outputRejectLevels = false );
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* OPENCV_OBJDETECT_C_H */
|
@ -44,7 +44,6 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "cascadedetect.hpp"
|
||||
#include "opencv2/objdetect/objdetect_c.h"
|
||||
#include "opencl_kernels_objdetect.hpp"
|
||||
|
||||
namespace cv
|
||||
@ -1071,9 +1070,6 @@ public:
|
||||
};
|
||||
|
||||
|
||||
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
|
||||
struct getNeighbors { int operator ()(const CvAvgComp& e) const { return e.neighbors; } };
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
bool CascadeClassifierImpl::ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales,
|
||||
std::vector<Rect>& candidates )
|
||||
@ -1227,24 +1223,6 @@ void* CascadeClassifierImpl::getOldCascade()
|
||||
return oldCascade;
|
||||
}
|
||||
|
||||
static void detectMultiScaleOldFormat( const Mat& image, Ptr<CvHaarClassifierCascade> oldCascade,
|
||||
std::vector<Rect>& objects,
|
||||
std::vector<int>& rejectLevels,
|
||||
std::vector<double>& levelWeights,
|
||||
std::vector<CvAvgComp>& vecAvgComp,
|
||||
double scaleFactor, int minNeighbors,
|
||||
int flags, Size minObjectSize, Size maxObjectSize,
|
||||
bool outputRejectLevels = false )
|
||||
{
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
CvMat _image = cvMat(image);
|
||||
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
|
||||
minNeighbors, flags, cvSize(minObjectSize), cvSize(maxObjectSize), outputRejectLevels );
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
objects.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
|
||||
}
|
||||
|
||||
void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::vector<Rect>& candidates,
|
||||
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
|
||||
double scaleFactor, Size minObjectSize, Size maxObjectSize,
|
||||
@ -1374,7 +1352,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
|
||||
std::vector<int>& rejectLevels,
|
||||
std::vector<double>& levelWeights,
|
||||
double scaleFactor, int minNeighbors,
|
||||
int flags, Size minObjectSize, Size maxObjectSize,
|
||||
int /*flags*/, Size minObjectSize, Size maxObjectSize,
|
||||
bool outputRejectLevels )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
@ -1384,15 +1362,6 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
|
||||
if( empty() )
|
||||
return;
|
||||
|
||||
if( isOldFormatCascade() )
|
||||
{
|
||||
Mat image = _image.getMat();
|
||||
std::vector<CvAvgComp> fakeVecAvgComp;
|
||||
detectMultiScaleOldFormat( image, oldCascade, objects, rejectLevels, levelWeights, fakeVecAvgComp, scaleFactor,
|
||||
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
|
||||
}
|
||||
else
|
||||
{
|
||||
detectMultiScaleNoGrouping( _image, objects, rejectLevels, levelWeights, scaleFactor, minObjectSize, maxObjectSize,
|
||||
outputRejectLevels );
|
||||
const double GROUP_EPS = 0.2;
|
||||
@ -1405,7 +1374,6 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
|
||||
groupRectangles( objects, minNeighbors, GROUP_EPS );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects,
|
||||
double scaleFactor, int minNeighbors,
|
||||
@ -1421,7 +1389,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
|
||||
|
||||
void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects,
|
||||
std::vector<int>& numDetections, double scaleFactor,
|
||||
int minNeighbors, int flags, Size minObjectSize,
|
||||
int minNeighbors, int /*flags*/, Size minObjectSize,
|
||||
Size maxObjectSize )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
@ -1434,21 +1402,11 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
|
||||
|
||||
std::vector<int> fakeLevels;
|
||||
std::vector<double> fakeWeights;
|
||||
if( isOldFormatCascade() )
|
||||
{
|
||||
std::vector<CvAvgComp> vecAvgComp;
|
||||
detectMultiScaleOldFormat( image, oldCascade, objects, fakeLevels, fakeWeights, vecAvgComp, scaleFactor,
|
||||
minNeighbors, flags, minObjectSize, maxObjectSize );
|
||||
numDetections.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), numDetections.begin(), getNeighbors());
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
detectMultiScaleNoGrouping( image, objects, fakeLevels, fakeWeights, scaleFactor, minObjectSize, maxObjectSize );
|
||||
const double GROUP_EPS = 0.2;
|
||||
groupRectangles( objects, numDetections, minNeighbors, GROUP_EPS );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
CascadeClassifierImpl::Data::Data()
|
||||
@ -1613,9 +1571,6 @@ bool CascadeClassifierImpl::read_(const FileNode& root)
|
||||
return featureEvaluator->read(fn, data.origWinSize);
|
||||
}
|
||||
|
||||
void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const { cvReleaseHaarClassifierCascade(&obj); }
|
||||
|
||||
|
||||
BaseCascadeClassifier::~BaseCascadeClassifier()
|
||||
{
|
||||
}
|
||||
|
@ -1,369 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/* Haar features calculation */
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "haar.hpp"
|
||||
|
||||
namespace cv_haar_avx
|
||||
{
|
||||
|
||||
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
|
||||
#if CV_HAAR_USE_AVX
|
||||
double icvEvalHidHaarClassifierAVX(CvHidHaarClassifier* classifier,
|
||||
double variance_norm_factor, size_t p_offset)
|
||||
{
|
||||
int CV_DECL_ALIGNED(32) idxV[8] = { 0,0,0,0,0,0,0,0 };
|
||||
uchar flags[8] = { 0,0,0,0,0,0,0,0 };
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
double res = 0;
|
||||
uchar exitConditionFlag = 0;
|
||||
for (;;)
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = { 0,0,0,0,0,0,0,0 };
|
||||
nodes[0] = (classifier + 0)->node + idxV[0];
|
||||
nodes[1] = (classifier + 1)->node + idxV[1];
|
||||
nodes[2] = (classifier + 2)->node + idxV[2];
|
||||
nodes[3] = (classifier + 3)->node + idxV[3];
|
||||
nodes[4] = (classifier + 4)->node + idxV[4];
|
||||
nodes[5] = (classifier + 5)->node + idxV[5];
|
||||
nodes[6] = (classifier + 6)->node + idxV[6];
|
||||
nodes[7] = (classifier + 7)->node + idxV[7];
|
||||
|
||||
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor));
|
||||
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
|
||||
nodes[6]->threshold,
|
||||
nodes[5]->threshold,
|
||||
nodes[4]->threshold,
|
||||
nodes[3]->threshold,
|
||||
nodes[2]->threshold,
|
||||
nodes[1]->threshold,
|
||||
nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[6]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[5]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[4]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[3]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[2]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[1]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[0]->feature.rect[0], p_offset));
|
||||
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
|
||||
nodes[6]->feature.rect[0].weight,
|
||||
nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight,
|
||||
nodes[3]->feature.rect[0].weight,
|
||||
nodes[2]->feature.rect[0].weight,
|
||||
nodes[1]->feature.rect[0].weight,
|
||||
nodes[0]->feature.rect[0].weight);
|
||||
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[6]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[5]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[4]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[3]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[2]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[1]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[0]->feature.rect[1], p_offset));
|
||||
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
|
||||
nodes[6]->feature.rect[1].weight,
|
||||
nodes[5]->feature.rect[1].weight,
|
||||
nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight,
|
||||
nodes[2]->feature.rect[1].weight,
|
||||
nodes[1]->feature.rect[1].weight,
|
||||
nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
|
||||
|
||||
if (nodes[0]->feature.rect[2].p0)
|
||||
tmp[0] = calc_sumf(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if (nodes[1]->feature.rect[2].p0)
|
||||
tmp[1] = calc_sumf(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight;
|
||||
if (nodes[2]->feature.rect[2].p0)
|
||||
tmp[2] = calc_sumf(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight;
|
||||
if (nodes[3]->feature.rect[2].p0)
|
||||
tmp[3] = calc_sumf(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight;
|
||||
if (nodes[4]->feature.rect[2].p0)
|
||||
tmp[4] = calc_sumf(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if (nodes[5]->feature.rect[2].p0)
|
||||
tmp[5] = calc_sumf(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight;
|
||||
if (nodes[6]->feature.rect[2].p0)
|
||||
tmp[6] = calc_sumf(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight;
|
||||
if (nodes[7]->feature.rect[2].p0)
|
||||
tmp[7] = calc_sumf(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight;
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
|
||||
|
||||
__m256 left = _mm256_set_ps(static_cast<float>(nodes[7]->left), static_cast<float>(nodes[6]->left),
|
||||
static_cast<float>(nodes[5]->left), static_cast<float>(nodes[4]->left),
|
||||
static_cast<float>(nodes[3]->left), static_cast<float>(nodes[2]->left),
|
||||
static_cast<float>(nodes[1]->left), static_cast<float>(nodes[0]->left));
|
||||
__m256 right = _mm256_set_ps(static_cast<float>(nodes[7]->right), static_cast<float>(nodes[6]->right),
|
||||
static_cast<float>(nodes[5]->right), static_cast<float>(nodes[4]->right),
|
||||
static_cast<float>(nodes[3]->right), static_cast<float>(nodes[2]->right),
|
||||
static_cast<float>(nodes[1]->right), static_cast<float>(nodes[0]->right));
|
||||
|
||||
_mm256_store_si256((__m256i*)idxV, _mm256_cvttps_epi32(_mm256_blendv_ps(right, left, _mm256_cmp_ps(sum, t, _CMP_LT_OQ))));
|
||||
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
if (idxV[i] <= 0)
|
||||
{
|
||||
if (!flags[i])
|
||||
{
|
||||
exitConditionFlag++;
|
||||
flags[i] = 1;
|
||||
res += (classifier + i)->alpha[-idxV[i]];
|
||||
}
|
||||
idxV[i] = 0;
|
||||
}
|
||||
}
|
||||
if (exitConditionFlag == 8)
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
double icvEvalHidHaarStumpClassifierAVX(CvHidHaarClassifier* classifier,
|
||||
double variance_norm_factor, size_t p_offset)
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = { 0,0,0,0,0,0,0,0 };
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
|
||||
nodes[0] = classifier[0].node;
|
||||
nodes[1] = classifier[1].node;
|
||||
nodes[2] = classifier[2].node;
|
||||
nodes[3] = classifier[3].node;
|
||||
nodes[4] = classifier[4].node;
|
||||
nodes[5] = classifier[5].node;
|
||||
nodes[6] = classifier[6].node;
|
||||
nodes[7] = classifier[7].node;
|
||||
|
||||
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor));
|
||||
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
|
||||
nodes[6]->threshold,
|
||||
nodes[5]->threshold,
|
||||
nodes[4]->threshold,
|
||||
nodes[3]->threshold,
|
||||
nodes[2]->threshold,
|
||||
nodes[1]->threshold,
|
||||
nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[6]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[5]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[4]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[3]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[2]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[1]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[0]->feature.rect[0], p_offset));
|
||||
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
|
||||
nodes[6]->feature.rect[0].weight,
|
||||
nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight,
|
||||
nodes[3]->feature.rect[0].weight,
|
||||
nodes[2]->feature.rect[0].weight,
|
||||
nodes[1]->feature.rect[0].weight,
|
||||
nodes[0]->feature.rect[0].weight);
|
||||
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[6]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[5]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[4]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[3]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[2]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[1]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[0]->feature.rect[1], p_offset));
|
||||
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
|
||||
nodes[6]->feature.rect[1].weight,
|
||||
nodes[5]->feature.rect[1].weight,
|
||||
nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight,
|
||||
nodes[2]->feature.rect[1].weight,
|
||||
nodes[1]->feature.rect[1].weight,
|
||||
nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
|
||||
|
||||
if (nodes[0]->feature.rect[2].p0)
|
||||
tmp[0] = calc_sumf(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if (nodes[1]->feature.rect[2].p0)
|
||||
tmp[1] = calc_sumf(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight;
|
||||
if (nodes[2]->feature.rect[2].p0)
|
||||
tmp[2] = calc_sumf(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight;
|
||||
if (nodes[3]->feature.rect[2].p0)
|
||||
tmp[3] = calc_sumf(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight;
|
||||
if (nodes[4]->feature.rect[2].p0)
|
||||
tmp[4] = calc_sumf(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if (nodes[5]->feature.rect[2].p0)
|
||||
tmp[5] = calc_sumf(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight;
|
||||
if (nodes[6]->feature.rect[2].p0)
|
||||
tmp[6] = calc_sumf(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight;
|
||||
if (nodes[7]->feature.rect[2].p0)
|
||||
tmp[7] = calc_sumf(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight;
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
|
||||
|
||||
__m256 alpha0 = _mm256_set_ps(classifier[7].alpha[0],
|
||||
classifier[6].alpha[0],
|
||||
classifier[5].alpha[0],
|
||||
classifier[4].alpha[0],
|
||||
classifier[3].alpha[0],
|
||||
classifier[2].alpha[0],
|
||||
classifier[1].alpha[0],
|
||||
classifier[0].alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifier[7].alpha[1],
|
||||
classifier[6].alpha[1],
|
||||
classifier[5].alpha[1],
|
||||
classifier[4].alpha[1],
|
||||
classifier[3].alpha[1],
|
||||
classifier[2].alpha[1],
|
||||
classifier[1].alpha[1],
|
||||
classifier[0].alpha[1]);
|
||||
|
||||
__m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ));
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
_mm256_store_ps(tmp, outBuf);
|
||||
return (tmp[0] + tmp[4]);
|
||||
}
|
||||
|
||||
double icvEvalHidHaarStumpClassifierTwoRectAVX(CvHidHaarClassifier* classifier,
|
||||
double variance_norm_factor, size_t p_offset)
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) buf[8];
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
nodes[0] = classifier[0].node;
|
||||
nodes[1] = classifier[1].node;
|
||||
nodes[2] = classifier[2].node;
|
||||
nodes[3] = classifier[3].node;
|
||||
nodes[4] = classifier[4].node;
|
||||
nodes[5] = classifier[5].node;
|
||||
nodes[6] = classifier[6].node;
|
||||
nodes[7] = classifier[7].node;
|
||||
|
||||
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor));
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
|
||||
nodes[6]->threshold,
|
||||
nodes[5]->threshold,
|
||||
nodes[4]->threshold,
|
||||
nodes[3]->threshold,
|
||||
nodes[2]->threshold,
|
||||
nodes[1]->threshold,
|
||||
nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[6]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[5]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[4]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[3]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[2]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[1]->feature.rect[0], p_offset),
|
||||
calc_sumf(nodes[0]->feature.rect[0], p_offset));
|
||||
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
|
||||
nodes[6]->feature.rect[0].weight,
|
||||
nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight,
|
||||
nodes[3]->feature.rect[0].weight,
|
||||
nodes[2]->feature.rect[0].weight,
|
||||
nodes[1]->feature.rect[0].weight,
|
||||
nodes[0]->feature.rect[0].weight);
|
||||
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[6]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[5]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[4]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[3]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[2]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[1]->feature.rect[1], p_offset),
|
||||
calc_sumf(nodes[0]->feature.rect[1], p_offset));
|
||||
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
|
||||
nodes[6]->feature.rect[1].weight,
|
||||
nodes[5]->feature.rect[1].weight,
|
||||
nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight,
|
||||
nodes[2]->feature.rect[1].weight,
|
||||
nodes[1]->feature.rect[1].weight,
|
||||
nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
|
||||
|
||||
__m256 alpha0 = _mm256_set_ps(classifier[7].alpha[0],
|
||||
classifier[6].alpha[0],
|
||||
classifier[5].alpha[0],
|
||||
classifier[4].alpha[0],
|
||||
classifier[3].alpha[0],
|
||||
classifier[2].alpha[0],
|
||||
classifier[1].alpha[0],
|
||||
classifier[0].alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifier[7].alpha[1],
|
||||
classifier[6].alpha[1],
|
||||
classifier[5].alpha[1],
|
||||
classifier[4].alpha[1],
|
||||
classifier[3].alpha[1],
|
||||
classifier[2].alpha[1],
|
||||
classifier[1].alpha[1],
|
||||
classifier[0].alpha[1]);
|
||||
|
||||
_mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ)));
|
||||
return (buf[0] + buf[1] + buf[2] + buf[3] + buf[4] + buf[5] + buf[6] + buf[7]);
|
||||
}
|
||||
|
||||
#endif //CV_HAAR_USE_AVX
|
||||
|
||||
}
|
||||
|
||||
/* End of file. */
|
File diff suppressed because it is too large
Load Diff
@ -1,101 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/* Haar features calculation */
|
||||
|
||||
#ifndef OPENCV_OBJDETECT_HAAR_HPP
|
||||
#define OPENCV_OBJDETECT_HAAR_HPP
|
||||
|
||||
#define CV_HAAR_FEATURE_MAX_LOCAL 3
|
||||
|
||||
typedef int sumtype;
|
||||
typedef double sqsumtype;
|
||||
|
||||
typedef struct CvHidHaarFeature
|
||||
{
|
||||
struct
|
||||
{
|
||||
sumtype *p0, *p1, *p2, *p3;
|
||||
float weight;
|
||||
}
|
||||
rect[CV_HAAR_FEATURE_MAX_LOCAL];
|
||||
} CvHidHaarFeature;
|
||||
|
||||
|
||||
typedef struct CvHidHaarTreeNode
|
||||
{
|
||||
CvHidHaarFeature feature;
|
||||
float threshold;
|
||||
int left;
|
||||
int right;
|
||||
} CvHidHaarTreeNode;
|
||||
|
||||
|
||||
typedef struct CvHidHaarClassifier
|
||||
{
|
||||
int count;
|
||||
//CvHaarFeature* orig_feature;
|
||||
CvHidHaarTreeNode* node;
|
||||
float* alpha;
|
||||
} CvHidHaarClassifier;
|
||||
|
||||
#define calc_sumf(rect,offset) \
|
||||
static_cast<float>((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
|
||||
|
||||
namespace cv_haar_avx
|
||||
{
|
||||
#if 0 /*CV_TRY_AVX*/
|
||||
#define CV_HAAR_USE_AVX 1
|
||||
#else
|
||||
#define CV_HAAR_USE_AVX 0
|
||||
#endif
|
||||
|
||||
#if CV_HAAR_USE_AVX
|
||||
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
|
||||
double icvEvalHidHaarClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
|
||||
double icvEvalHidHaarStumpClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
|
||||
double icvEvalHidHaarStumpClassifierTwoRectAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* End of file. */
|
@ -404,7 +404,6 @@ protected:
|
||||
virtual void readDetector( const FileNode& fn );
|
||||
virtual void writeDetector( FileStorage& fs, int di );
|
||||
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects );
|
||||
virtual int detectMultiScale_C( const string& filename, int di, const Mat& img, vector<Rect>& objects );
|
||||
vector<int> flags;
|
||||
};
|
||||
|
||||
@ -434,36 +433,6 @@ void CV_CascadeDetectorTest::writeDetector( FileStorage& fs, int di )
|
||||
fs << C_SCALE_CASCADE << sc;
|
||||
}
|
||||
|
||||
|
||||
int CV_CascadeDetectorTest::detectMultiScale_C( const string& filename,
|
||||
int di, const Mat& img,
|
||||
vector<Rect>& objects )
|
||||
{
|
||||
Ptr<CvHaarClassifierCascade> c_cascade(cvLoadHaarClassifierCascade(filename.c_str(), cvSize(0,0)));
|
||||
Ptr<CvMemStorage> storage(cvCreateMemStorage());
|
||||
|
||||
if( !c_cascade )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "cascade %s can not be opened");
|
||||
return cvtest::TS::FAIL_INVALID_TEST_DATA;
|
||||
}
|
||||
Mat grayImg;
|
||||
cvtColor( img, grayImg, COLOR_BGR2GRAY );
|
||||
equalizeHist( grayImg, grayImg );
|
||||
|
||||
CvMat c_gray = cvMat(grayImg);
|
||||
CvSeq* rs = cvHaarDetectObjects(&c_gray, c_cascade, storage, 1.1, 3, flags[di] );
|
||||
|
||||
objects.clear();
|
||||
for( int i = 0; i < rs->total; i++ )
|
||||
{
|
||||
Rect r = *(Rect*)cvGetSeqElem(rs, i);
|
||||
objects.push_back(r);
|
||||
}
|
||||
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img,
|
||||
vector<Rect>& objects)
|
||||
{
|
||||
@ -471,11 +440,6 @@ int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img,
|
||||
filename = dataPath + detectorFilenames[di];
|
||||
const string pattern = "haarcascade_frontalface_default.xml";
|
||||
|
||||
if( filename.size() >= pattern.size() &&
|
||||
strcmp(filename.c_str() + (filename.size() - pattern.size()),
|
||||
pattern.c_str()) == 0 )
|
||||
return detectMultiScale_C(filename, di, img, objects);
|
||||
|
||||
CascadeClassifier cascade( filename );
|
||||
if( cascade.empty() )
|
||||
{
|
||||
|
@ -6,6 +6,5 @@
|
||||
|
||||
#include "opencv2/ts.hpp"
|
||||
#include "opencv2/objdetect.hpp"
|
||||
#include "opencv2/objdetect/objdetect_c.h"
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user