mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge branch 'master' of https://github.com/f-morozov/opencv
This commit is contained in:
commit
3c218717a9
@ -90,6 +90,7 @@ bool HdrDecoder::readData(Mat& _img)
|
||||
}
|
||||
RGBE_ReadPixels_RLE(file, const_cast<float*>(img.ptr<float>()), img.cols, img.rows);
|
||||
fclose(file); file = NULL;
|
||||
|
||||
if(_img.depth() == img.depth()) {
|
||||
img.convertTo(_img, _img.type());
|
||||
} else {
|
||||
@ -123,10 +124,16 @@ HdrEncoder::~HdrEncoder()
|
||||
|
||||
bool HdrEncoder::write( const Mat& _img, const std::vector<int>& params )
|
||||
{
|
||||
CV_Assert(_img.channels() == 3);
|
||||
Mat img;
|
||||
if(_img.depth() != CV_32F) {
|
||||
_img.convertTo(img, CV_32FC3, 1/255.0f);
|
||||
CV_Assert(img.channels() == 3 || img.channels() == 1);
|
||||
if(img.channels() == 1) {
|
||||
std::vector<Mat> splitted(3, _img);
|
||||
merge(splitted, img);
|
||||
} else {
|
||||
_img.copyTo(img);
|
||||
}
|
||||
if(img.depth() != CV_32F) {
|
||||
img.convertTo(img, CV_32FC3, 1/255.0f);
|
||||
}
|
||||
CV_Assert(params.empty() || params[0] == HDR_NONE || params[0] == HDR_RLE);
|
||||
FILE *fout = fopen(m_filename.c_str(), "wb");
|
||||
|
@ -194,7 +194,7 @@ Recovers camera response.
|
||||
|
||||
:param src: vector of input images
|
||||
|
||||
:param dst: matrix with calculated camera response, one column per channel
|
||||
:param dst: matrix with calculated camera response
|
||||
|
||||
:param times: vector of exposure time values for each image
|
||||
|
||||
@ -232,7 +232,7 @@ Merges images.
|
||||
|
||||
:param times: vector of exposure time values for each image
|
||||
|
||||
:param response: matrix with camera response, one column per channel
|
||||
:param response: one-column matrix with camera response
|
||||
|
||||
MergeDebevec
|
||||
--------
|
||||
|
@ -206,6 +206,9 @@ public:
|
||||
|
||||
CV_WRAP virtual int getSamples() const = 0;
|
||||
CV_WRAP virtual void setSamples(int samples) = 0;
|
||||
|
||||
CV_WRAP virtual bool getTest() const = 0;
|
||||
CV_WRAP virtual void setTest(bool val) = 0;
|
||||
};
|
||||
|
||||
CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 50, float lambda = 10.0f);
|
||||
|
@ -55,7 +55,8 @@ public:
|
||||
samples(samples),
|
||||
lambda(lambda),
|
||||
name("CalibrateDebevec"),
|
||||
w(tringleWeights())
|
||||
w(tringleWeights()),
|
||||
test(false)
|
||||
{
|
||||
}
|
||||
|
||||
@ -63,14 +64,19 @@ public:
|
||||
{
|
||||
std::vector<Mat> images;
|
||||
src.getMatVector(images);
|
||||
dst.create(256, images[0].channels(), CV_32F);
|
||||
Mat response = dst.getMat();
|
||||
|
||||
CV_Assert(!images.empty() && images.size() == times.size());
|
||||
CV_Assert(images[0].depth() == CV_8U);
|
||||
CV_Assert(images.size() == times.size());
|
||||
checkImageDimensions(images);
|
||||
CV_Assert(images[0].depth() == CV_8U);
|
||||
|
||||
for(int channel = 0; channel < images[0].channels(); channel++) {
|
||||
int channels = images[0].channels();
|
||||
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
||||
|
||||
dst.create(256, 1, CV_32FCC);
|
||||
Mat result = dst.getMat();
|
||||
|
||||
std::vector<Mat> result_split(channels);
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
Mat A = Mat::zeros(samples * images.size() + 257, 256 + samples, CV_32F);
|
||||
Mat B = Mat::zeros(A.rows, 1, CV_32F);
|
||||
|
||||
@ -78,6 +84,9 @@ public:
|
||||
for(int i = 0; i < samples; i++) {
|
||||
|
||||
int pos = 3 * (rand() % images[0].total()) + channel;
|
||||
if(test) {
|
||||
pos = 3 * i + channel;
|
||||
}
|
||||
for(size_t j = 0; j < images.size(); j++) {
|
||||
|
||||
int val = (images[j].ptr() + pos)[0];
|
||||
@ -98,11 +107,15 @@ public:
|
||||
}
|
||||
Mat solution;
|
||||
solve(A, B, solution, DECOMP_SVD);
|
||||
solution.rowRange(0, 256).copyTo(response.col(channel));
|
||||
solution.rowRange(0, 256).copyTo(result_split[channel]);
|
||||
}
|
||||
exp(response, response);
|
||||
merge(result_split, result);
|
||||
exp(result, result);
|
||||
}
|
||||
|
||||
bool getTest() const { return test; }
|
||||
void setTest(bool val) { test = val; }
|
||||
|
||||
int getSamples() const { return samples; }
|
||||
void setSamples(int val) { samples = val; }
|
||||
|
||||
@ -128,6 +141,7 @@ protected:
|
||||
String name;
|
||||
int samples;
|
||||
float lambda;
|
||||
bool test;
|
||||
Mat w;
|
||||
};
|
||||
|
||||
|
@ -61,11 +61,9 @@ void checkImageDimensions(const std::vector<Mat>& images)
|
||||
|
||||
Mat tringleWeights()
|
||||
{
|
||||
Mat w(256, 3, CV_32F);
|
||||
Mat w(256, 1, CV_32F);
|
||||
for(int i = 0; i < 256; i++) {
|
||||
for(int j = 0; j < 3; j++) {
|
||||
w.at<float>(i, j) = i < 128 ? i + 1.0f : 256.0f - i;
|
||||
}
|
||||
w.at<float>(i) = i < 128 ? i + 1.0f : 256.0f - i;
|
||||
}
|
||||
return w;
|
||||
}
|
||||
|
@ -61,62 +61,87 @@ public:
|
||||
{
|
||||
std::vector<Mat> images;
|
||||
src.getMatVector(images);
|
||||
dst.create(images[0].size(), CV_MAKETYPE(CV_32F, images[0].channels()));
|
||||
Mat result = dst.getMat();
|
||||
|
||||
CV_Assert(images.size() == times.size());
|
||||
CV_Assert(images[0].depth() == CV_8U);
|
||||
checkImageDimensions(images);
|
||||
CV_Assert(images[0].depth() == CV_8U);
|
||||
|
||||
int channels = images[0].channels();
|
||||
Size size = images[0].size();
|
||||
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
||||
|
||||
dst.create(images[0].size(), CV_32FCC);
|
||||
Mat result = dst.getMat();
|
||||
|
||||
Mat response = input_response.getMat();
|
||||
CV_Assert(response.rows == 256 && response.cols >= images[0].channels());
|
||||
Mat log_response;
|
||||
log(response, log_response);
|
||||
|
||||
std::vector<float> exp_times(times.size());
|
||||
for(size_t i = 0; i < exp_times.size(); i++) {
|
||||
exp_times[i] = logf(times[i]);
|
||||
|
||||
if(response.empty()) {
|
||||
response = linearResponse(channels);
|
||||
}
|
||||
log(response, response);
|
||||
CV_Assert(response.rows == 256 && response.cols == 1 &&
|
||||
response.channels() == channels);
|
||||
|
||||
Mat exp_values(times);
|
||||
log(exp_values, exp_values);
|
||||
|
||||
int channels = images[0].channels();
|
||||
float *res_ptr = result.ptr<float>();
|
||||
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += channels) {
|
||||
result = Mat::zeros(size, CV_32FCC);
|
||||
std::vector<Mat> result_split;
|
||||
split(result, result_split);
|
||||
Mat weight_sum = Mat::zeros(size, CV_32F);
|
||||
|
||||
std::vector<float> sum(channels, 0);
|
||||
float weight_sum = 0;
|
||||
for(size_t im = 0; im < images.size(); im++) {
|
||||
for(size_t i = 0; i < images.size(); i++) {
|
||||
std::vector<Mat> splitted;
|
||||
split(images[i], splitted);
|
||||
|
||||
uchar *img_ptr = images[im].ptr() + channels * pos;
|
||||
float w = 0;
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
w += weights.at<float>(img_ptr[channel]);
|
||||
}
|
||||
w /= channels;
|
||||
weight_sum += w;
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
sum[channel] += w * (log_response.at<float>(img_ptr[channel], channel) - exp_times[im]);
|
||||
}
|
||||
Mat w = Mat::zeros(size, CV_32F);
|
||||
for(int c = 0; c < channels; c++) {
|
||||
LUT(splitted[c], weights, splitted[c]);
|
||||
w += splitted[c];
|
||||
}
|
||||
for(int channel = 0; channel < channels; channel++) {
|
||||
res_ptr[channel] = exp(sum[channel] / weight_sum);
|
||||
w /= channels;
|
||||
|
||||
Mat response_img;
|
||||
LUT(images[i], response, response_img);
|
||||
split(response_img, splitted);
|
||||
for(int c = 0; c < channels; c++) {
|
||||
result_split[c] += w.mul(splitted[c] - exp_values.at<float>(i));
|
||||
}
|
||||
weight_sum += w;
|
||||
}
|
||||
weight_sum = 1.0f / weight_sum;
|
||||
for(int c = 0; c < channels; c++) {
|
||||
result_split[c] = result_split[c].mul(weight_sum);
|
||||
}
|
||||
merge(result_split, result);
|
||||
exp(result, result);
|
||||
}
|
||||
|
||||
void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times)
|
||||
{
|
||||
Mat response(256, 3, CV_32F);
|
||||
for(int i = 0; i < 256; i++) {
|
||||
for(int j = 0; j < 3; j++) {
|
||||
response.at<float>(i, j) = static_cast<float>(max(i, 1));
|
||||
}
|
||||
}
|
||||
process(src, dst, times, response);
|
||||
process(src, dst, times, Mat());
|
||||
}
|
||||
|
||||
protected:
|
||||
String name;
|
||||
Mat weights;
|
||||
|
||||
Mat linearResponse(int channels)
|
||||
{
|
||||
Mat single_response = Mat(256, 1, CV_32F);
|
||||
for(int i = 1; i < 256; i++) {
|
||||
single_response.at<float>(i) = static_cast<float>(i);
|
||||
}
|
||||
single_response.at<float>(0) = static_cast<float>(1);
|
||||
|
||||
std::vector<Mat> splitted(channels);
|
||||
for(int c = 0; c < channels; c++) {
|
||||
splitted[c] = single_response;
|
||||
}
|
||||
Mat result;
|
||||
merge(splitted, result);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
Ptr<MergeDebevec> createMergeDebevec()
|
||||
@ -146,33 +171,48 @@ public:
|
||||
src.getMatVector(images);
|
||||
checkImageDimensions(images);
|
||||
|
||||
std::vector<Mat> weights(images.size());
|
||||
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1);
|
||||
for(size_t im = 0; im < images.size(); im++) {
|
||||
Mat img, gray, contrast, saturation, wellexp;
|
||||
std::vector<Mat> channels(3);
|
||||
int channels = images[0].channels();
|
||||
CV_Assert(channels == 1 || channels == 3);
|
||||
Size size = images[0].size();
|
||||
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
||||
|
||||
images[im].convertTo(img, CV_32FC3, 1.0/255.0);
|
||||
cvtColor(img, gray, COLOR_RGB2GRAY);
|
||||
split(img, channels);
|
||||
std::vector<Mat> weights(images.size());
|
||||
Mat weight_sum = Mat::zeros(size, CV_32F);
|
||||
|
||||
for(size_t i = 0; i < images.size(); i++) {
|
||||
Mat img, gray, contrast, saturation, wellexp;
|
||||
std::vector<Mat> splitted(channels);
|
||||
|
||||
images[i].convertTo(img, CV_32F, 1.0f/255.0f);
|
||||
if(channels == 3) {
|
||||
cvtColor(img, gray, COLOR_RGB2GRAY);
|
||||
} else {
|
||||
img.copyTo(gray);
|
||||
}
|
||||
split(img, splitted);
|
||||
|
||||
Laplacian(gray, contrast, CV_32F);
|
||||
contrast = abs(contrast);
|
||||
|
||||
Mat mean = (channels[0] + channels[1] + channels[2]) / 3.0f;
|
||||
saturation = Mat::zeros(channels[0].size(), CV_32FC1);
|
||||
for(int i = 0; i < 3; i++) {
|
||||
Mat deviation = channels[i] - mean;
|
||||
pow(deviation, 2.0, deviation);
|
||||
Mat mean = Mat::zeros(size, CV_32F);
|
||||
for(int c = 0; c < channels; c++) {
|
||||
mean += splitted[c];
|
||||
}
|
||||
mean /= channels;
|
||||
|
||||
saturation = Mat::zeros(size, CV_32F);
|
||||
for(int c = 0; c < channels; c++) {
|
||||
Mat deviation = splitted[c] - mean;
|
||||
pow(deviation, 2.0f, deviation);
|
||||
saturation += deviation;
|
||||
}
|
||||
sqrt(saturation, saturation);
|
||||
|
||||
wellexp = Mat::ones(gray.size(), CV_32FC1);
|
||||
for(int i = 0; i < 3; i++) {
|
||||
Mat exp = channels[i] - 0.5f;
|
||||
pow(exp, 2, exp);
|
||||
exp = -exp / 0.08;
|
||||
wellexp = Mat::ones(size, CV_32F);
|
||||
for(int c = 0; c < channels; c++) {
|
||||
Mat exp = splitted[c] - 0.5f;
|
||||
pow(exp, 2.0f, exp);
|
||||
exp = -exp / 0.08f;
|
||||
wellexp = wellexp.mul(exp);
|
||||
}
|
||||
|
||||
@ -180,33 +220,37 @@ public:
|
||||
pow(saturation, wsat, saturation);
|
||||
pow(wellexp, wexp, wellexp);
|
||||
|
||||
weights[im] = contrast;
|
||||
weights[im] = weights[im].mul(saturation);
|
||||
weights[im] = weights[im].mul(wellexp);
|
||||
weight_sum += weights[im];
|
||||
weights[i] = contrast;
|
||||
if(channels == 3) {
|
||||
weights[i] = weights[i].mul(saturation);
|
||||
}
|
||||
weights[i] = weights[i].mul(wellexp);
|
||||
weight_sum += weights[i];
|
||||
}
|
||||
int maxlevel = static_cast<int>(logf(static_cast<float>(max(images[0].rows, images[0].cols))) / logf(2.0)) - 1;
|
||||
int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f));
|
||||
std::vector<Mat> res_pyr(maxlevel + 1);
|
||||
|
||||
for(size_t im = 0; im < images.size(); im++) {
|
||||
weights[im] /= weight_sum;
|
||||
for(size_t i = 0; i < images.size(); i++) {
|
||||
weights[i] /= weight_sum;
|
||||
Mat img;
|
||||
images[im].convertTo(img, CV_32FC3, 1/255.0);
|
||||
images[i].convertTo(img, CV_32F, 1.0f/255.0f);
|
||||
|
||||
std::vector<Mat> img_pyr, weight_pyr;
|
||||
buildPyramid(img, img_pyr, maxlevel);
|
||||
buildPyramid(weights[im], weight_pyr, maxlevel);
|
||||
buildPyramid(weights[i], weight_pyr, maxlevel);
|
||||
|
||||
for(int lvl = 0; lvl < maxlevel; lvl++) {
|
||||
Mat up;
|
||||
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
|
||||
img_pyr[lvl] -= up;
|
||||
}
|
||||
for(int lvl = 0; lvl <= maxlevel; lvl++) {
|
||||
std::vector<Mat> channels(3);
|
||||
split(img_pyr[lvl], channels);
|
||||
for(int i = 0; i < 3; i++) {
|
||||
channels[i] = channels[i].mul(weight_pyr[lvl]);
|
||||
std::vector<Mat> splitted(channels);
|
||||
split(img_pyr[lvl], splitted);
|
||||
for(int c = 0; c < channels; c++) {
|
||||
splitted[c] = splitted[c].mul(weight_pyr[lvl]);
|
||||
}
|
||||
merge(channels, img_pyr[lvl]);
|
||||
merge(splitted, img_pyr[lvl]);
|
||||
if(res_pyr[lvl].empty()) {
|
||||
res_pyr[lvl] = img_pyr[lvl];
|
||||
} else {
|
||||
@ -219,7 +263,7 @@ public:
|
||||
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
|
||||
res_pyr[lvl - 1] += up;
|
||||
}
|
||||
dst.create(images[0].size(), CV_32FC3);
|
||||
dst.create(size, CV_32FCC);
|
||||
res_pyr[0].copyTo(dst.getMat());
|
||||
}
|
||||
|
||||
|
@ -185,7 +185,7 @@ class TonemapDurandImpl : public TonemapDurand
|
||||
public:
|
||||
TonemapDurandImpl(float gamma, float contrast, float saturation, float sigma_color, float sigma_space) :
|
||||
gamma(gamma),
|
||||
contrast(contrast),
|
||||
contrast(contrast),
|
||||
saturation(saturation),
|
||||
sigma_color(sigma_color),
|
||||
sigma_space(sigma_space),
|
||||
@ -462,8 +462,8 @@ protected:
|
||||
void signedPow(Mat src, float power, Mat& dst)
|
||||
{
|
||||
Mat sign = (src > 0);
|
||||
sign.convertTo(sign, CV_32F, 1/255.0f);
|
||||
sign = sign * 2 - 1;
|
||||
sign.convertTo(sign, CV_32F, 1.0f/255.0f);
|
||||
sign = sign * 2.0f - 1.0f;
|
||||
pow(abs(src), power, dst);
|
||||
dst = dst.mul(sign);
|
||||
}
|
||||
|
@ -78,11 +78,11 @@ void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = DE
|
||||
|
||||
void loadResponseCSV(String path, Mat& response)
|
||||
{
|
||||
response = Mat(256, 3, CV_32F);
|
||||
response = Mat(256, 1, CV_32FC3);
|
||||
ifstream resp_file(path.c_str());
|
||||
for(int i = 0; i < 256; i++) {
|
||||
for(int channel = 0; channel < 3; channel++) {
|
||||
resp_file >> response.at<float>(i, channel);
|
||||
for(int c = 0; c < 3; c++) {
|
||||
resp_file >> response.at<Vec3f>(i)[c];
|
||||
resp_file.ignore(1);
|
||||
}
|
||||
}
|
||||
@ -187,6 +187,7 @@ TEST(Photo_MergeDebevec, regression)
|
||||
Mat result, expected;
|
||||
loadImage(test_path + "merge/debevec.exr", expected);
|
||||
merge->process(images, result, times, response);
|
||||
imwrite("test.exr", result);
|
||||
checkEqual(expected, result, 1e-3f);
|
||||
}
|
||||
|
||||
@ -199,9 +200,8 @@ TEST(Photo_CalibrateDebevec, regression)
|
||||
Mat expected, response;
|
||||
loadExposureSeq(test_path + "exposures/", images, times);
|
||||
loadResponseCSV(test_path + "calibrate/debevec.csv", expected);
|
||||
|
||||
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
|
||||
srand(1);
|
||||
calibrate->setTest(true);
|
||||
calibrate->process(images, response, times);
|
||||
checkEqual(expected, response, 1e-3f);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user