mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Fix the problem of haar caused by merge
This commit is contained in:
parent
616dbd53f0
commit
3d3e9ab635
@ -12,23 +12,20 @@ Cascade classifier class used for object detection. Supports HAAR cascade classi
|
||||
class CV_EXPORTS OclCascadeClassifier : public CascadeClassifier
|
||||
{
|
||||
public:
|
||||
OclCascadeClassifier() {};
|
||||
~OclCascadeClassifier() {};
|
||||
CvSeq *oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage,
|
||||
double scaleFactor,int minNeighbors,
|
||||
int flags, CvSize minSize = cvSize(0, 0),
|
||||
CvSize maxSize = cvSize(0, 0));
|
||||
void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
|
||||
double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
|
||||
Size minSize = Size(), Size maxSize = Size());
|
||||
};
|
||||
|
||||
ocl::OclCascadeClassifier::oclHaarDetectObjects
|
||||
------------------------------------------------------
|
||||
Returns the detected objects by a list of rectangles
|
||||
Detects objects of different sizes in the input image.
|
||||
|
||||
.. ocv:function:: CvSeq* ocl::OclCascadeClassifier::oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor,int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0))
|
||||
.. ocv:function:: void ocl::OclCascadeClassifier::detectMultiScale(oclMat &image, std::vector<cv::Rect>& faces, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size())
|
||||
|
||||
:param image: Matrix of type CV_8U containing an image where objects should be detected.
|
||||
|
||||
:param imageobjectsBuff: Buffer to store detected objects (rectangles). If it is empty, it is allocated with the defaultsize. If not empty, the function searches not more than N objects, where N = sizeof(objectsBufers data)/sizeof(cv::Rect).
|
||||
:param faces: Vector of rectangles where each rectangle contains the detected object.
|
||||
|
||||
:param scaleFactor: Parameter specifying how much the image size is reduced at each image scale.
|
||||
|
||||
@ -36,7 +33,9 @@ Returns the detected objects by a list of rectangles
|
||||
|
||||
:param minSize: Minimum possible object size. Objects smaller than that are ignored.
|
||||
|
||||
Detects objects of different sizes in the input image,only tested for face detection now. The function returns the number of detected objects.
|
||||
:param maxSize: Maximum possible object size. Objects larger than that are ignored.
|
||||
|
||||
The function provides a very similar interface with that in CascadeClassifier class, except using oclMat as input image.
|
||||
|
||||
ocl::MatchTemplateBuf
|
||||
---------------------
|
||||
|
@ -856,59 +856,13 @@ namespace cv
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////CascadeClassifier//////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if 0
|
||||
class CV_EXPORTS OclCascadeClassifier : public cv::CascadeClassifier
|
||||
{
|
||||
public:
|
||||
OclCascadeClassifier() {};
|
||||
~OclCascadeClassifier() {};
|
||||
|
||||
CvSeq* oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor,
|
||||
int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0));
|
||||
};
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
class CV_EXPORTS OclCascadeClassifierBuf : public cv::CascadeClassifier
|
||||
{
|
||||
public:
|
||||
OclCascadeClassifierBuf() :
|
||||
m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {}
|
||||
|
||||
~OclCascadeClassifierBuf() { release(); }
|
||||
|
||||
void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
|
||||
double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
|
||||
Size minSize = Size(), Size maxSize = Size());
|
||||
void release();
|
||||
|
||||
private:
|
||||
void Init(const int rows, const int cols, double scaleFactor, int flags,
|
||||
const int outputsz, const size_t localThreads[],
|
||||
Size minSize, Size maxSize);
|
||||
void CreateBaseBufs(const int datasize, const int totalclassifier, const int flags, const int outputsz);
|
||||
void CreateFactorRelatedBufs(const int rows, const int cols, const int flags,
|
||||
const double scaleFactor, const size_t localThreads[],
|
||||
Size minSize, Size maxSize);
|
||||
void GenResult(CV_OUT std::vector<cv::Rect>& faces, const std::vector<cv::Rect> &rectList, const std::vector<int> &rweights);
|
||||
|
||||
int m_rows;
|
||||
int m_cols;
|
||||
int m_flags;
|
||||
int m_loopcount;
|
||||
int m_nodenum;
|
||||
bool findBiggestObject;
|
||||
bool initialized;
|
||||
double m_scaleFactor;
|
||||
Size m_minSize;
|
||||
Size m_maxSize;
|
||||
std::vector<Size> sizev;
|
||||
std::vector<float> scalev;
|
||||
oclMat gimg1, gsum, gsqsum;
|
||||
void * buffers;
|
||||
};
|
||||
#endif
|
||||
|
||||
/////////////////////////////// Pyramid /////////////////////////////////////
|
||||
CV_EXPORTS void pyrDown(const oclMat &src, oclMat &dst);
|
||||
|
@ -44,47 +44,8 @@
|
||||
//
|
||||
//M*/
|
||||
#include "precomp.hpp"
|
||||
|
||||
#if 0
|
||||
|
||||
///////////// Haar ////////////////////////
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
|
||||
struct getRect
|
||||
{
|
||||
Rect operator()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
|
||||
class CascadeClassifier_GPU : public OclCascadeClassifier
|
||||
{
|
||||
public:
|
||||
void detectMultiScale(oclMat &image,
|
||||
CV_OUT std::vector<cv::Rect>& faces,
|
||||
double scaleFactor = 1.1,
|
||||
int minNeighbors = 3, int flags = 0,
|
||||
Size minSize = Size(),
|
||||
Size maxSize = Size())
|
||||
{
|
||||
(void)maxSize;
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
//CvMat img=image;
|
||||
CvSeq *objs = oclHaarDetectObjects(image, storage, scaleFactor, minNeighbors, flags, minSize);
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(objs).copyTo(vecAvgComp);
|
||||
faces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
PERFTEST(Haar)
|
||||
{
|
||||
Mat img = imread(abspath("basketball1.png"), IMREAD_GRAYSCALE);
|
||||
@ -106,12 +67,12 @@ PERFTEST(Haar)
|
||||
SUBTEST << img.cols << "x" << img.rows << "; scale image";
|
||||
CPU_ON;
|
||||
faceCascadeCPU.detectMultiScale(img, faces,
|
||||
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
|
||||
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
|
||||
CPU_OFF;
|
||||
|
||||
|
||||
vector<Rect> oclfaces;
|
||||
ocl::CascadeClassifier_GPU faceCascade;
|
||||
ocl::OclCascadeClassifier faceCascade;
|
||||
|
||||
if (!faceCascade.load(abspath("haarcascade_frontalface_alt.xml")))
|
||||
{
|
||||
@ -122,7 +83,7 @@ PERFTEST(Haar)
|
||||
|
||||
WARMUP_ON;
|
||||
faceCascade.detectMultiScale(d_img, oclfaces,
|
||||
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
|
||||
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
|
||||
WARMUP_OFF;
|
||||
|
||||
if(faces.size() == oclfaces.size())
|
||||
@ -134,14 +95,12 @@ PERFTEST(Haar)
|
||||
|
||||
GPU_ON;
|
||||
faceCascade.detectMultiScale(d_img, oclfaces,
|
||||
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
|
||||
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_img.upload(img);
|
||||
faceCascade.detectMultiScale(d_img, oclfaces,
|
||||
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
|
||||
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
|
||||
GPU_FULL_OFF;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -20,7 +20,6 @@
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Wu Xinglong, wxl370@126.com
|
||||
// Wang Yao, bitwangyaoyao@gmail.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -54,8 +53,6 @@
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
#if 0
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
@ -70,7 +67,7 @@ extern const char *haarobjectdetect_scaled2;
|
||||
/* these settings affect the quality of detection: change with care */
|
||||
#define CV_ADJUST_FEATURES 1
|
||||
#define CV_ADJUST_WEIGHTS 0
|
||||
|
||||
#define CV_HAAR_FEATURE_MAX 3
|
||||
typedef int sumtype;
|
||||
typedef double sqsumtype;
|
||||
|
||||
@ -679,14 +676,15 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade)
|
||||
} /* j */
|
||||
}
|
||||
}
|
||||
|
||||
CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor,
|
||||
int minNeighbors, int flags, CvSize minSize, CvSize maxSize)
|
||||
void OclCascadeClassifier::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces,
|
||||
double scaleFactor, int minNeighbors, int flags,
|
||||
Size minSize, Size maxSize)
|
||||
//CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor,
|
||||
// int minNeighbors, int flags, CvSize minSize, CvSize maxSize)
|
||||
{
|
||||
CvHaarClassifierCascade *cascade = oldCascade;
|
||||
|
||||
const double GROUP_EPS = 0.2;
|
||||
CvSeq *result_seq = 0;
|
||||
|
||||
cv::ConcurrentRectVector allCandidates;
|
||||
std::vector<cv::Rect> rectList;
|
||||
@ -714,8 +712,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
if( !CV_IS_HAAR_CLASSIFIER(cascade) )
|
||||
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "Null storage pointer" );
|
||||
//if( !storage )
|
||||
// CV_Error( CV_StsNullPtr, "Null storage pointer" );
|
||||
|
||||
if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
|
||||
@ -729,7 +727,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
if( !cascade->hid_cascade )
|
||||
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
|
||||
|
||||
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
|
||||
//result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
|
||||
|
||||
if( CV_MAT_CN(gimg.type()) > 1 )
|
||||
{
|
||||
@ -1028,7 +1026,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&pbuffer ));
|
||||
args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&correctionbuffer ));
|
||||
args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&nodenum ));
|
||||
|
||||
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
|
||||
|
||||
candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status);
|
||||
@ -1062,623 +1060,22 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
else
|
||||
rweights.resize(rectList.size(), 0);
|
||||
|
||||
faces.clear();
|
||||
if( findBiggestObject && rectList.size() )
|
||||
{
|
||||
CvAvgComp result_comp = {{0, 0, 0, 0}, 0};
|
||||
|
||||
Rect result_comp(0, 0, 0, 0);
|
||||
for( size_t i = 0; i < rectList.size(); i++ )
|
||||
{
|
||||
cv::Rect r = rectList[i];
|
||||
if( r.area() > cv::Rect(result_comp.rect).area() )
|
||||
if( r.area() > result_comp.area() )
|
||||
{
|
||||
result_comp.rect = r;
|
||||
result_comp.neighbors = rweights[i];
|
||||
result_comp = r;
|
||||
}
|
||||
}
|
||||
cvSeqPush( result_seq, &result_comp );
|
||||
faces.push_back(result_comp);
|
||||
}
|
||||
else
|
||||
{
|
||||
for( size_t i = 0; i < rectList.size(); i++ )
|
||||
{
|
||||
CvAvgComp c;
|
||||
c.rect = rectList[i];
|
||||
c.neighbors = rweights[i];
|
||||
cvSeqPush( result_seq, &c );
|
||||
faces = rectList;
|
||||
}
|
||||
}
|
||||
|
||||
return result_seq;
|
||||
}
|
||||
|
||||
struct OclBuffers
|
||||
{
|
||||
cl_mem stagebuffer;
|
||||
cl_mem nodebuffer;
|
||||
cl_mem candidatebuffer;
|
||||
cl_mem scaleinfobuffer;
|
||||
cl_mem pbuffer;
|
||||
cl_mem correctionbuffer;
|
||||
cl_mem newnodebuffer;
|
||||
};
|
||||
|
||||
struct getRect
|
||||
{
|
||||
Rect operator()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces,
|
||||
double scaleFactor, int minNeighbors, int flags,
|
||||
Size minSize, Size maxSize)
|
||||
{
|
||||
int blocksize = 8;
|
||||
int grp_per_CU = 12;
|
||||
size_t localThreads[3] = { blocksize, blocksize, 1 };
|
||||
size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->computeUnits() *localThreads[0],
|
||||
localThreads[1],
|
||||
1 };
|
||||
int outputsz = 256 * globalThreads[0] / localThreads[0];
|
||||
|
||||
Init(gimg.rows, gimg.cols, scaleFactor, flags, outputsz, localThreads, minSize, maxSize);
|
||||
|
||||
const double GROUP_EPS = 0.2;
|
||||
|
||||
cv::ConcurrentRectVector allCandidates;
|
||||
std::vector<cv::Rect> rectList;
|
||||
std::vector<int> rweights;
|
||||
|
||||
CvHaarClassifierCascade *cascade = oldCascade;
|
||||
GpuHidHaarClassifierCascade *gcascade;
|
||||
GpuHidHaarStageClassifier *stage;
|
||||
|
||||
if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
|
||||
|
||||
if( CV_MAT_CN(gimg.type()) > 1 )
|
||||
{
|
||||
oclMat gtemp;
|
||||
cvtColor( gimg, gtemp, CV_BGR2GRAY );
|
||||
gimg = gtemp;
|
||||
}
|
||||
|
||||
int *candidate;
|
||||
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
|
||||
if( (flags & CV_HAAR_SCALE_IMAGE) )
|
||||
{
|
||||
int indexy = 0;
|
||||
CvSize sz;
|
||||
|
||||
cv::Rect roi, roi2;
|
||||
cv::Mat imgroi, imgroisq;
|
||||
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq;
|
||||
|
||||
for( int i = 0; i < m_loopcount; i++ )
|
||||
{
|
||||
sz = sizev[i];
|
||||
roi = Rect(0, indexy, sz.width, sz.height);
|
||||
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
|
||||
resizeroi = gimg1(roi2);
|
||||
gimgroi = gsum(roi);
|
||||
gimgroisq = gsqsum(roi);
|
||||
|
||||
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
|
||||
cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
|
||||
indexy += sz.height;
|
||||
}
|
||||
|
||||
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
|
||||
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
|
||||
|
||||
int startstage = 0;
|
||||
int endstage = gcascade->count;
|
||||
int startnode = 0;
|
||||
int pixelstep = gsum.step / 4;
|
||||
int splitstage = 3;
|
||||
int splitnode = stage[0].count + stage[1].count + stage[2].count;
|
||||
cl_int4 p, pq;
|
||||
p.s[0] = gcascade->p0;
|
||||
p.s[1] = gcascade->p1;
|
||||
p.s[2] = gcascade->p2;
|
||||
p.s[3] = gcascade->p3;
|
||||
pq.s[0] = gcascade->pq0;
|
||||
pq.s[1] = gcascade->pq1;
|
||||
pq.s[2] = gcascade->pq2;
|
||||
pq.s[3] = gcascade->pq3;
|
||||
float correction = gcascade->inv_window_area;
|
||||
|
||||
vector<pair<size_t, const void *> > args;
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode ));
|
||||
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p ));
|
||||
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
|
||||
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
|
||||
|
||||
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
|
||||
|
||||
candidate = (int *)malloc(4 * sizeof(int) * outputsz);
|
||||
memset(candidate, 0, 4 * sizeof(int) * outputsz);
|
||||
|
||||
openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
|
||||
|
||||
for(int i = 0; i < outputsz; i++)
|
||||
{
|
||||
if(candidate[4 * i + 2] != 0)
|
||||
{
|
||||
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
|
||||
candidate[4 * i + 2], candidate[4 * i + 3]));
|
||||
}
|
||||
}
|
||||
free((void *)candidate);
|
||||
candidate = NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::ocl::integral(gimg, gsum, gsqsum);
|
||||
|
||||
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
|
||||
|
||||
int step = gsum.step / 4;
|
||||
int startnode = 0;
|
||||
int splitstage = 3;
|
||||
|
||||
int startstage = 0;
|
||||
int endstage = gcascade->count;
|
||||
|
||||
vector<pair<size_t, const void *> > args;
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&step ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum ));
|
||||
|
||||
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
|
||||
|
||||
candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL);
|
||||
|
||||
for(int i = 0; i < outputsz; i++)
|
||||
{
|
||||
if(candidate[4 * i + 2] != 0)
|
||||
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
|
||||
candidate[4 * i + 2], candidate[4 * i + 3]));
|
||||
}
|
||||
clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0);
|
||||
}
|
||||
rectList.resize(allCandidates.size());
|
||||
if(!allCandidates.empty())
|
||||
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
|
||||
|
||||
if( minNeighbors != 0 || findBiggestObject )
|
||||
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
|
||||
else
|
||||
rweights.resize(rectList.size(), 0);
|
||||
|
||||
GenResult(faces, rectList, rweights);
|
||||
}
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
|
||||
double scaleFactor, int flags,
|
||||
const int outputsz, const size_t localThreads[],
|
||||
CvSize minSize, CvSize maxSize)
|
||||
{
|
||||
if(initialized)
|
||||
{
|
||||
return; // we only allow one time initialization
|
||||
}
|
||||
CvHaarClassifierCascade *cascade = oldCascade;
|
||||
|
||||
if( !CV_IS_HAAR_CLASSIFIER(cascade) )
|
||||
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
|
||||
|
||||
if( scaleFactor <= 1 )
|
||||
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
|
||||
|
||||
if( cols < minSize.width || rows < minSize.height )
|
||||
CV_Error(CV_StsError, "Image too small");
|
||||
|
||||
int datasize=0;
|
||||
int totalclassifier=0;
|
||||
|
||||
if( !cascade->hid_cascade )
|
||||
{
|
||||
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
|
||||
}
|
||||
|
||||
if( maxSize.height == 0 || maxSize.width == 0 )
|
||||
{
|
||||
maxSize.height = rows;
|
||||
maxSize.width = cols;
|
||||
}
|
||||
|
||||
findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
|
||||
if( findBiggestObject )
|
||||
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
|
||||
|
||||
CreateBaseBufs(datasize, totalclassifier, flags, outputsz);
|
||||
CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize);
|
||||
|
||||
m_scaleFactor = scaleFactor;
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_flags = flags;
|
||||
m_minSize = minSize;
|
||||
m_maxSize = maxSize;
|
||||
|
||||
// initialize nodes
|
||||
GpuHidHaarClassifierCascade *gcascade;
|
||||
GpuHidHaarStageClassifier *stage;
|
||||
GpuHidHaarClassifier *classifier;
|
||||
GpuHidHaarTreeNode *node;
|
||||
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
|
||||
if( (flags & CV_HAAR_SCALE_IMAGE) )
|
||||
{
|
||||
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
|
||||
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
|
||||
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
|
||||
node = (GpuHidHaarTreeNode *)(classifier->node);
|
||||
|
||||
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0,
|
||||
sizeof(GpuHidHaarStageClassifier) * gcascade->count,
|
||||
stage, 0, NULL, NULL));
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
|
||||
m_nodenum * sizeof(GpuHidHaarTreeNode),
|
||||
node, 0, NULL, NULL));
|
||||
}
|
||||
else
|
||||
{
|
||||
gpuSetHaarClassifierCascade(cascade);
|
||||
|
||||
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
|
||||
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
|
||||
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
|
||||
node = (GpuHidHaarTreeNode *)(classifier->node);
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
|
||||
m_nodenum * sizeof(GpuHidHaarTreeNode),
|
||||
node, 0, NULL, NULL));
|
||||
|
||||
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount);
|
||||
float *correction = (float *)malloc(sizeof(float) * m_loopcount);
|
||||
double factor;
|
||||
for(int i = 0; i < m_loopcount; i++)
|
||||
{
|
||||
factor = scalev[i];
|
||||
int equRect_x = (int)(factor * gcascade->p0 + 0.5);
|
||||
int equRect_y = (int)(factor * gcascade->p1 + 0.5);
|
||||
int equRect_w = (int)(factor * gcascade->p3 + 0.5);
|
||||
int equRect_h = (int)(factor * gcascade->p2 + 0.5);
|
||||
p[i].s[0] = equRect_x;
|
||||
p[i].s[1] = equRect_y;
|
||||
p[i].s[2] = equRect_x + equRect_w;
|
||||
p[i].s[3] = equRect_y + equRect_h;
|
||||
correction[i] = 1. / (equRect_w * equRect_h);
|
||||
int startnodenum = m_nodenum * i;
|
||||
float factor2 = (float)factor;
|
||||
|
||||
vector<pair<size_t, const void *> > args1;
|
||||
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
|
||||
args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
|
||||
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 ));
|
||||
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
|
||||
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
|
||||
|
||||
size_t globalThreads2[3] = {m_nodenum, 1, 1};
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
|
||||
}
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL));
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL));
|
||||
|
||||
free(p);
|
||||
free(correction);
|
||||
}
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::CreateBaseBufs(const int datasize, const int totalclassifier,
|
||||
const int flags, const int outputsz)
|
||||
{
|
||||
if (!initialized)
|
||||
{
|
||||
buffers = malloc(sizeof(OclBuffers));
|
||||
|
||||
size_t tempSize =
|
||||
sizeof(GpuHidHaarStageClassifier) * ((GpuHidHaarClassifierCascade *)oldCascade->hid_cascade)->count;
|
||||
m_nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - tempSize - sizeof(GpuHidHaarClassifier) * totalclassifier)
|
||||
/ sizeof(GpuHidHaarTreeNode);
|
||||
|
||||
((OclBuffers *)buffers)->stagebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, tempSize);
|
||||
((OclBuffers *)buffers)->nodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, m_nodenum * sizeof(GpuHidHaarTreeNode));
|
||||
}
|
||||
|
||||
if (initialized
|
||||
&& ((m_flags & CV_HAAR_SCALE_IMAGE) ^ (flags & CV_HAAR_SCALE_IMAGE)))
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
|
||||
}
|
||||
|
||||
if (flags & CV_HAAR_SCALE_IMAGE)
|
||||
{
|
||||
((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(),
|
||||
CL_MEM_WRITE_ONLY,
|
||||
4 * sizeof(int) * outputsz);
|
||||
}
|
||||
else
|
||||
{
|
||||
((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(),
|
||||
CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR,
|
||||
4 * sizeof(int) * outputsz);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
|
||||
const int rows, const int cols, const int flags,
|
||||
const double scaleFactor, const size_t localThreads[],
|
||||
CvSize minSize, CvSize maxSize)
|
||||
{
|
||||
if (initialized)
|
||||
{
|
||||
if ((m_flags & CV_HAAR_SCALE_IMAGE) && !(flags & CV_HAAR_SCALE_IMAGE))
|
||||
{
|
||||
gimg1.release();
|
||||
gsum.release();
|
||||
gsqsum.release();
|
||||
}
|
||||
else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE))
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
|
||||
}
|
||||
else if ((m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE))
|
||||
{
|
||||
if (fabs(m_scaleFactor - scaleFactor) < 1e-6
|
||||
&& (rows == m_rows && cols == m_cols)
|
||||
&& (minSize.width == m_minSize.width)
|
||||
&& (minSize.height == m_minSize.height)
|
||||
&& (maxSize.width == m_maxSize.width)
|
||||
&& (maxSize.height == m_maxSize.height))
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (fabs(m_scaleFactor - scaleFactor) < 1e-6
|
||||
&& (rows == m_rows && cols == m_cols)
|
||||
&& (minSize.width == m_minSize.width)
|
||||
&& (minSize.height == m_minSize.height)
|
||||
&& (maxSize.width == m_maxSize.width)
|
||||
&& (maxSize.height == m_maxSize.height))
|
||||
{
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int loopcount;
|
||||
int indexy = 0;
|
||||
int totalheight = 0;
|
||||
double factor;
|
||||
Rect roi;
|
||||
CvSize sz;
|
||||
CvSize winSize0 = oldCascade->orig_window_size;
|
||||
detect_piramid_info *scaleinfo;
|
||||
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
|
||||
if (flags & CV_HAAR_SCALE_IMAGE)
|
||||
{
|
||||
for(factor = 1.f;; factor *= scaleFactor)
|
||||
{
|
||||
CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) };
|
||||
sz.width = cvRound( cols / factor ) + 1;
|
||||
sz.height = cvRound( rows / factor ) + 1;
|
||||
CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 };
|
||||
|
||||
if( sz1.width <= 0 || sz1.height <= 0 )
|
||||
break;
|
||||
if( winSize.width > maxSize.width || winSize.height > maxSize.height )
|
||||
break;
|
||||
if( winSize.width < minSize.width || winSize.height < minSize.height )
|
||||
continue;
|
||||
|
||||
totalheight += sz.height;
|
||||
sizev.push_back(sz);
|
||||
scalev.push_back(static_cast<float>(factor));
|
||||
}
|
||||
|
||||
loopcount = sizev.size();
|
||||
gimg1.create(rows, cols, CV_8UC1);
|
||||
gsum.create(totalheight + 4, cols + 1, CV_32SC1);
|
||||
gsqsum.create(totalheight + 4, cols + 1, CV_32FC1);
|
||||
|
||||
scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
|
||||
for( int i = 0; i < loopcount; i++ )
|
||||
{
|
||||
sz = sizev[i];
|
||||
roi = Rect(0, indexy, sz.width, sz.height);
|
||||
int width = sz.width - 1 - oldCascade->orig_window_size.width;
|
||||
int height = sz.height - 1 - oldCascade->orig_window_size.height;
|
||||
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
|
||||
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
|
||||
|
||||
((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height;
|
||||
((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
|
||||
((detect_piramid_info *)scaleinfo)[i].imgoff = gsum(roi).offset >> 2;
|
||||
((detect_piramid_info *)scaleinfo)[i].factor = scalev[i];
|
||||
|
||||
indexy += sz.height;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(factor = 1;
|
||||
cvRound(factor * winSize0.width) < cols - 10 && cvRound(factor * winSize0.height) < rows - 10;
|
||||
factor *= scaleFactor)
|
||||
{
|
||||
CvSize winSize = { cvRound( winSize0.width * factor ), cvRound( winSize0.height * factor ) };
|
||||
if( winSize.width < minSize.width || winSize.height < minSize.height )
|
||||
{
|
||||
continue;
|
||||
}
|
||||
sizev.push_back(winSize);
|
||||
scalev.push_back(factor);
|
||||
}
|
||||
|
||||
loopcount = scalev.size();
|
||||
if(loopcount == 0)
|
||||
{
|
||||
loopcount = 1;
|
||||
sizev.push_back(minSize);
|
||||
scalev.push_back( min(cvRound(minSize.width / winSize0.width), cvRound(minSize.height / winSize0.height)) );
|
||||
}
|
||||
|
||||
((OclBuffers *)buffers)->pbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,
|
||||
sizeof(cl_int4) * loopcount);
|
||||
((OclBuffers *)buffers)->correctionbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,
|
||||
sizeof(cl_float) * loopcount);
|
||||
((OclBuffers *)buffers)->newnodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_WRITE,
|
||||
loopcount * m_nodenum * sizeof(GpuHidHaarTreeNode));
|
||||
|
||||
scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
|
||||
for( int i = 0; i < loopcount; i++ )
|
||||
{
|
||||
sz = sizev[i];
|
||||
factor = scalev[i];
|
||||
int ystep = cvRound(std::max(2., factor));
|
||||
int width = (cols - 1 - sz.width + ystep - 1) / ystep;
|
||||
int height = (rows - 1 - sz.height + ystep - 1) / ystep;
|
||||
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
|
||||
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
|
||||
|
||||
((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height;
|
||||
((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
|
||||
((detect_piramid_info *)scaleinfo)[i].imgoff = 0;
|
||||
((detect_piramid_info *)scaleinfo)[i].factor = factor;
|
||||
}
|
||||
}
|
||||
|
||||
if (loopcount != m_loopcount)
|
||||
{
|
||||
if (initialized)
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
|
||||
}
|
||||
((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
|
||||
}
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0,
|
||||
sizeof(detect_piramid_info)*loopcount,
|
||||
scaleinfo, 0, NULL, NULL));
|
||||
free(scaleinfo);
|
||||
|
||||
m_loopcount = loopcount;
|
||||
}
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& faces,
|
||||
const std::vector<cv::Rect> &rectList,
|
||||
const std::vector<int> &rweights)
|
||||
{
|
||||
MemStorage tempStorage(cvCreateMemStorage(0));
|
||||
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage );
|
||||
|
||||
if( findBiggestObject && rectList.size() )
|
||||
{
|
||||
CvAvgComp result_comp = {CvRect(), 0};
|
||||
|
||||
for( size_t i = 0; i < rectList.size(); i++ )
|
||||
{
|
||||
cv::Rect r = rectList[i];
|
||||
if( r.area() > cv::Rect(result_comp.rect).area() )
|
||||
{
|
||||
result_comp.rect = r;
|
||||
result_comp.neighbors = rweights[i];
|
||||
}
|
||||
}
|
||||
cvSeqPush( result_seq, &result_comp );
|
||||
}
|
||||
else
|
||||
{
|
||||
for( size_t i = 0; i < rectList.size(); i++ )
|
||||
{
|
||||
CvAvgComp c;
|
||||
c.rect = rectList[i];
|
||||
c.neighbors = rweights[i];
|
||||
cvSeqPush( result_seq, &c );
|
||||
}
|
||||
}
|
||||
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(result_seq).copyTo(vecAvgComp);
|
||||
faces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
|
||||
}
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::release()
|
||||
{
|
||||
if(initialized)
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
|
||||
|
||||
if( (m_flags & CV_HAAR_SCALE_IMAGE) )
|
||||
{
|
||||
cvFree(&oldCascade->hid_cascade);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
|
||||
}
|
||||
|
||||
free(buffers);
|
||||
buffers = NULL;
|
||||
initialized = false;
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef _MAX_PATH
|
||||
#define _MAX_PATH 1024
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -64,7 +64,7 @@
|
||||
#undef OPENCV_NOSTL
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/objdetect.hpp"
|
||||
#include "opencv2/objdetect/objdetect_c.h"
|
||||
#include "opencv2/ocl.hpp"
|
||||
|
||||
#include "opencv2/core/utility.hpp"
|
||||
|
@ -44,9 +44,7 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#include "opencv2/objdetect.hpp"
|
||||
#include "opencv2/objdetect/objdetect_c.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
@ -188,18 +186,11 @@ INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, HOG, testing::Combine(
|
||||
testing::Values(Size(64, 128), Size(48, 96)),
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
|
||||
|
||||
#if 0
|
||||
|
||||
///////////////////////////// Haar //////////////////////////////
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
|
||||
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
|
||||
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
|
||||
struct getRect
|
||||
{
|
||||
Rect operator ()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
|
||||
PARAM_TEST_CASE(Haar, int, CascadeName)
|
||||
{
|
||||
@ -234,49 +225,18 @@ PARAM_TEST_CASE(Haar, int, CascadeName)
|
||||
|
||||
TEST_P(Haar, FaceDetect)
|
||||
{
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
CvSeq *_objects;
|
||||
_objects = cascade.oclHaarDetectObjects(d_img, storage, 1.1, 3,
|
||||
flags, Size(30, 30), Size(0, 0));
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
cascade.detectMultiScale(d_img, oclfaces, 1.1, 3,
|
||||
flags, Size(30, 30));
|
||||
|
||||
cpucascade.detectMultiScale(img, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
|
||||
}
|
||||
|
||||
TEST_P(Haar, FaceDetectUseBuf)
|
||||
{
|
||||
ocl::OclCascadeClassifierBuf cascadebuf;
|
||||
if(!cascadebuf.load(cascadeName))
|
||||
{
|
||||
std::cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << std::endl;
|
||||
return;
|
||||
}
|
||||
cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
cpucascade.detectMultiScale(img, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
|
||||
// intentionally run ocl facedetect again and check if it still works after the first run
|
||||
cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30));
|
||||
cascadebuf.release();
|
||||
flags, Size(30, 30));
|
||||
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, Haar,
|
||||
Combine(Values(CV_HAAR_SCALE_IMAGE, 0),
|
||||
Values(cascade_frontalface_alt/*, cascade_frontalface_alt2*/)));
|
||||
#endif
|
||||
Combine(Values((int)CASCADE_SCALE_IMAGE, 0),
|
||||
Values(cascade_frontalface_alt, cascade_frontalface_alt2)));
|
||||
|
||||
|
||||
#endif //HAVE_OPENCL
|
||||
|
@ -8,9 +8,6 @@
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
int main( int, const char** ) { return 0; }
|
||||
|
||||
#if 0
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
@ -46,7 +43,7 @@ static double getTime()
|
||||
}
|
||||
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
ocl::OclCascadeClassifierBuf& cascade,
|
||||
ocl::OclCascadeClassifier& cascade,
|
||||
double scale, bool calTime);
|
||||
|
||||
|
||||
@ -66,20 +63,19 @@ double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ i | input | | specify input image }"
|
||||
"{ t | template | haarcascade_frontalface_alt.xml |"
|
||||
"{ h help | false | print help message }"
|
||||
"{ i input | | specify input image }"
|
||||
"{ t template | haarcascade_frontalface_alt.xml |"
|
||||
" specify template file path }"
|
||||
"{ c | scale | 1.0 | scale image }"
|
||||
"{ s | use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ o | output | facedetect_output.jpg |"
|
||||
"{ c scale | 1.0 | scale image }"
|
||||
"{ s use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ o output | facedetect_output.jpg |"
|
||||
" specify output image save path(only works when input is images) }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
cout << "Avaible options:" << endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
CvCapture* capture = 0;
|
||||
@ -90,7 +86,7 @@ int main( int argc, const char** argv )
|
||||
outputName = cmd.get<string>("o");
|
||||
string cascadeName = cmd.get<string>("t");
|
||||
double scale = cmd.get<double>("c");
|
||||
ocl::OclCascadeClassifierBuf cascade;
|
||||
ocl::OclCascadeClassifier cascade;
|
||||
CascadeClassifier cpu_cascade;
|
||||
|
||||
if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) )
|
||||
@ -211,7 +207,7 @@ _cleanup_:
|
||||
}
|
||||
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
ocl::OclCascadeClassifierBuf& cascade,
|
||||
ocl::OclCascadeClassifier& cascade,
|
||||
double scale, bool calTime)
|
||||
{
|
||||
ocl::oclMat image(img);
|
||||
@ -223,7 +219,7 @@ void detect( Mat& img, vector<Rect>& faces,
|
||||
|
||||
cascade.detectMultiScale( smallImg, faces, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
|CASCADE_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
if(calTime) workEnd();
|
||||
}
|
||||
@ -234,11 +230,11 @@ void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
{
|
||||
if(calTime) workBegin();
|
||||
Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
cvtColor(img, cpu_gray, CV_BGR2GRAY);
|
||||
cvtColor(img, cpu_gray, COLOR_BGR2GRAY);
|
||||
resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR);
|
||||
equalizeHist(cpu_smallImg, cpu_smallImg);
|
||||
cascade.detectMultiScale(cpu_smallImg, faces, 1.1,
|
||||
3, 0 | CV_HAAR_SCALE_IMAGE,
|
||||
3, 0 | CASCADE_SCALE_IMAGE,
|
||||
Size(30, 30), Size(0, 0));
|
||||
if(calTime) workEnd();
|
||||
}
|
||||
@ -312,4 +308,3 @@ double checkRectSimilarity(Size sz, vector<Rect>& ob1, vector<Rect>& ob2)
|
||||
}
|
||||
return final_test_result;
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user