mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 03:30:34 +08:00
fp16 ocl support for googlenet
Signed-off-by: Li Peng <peng.li@intel.com>
This commit is contained in:
parent
329abb5b64
commit
3dd916882a
@ -128,14 +128,14 @@ public:
|
||||
for( i = 0; i < ninputs; i++ )
|
||||
{
|
||||
Mat& inp = *inputs[i];
|
||||
CV_Assert( inp.isContinuous() && inp.type() == CV_32F &&
|
||||
CV_Assert( inp.isContinuous() && (inp.type() == CV_32F || inp.type() == CV_16S) &&
|
||||
inp.dims == 4 && inp.size[0] == output.size[0] &&
|
||||
inp.size[2] == output.size[2] &&
|
||||
inp.size[3] == output.size[3] );
|
||||
nchannels += inp.size[1];
|
||||
}
|
||||
CV_Assert( nchannels == output.size[1] );
|
||||
CV_Assert( output.isContinuous() && output.type() == CV_32F );
|
||||
CV_Assert( output.isContinuous() && (output.type() == CV_32F || output.type() == CV_16S) );
|
||||
|
||||
cc.chptrs.resize(nchannels*batchsz);
|
||||
|
||||
@ -186,6 +186,7 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
bool use_half = (inps.depth() == CV_16S);
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
|
||||
@ -199,11 +200,12 @@ public:
|
||||
int num_concats = total(shape(inputs[0]), 0, cAxis);
|
||||
int offset_concat_axis = 0;
|
||||
UMat& outMat = outputs[0];
|
||||
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
|
||||
String buildopt = format(" -DDtype=%s", (use_half) ? "half" : "float");
|
||||
String kname = format("concat_%s", use_half ? "half" : "float");
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
ocl::Kernel kernel("concat", ocl::dnn::concat_oclsrc, buildopt);
|
||||
ocl::Kernel kernel(kname.c_str(), ocl::dnn::concat_oclsrc, buildopt);
|
||||
if (kernel.empty())
|
||||
return false;
|
||||
|
||||
@ -235,7 +237,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -94,7 +94,7 @@ public:
|
||||
CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height);
|
||||
|
||||
const Mat &input = *inputs[0];
|
||||
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F));
|
||||
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F || input.type() == CV_16S));
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
CV_Assert(inputs[i]->type() == input.type());
|
||||
@ -288,7 +288,7 @@ public:
|
||||
newActiv = true;
|
||||
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
||||
|
||||
if (preferableTarget == DNN_TARGET_OPENCL)
|
||||
if (IS_DNN_OPENCL_TARGET(preferableTarget))
|
||||
{
|
||||
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
|
||||
if (!activ_power.empty())
|
||||
@ -842,6 +842,7 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
bool use_half = (inps.depth() == CV_16S);
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
|
||||
@ -860,6 +861,7 @@ public:
|
||||
config.dilation = dilation;
|
||||
config.group = inputs[0].size[1] / umat_blobs[0].size[1];
|
||||
config.bias_term = (hasBias()) ? true : false;
|
||||
config.use_half = use_half;
|
||||
|
||||
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
|
||||
}
|
||||
@ -964,7 +966,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
@ -1360,6 +1362,9 @@ public:
|
||||
std::vector<UMat> outputs;
|
||||
std::vector<UMat> internals;
|
||||
|
||||
if (inputs_.depth() == CV_16S)
|
||||
return false;
|
||||
|
||||
inputs_.getUMatVector(inputs);
|
||||
outputs_.getUMatVector(outputs);
|
||||
internals_.getUMatVector(internals);
|
||||
@ -1450,7 +1455,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -176,7 +176,7 @@ public:
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
CV_OCL_RUN((this->preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(this->preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
func.applyOCL(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
@ -223,7 +223,12 @@ public:
|
||||
#ifdef HAVE_OPENCL
|
||||
static String oclGetTMacro(const UMat &m)
|
||||
{
|
||||
return String("-DT=") + ocl::typeToStr(m.type()) + String(" ");
|
||||
String str_name = ocl::typeToStr(m.type());
|
||||
|
||||
if (str_name == "short")
|
||||
str_name = "half";
|
||||
|
||||
return format("-DT=%s -Dconvert_T=convert_%s ", str_name.c_str(), str_name.c_str());
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -516,8 +521,28 @@ struct SigmoidFunctor
|
||||
#ifdef HAVE_OPENCL
|
||||
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
||||
{
|
||||
// TODO: implement OCL version
|
||||
return false;
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
String buildopt = oclGetTMacro(inputs[0]);
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
UMat& src = inputs[i];
|
||||
UMat& dst = outputs[i];
|
||||
|
||||
ocl::Kernel kernel("SigmoidForward", ocl::dnn::activations_oclsrc, buildopt);
|
||||
kernel.set(0, (int)src.total());
|
||||
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
|
||||
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
|
||||
|
||||
size_t gSize = src.total();
|
||||
CV_Assert(kernel.run(1, &gSize, NULL, false));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -561,8 +586,28 @@ struct ELUFunctor
|
||||
#ifdef HAVE_OPENCL
|
||||
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
||||
{
|
||||
// TODO: implement OCL version
|
||||
return false;
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
String buildopt = oclGetTMacro(inputs[0]);
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
UMat& src = inputs[i];
|
||||
UMat& dst = outputs[i];
|
||||
|
||||
ocl::Kernel kernel("ELUForward", ocl::dnn::activations_oclsrc, buildopt);
|
||||
kernel.set(0, (int)src.total());
|
||||
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
|
||||
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
|
||||
|
||||
size_t gSize = src.total();
|
||||
CV_Assert(kernel.run(1, &gSize, NULL, false));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -604,8 +649,28 @@ struct AbsValFunctor
|
||||
#ifdef HAVE_OPENCL
|
||||
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
||||
{
|
||||
// TODO: implement OCL version
|
||||
return false;
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
String buildopt = oclGetTMacro(inputs[0]);
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
UMat& src = inputs[i];
|
||||
UMat& dst = outputs[i];
|
||||
|
||||
ocl::Kernel kernel("AbsValForward", ocl::dnn::activations_oclsrc, buildopt);
|
||||
kernel.set(0, (int)src.total());
|
||||
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
|
||||
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
|
||||
|
||||
size_t gSize = src.total();
|
||||
CV_Assert(kernel.run(1, &gSize, NULL, false));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -271,6 +271,9 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
if (inputs_.depth() == CV_16S && op != SUM)
|
||||
return false;
|
||||
|
||||
inputs_.getUMatVector(inputs);
|
||||
outputs_.getUMatVector(outputs);
|
||||
|
||||
@ -284,10 +287,15 @@ public:
|
||||
{
|
||||
size_t localsize[] = { 128 };
|
||||
size_t globalsize[] = { (size_t)channels / 4 * localsize[0] };
|
||||
String opts;
|
||||
if (inputs_.depth() == CV_16S)
|
||||
opts = " -DDtype=half -DDtype4=half4 -DDtype8=half8";
|
||||
else
|
||||
opts = " -DDtype=float -DDtype4=float4 -DDtype8=float8";
|
||||
|
||||
for (int i = 0; i < (inputs.size() - 1); ++i)
|
||||
{
|
||||
String buildopt = format("-DLOOP=%d", i);
|
||||
String buildopt = format("-DLOOP=%d", i) + opts;
|
||||
ocl::Kernel kernel("op_sum4", ocl::dnn::eltwise_oclsrc, buildopt);
|
||||
int idx = 0;
|
||||
UMat inpMat = (i == 0) ? inputs[0] : UMat();
|
||||
@ -306,6 +314,9 @@ public:
|
||||
}
|
||||
else
|
||||
{
|
||||
if (inputs_.depth() == CV_16S)
|
||||
return false;
|
||||
|
||||
float coeff1 = coeffs.empty() ? 1.f : coeffs[0];
|
||||
float coeff2 = coeffs.empty() ? 1.f : coeffs[1];
|
||||
UMat mul0, mul1;
|
||||
@ -343,7 +354,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -140,7 +140,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
outputs_arr.isUMatVector() &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
@ -64,6 +64,7 @@ public:
|
||||
#ifdef HAVE_OPENCL
|
||||
Ptr<OCL4DNNInnerProduct<float> > innerProductOp;
|
||||
std::vector<UMat> umat_blobs;
|
||||
std::vector<UMat> half_blobs;
|
||||
#endif
|
||||
|
||||
FullyConnectedLayerImpl(const LayerParams& params)
|
||||
@ -277,6 +278,7 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
bool use_half = (inps.depth() == CV_16S);
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
|
||||
@ -293,6 +295,17 @@ public:
|
||||
config.bias_term = bias;
|
||||
config.M = outerSize;
|
||||
config.K = innerSize;
|
||||
config.use_half = use_half;
|
||||
|
||||
if (use_half)
|
||||
{
|
||||
half_blobs.resize(umat_blobs.size());
|
||||
for (int i = 0; i < umat_blobs.size(); i++)
|
||||
{
|
||||
if (!umat_blobs[i].empty())
|
||||
convertFp16(umat_blobs[i], half_blobs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
|
||||
}
|
||||
@ -309,13 +322,15 @@ public:
|
||||
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
|
||||
dstMat.setTo(0.0f);
|
||||
|
||||
if (!innerProductOp->Forward(srcMat, umat_blobs[0], (bias) ? umat_blobs[1] : UMat(), dstMat))
|
||||
if (!innerProductOp->Forward(srcMat, (use_half) ? half_blobs[0] : umat_blobs[0],
|
||||
(bias) ? (use_half ? half_blobs[1] : umat_blobs[1]) : UMat(),
|
||||
dstMat))
|
||||
{
|
||||
ret = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (bias && (outerSize > 1))
|
||||
if (!use_half && bias && (outerSize > 1))
|
||||
{
|
||||
UMat& biases = umat_blobs[1];
|
||||
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
|
||||
@ -353,7 +368,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -106,6 +106,7 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
bool use_half = (inps.depth() == CV_16S);
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
|
||||
@ -128,6 +129,7 @@ public:
|
||||
config.height = inputs[0].size[2];
|
||||
config.width = inputs[0].size[3];
|
||||
config.norm_by_size = normBySize;
|
||||
config.use_half = use_half;
|
||||
|
||||
lrnOp = Ptr<OCL4DNNLRN<float> >(new OCL4DNNLRN<float>(config));
|
||||
}
|
||||
@ -146,7 +148,7 @@ public:
|
||||
|
||||
CV_Assert(inputs_arr.total() == outputs_arr.total());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -102,6 +102,9 @@ public:
|
||||
{
|
||||
UMat bnorm_weight = scale.empty() ? UMat() : scale.getUMat(ACCESS_READ);
|
||||
UMat bnorm_bias = shift.empty() ? UMat() : shift.getUMat(ACCESS_READ);
|
||||
bool use_half = (inputs[0].depth() == CV_16S);
|
||||
String opts = format(" -DT=%s -DT4=%s -Dconvert_T=%s", use_half ? "half" : "float",
|
||||
use_half ? "half4" : "float4", use_half ? "convert_half4" : "convert_float4");
|
||||
|
||||
int splitDim = (acrossChannels) ? 1 : 2;
|
||||
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
||||
@ -111,12 +114,11 @@ public:
|
||||
int newRows = total(shape(inpMat), 0, splitDim);
|
||||
|
||||
MatShape s = shape(newRows, inpMat.total() / newRows);
|
||||
UMat oneMat = UMat::ones(s[1], 1, CV_32F);
|
||||
UMat meanMat = UMat(s[0], 1, CV_32F);
|
||||
UMat meanMat = UMat(s[0], 1, (use_half) ? CV_16S : CV_32F);
|
||||
UMat tmpMat = UMat(s[0], s[1], CV_32F);
|
||||
float alpha = 1.0f / s[1];
|
||||
|
||||
String buildopt = "-DNUM=4";
|
||||
String buildopt = "-DNUM=4" + opts;
|
||||
ocl::Kernel k("mean_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
|
||||
size_t localsize[] = { 128 };
|
||||
size_t globalsize[] = { (size_t)s[0] / 4 * localsize[0] };
|
||||
@ -167,13 +169,14 @@ public:
|
||||
int row_size = total(shape(inputs[0]), 0, splitDim);
|
||||
int plane_size = total(shape(inputs[0]), splitDim);
|
||||
if (normVariance && (row_size % 4 == 0) && (plane_size % 4 == 0))
|
||||
{
|
||||
bool ret = fast_forward_ocl(inputs, outputs);
|
||||
return ret;
|
||||
}
|
||||
return fast_forward_ocl(inputs, outputs);
|
||||
|
||||
if (inputs[0].depth() == CV_16S)
|
||||
return false;
|
||||
|
||||
UMat bnorm_weight = scale.empty() ? UMat() : scale.getUMat(ACCESS_READ);
|
||||
UMat bnorm_bias = shift.empty() ? UMat() : shift.getUMat(ACCESS_READ);
|
||||
String opts = format(" -DT=float -DT4=float4 -Dconvert_T=convert_float4");
|
||||
|
||||
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
|
||||
{
|
||||
@ -195,7 +198,7 @@ public:
|
||||
|
||||
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
|
||||
size_t global[] = { (size_t)s[0], (size_t)(s[1] / number) };
|
||||
String buildopt = format("-DNUM=%d", number);
|
||||
String buildopt = format("-DNUM=%d", number) + opts;
|
||||
if (normVariance)
|
||||
{
|
||||
String kname = format("calc_mean%d", number);
|
||||
@ -249,7 +252,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -147,6 +147,7 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
bool use_half = (inps.depth() == CV_16S);
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
|
||||
@ -164,6 +165,7 @@ public:
|
||||
(type == AVE ? LIBDNN_POOLING_METHOD_AVE :
|
||||
LIBDNN_POOLING_METHOD_STO);
|
||||
config.avePoolPaddedArea = avePoolPaddedArea;
|
||||
config.use_half = use_half;
|
||||
poolOp = Ptr<OCL4DNNPool<float> >(new OCL4DNNPool<float>(config));
|
||||
}
|
||||
|
||||
@ -189,7 +191,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -181,6 +181,7 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
bool use_half = (inputs_.depth() == CV_16S);
|
||||
inputs_.getUMatVector(inputs);
|
||||
outputs_.getUMatVector(outputs);
|
||||
|
||||
@ -188,6 +189,11 @@ public:
|
||||
(total(shape(outputs[0]), 2) % 4 != 0))
|
||||
return false;
|
||||
|
||||
String opts;
|
||||
if (use_half)
|
||||
opts = "-DDtype=half -DDtype4=half4 -DDtype8=half8";
|
||||
else
|
||||
opts = "-DDtype=float -DDtype4=float4 -DDtype8=float8";
|
||||
const UMat& inpMat = inputs[0];
|
||||
for (size_t i = 0; i < outputs.size(); i++)
|
||||
{
|
||||
@ -196,7 +202,7 @@ public:
|
||||
int rows = outputs[i].size[2];
|
||||
int cols = outputs[i].size[3];
|
||||
|
||||
ocl::Kernel kernel("slice", ocl::dnn::slice_oclsrc);
|
||||
ocl::Kernel kernel("slice", ocl::dnn::slice_oclsrc, opts);
|
||||
size_t local[] = { 128 };
|
||||
size_t global[] = { (size_t)groups * channels / 4 * local[0] };
|
||||
int idx = 0;
|
||||
@ -222,7 +228,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -99,15 +99,16 @@ public:
|
||||
softmaxOp.release();
|
||||
}
|
||||
|
||||
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays itns)
|
||||
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
||||
{
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
std::vector<UMat> internals;
|
||||
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
itns.getUMatVector(internals);
|
||||
bool use_half = (inputs_.depth() == CV_16S);
|
||||
inputs_.getUMatVector(inputs);
|
||||
outputs_.getUMatVector(outputs);
|
||||
internals_.getUMatVector(internals);
|
||||
|
||||
if (softmaxOp.empty())
|
||||
{
|
||||
@ -117,6 +118,7 @@ public:
|
||||
config.axis = axisRaw;
|
||||
config.channels = inputs[0].size[axisRaw];
|
||||
config.logsoftmax = logSoftMax;
|
||||
config.use_half = use_half;
|
||||
|
||||
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config));
|
||||
}
|
||||
@ -128,15 +130,13 @@ public:
|
||||
return true;
|
||||
|
||||
UMat& bufMat = internals[0];
|
||||
src.copyTo(dstMat);
|
||||
|
||||
int axis = clamp(axisRaw, src.dims);
|
||||
MatShape s = shape(src);
|
||||
size_t outerSize = total(s, 0, axis);
|
||||
size_t channels = src.size[axis];
|
||||
size_t innerSize = total(s, axis + 1);
|
||||
|
||||
String buildOpts = String("-DT=") + ocl::typeToStr(src.type());
|
||||
String buildOpts = format("-DT=%s", use_half ? "half" : "float");
|
||||
ocl::Kernel kmax, ksub, ksum, kdiv;
|
||||
|
||||
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts))
|
||||
@ -152,38 +152,31 @@ public:
|
||||
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts))
|
||||
return false;
|
||||
|
||||
size_t wgSize = ocl::Device::getDefault().maxWorkGroupSize();
|
||||
size_t bufSize = internals[0].total();
|
||||
size_t totalSize = src.total();
|
||||
|
||||
// adjust local/global size
|
||||
size_t internal_localSize[1] = { (bufSize == 1) ? 1 : wgSize };
|
||||
size_t internal_globalSize[1] = { divUp(bufSize, (unsigned int)internal_localSize[0]) * internal_localSize[0] };
|
||||
|
||||
// adjust local/global size (total)
|
||||
size_t total_localSize[1] = { (totalSize == 1) ? 1 : wgSize };
|
||||
size_t total_globalSize[1] = { divUp(totalSize, (unsigned int)total_localSize[0]) * total_localSize[0] };
|
||||
size_t internal_globalSize[1] = { bufSize };
|
||||
size_t total_globalSize[1] = { totalSize };
|
||||
|
||||
kmax.args((int)outerSize, (int)channels, (int)innerSize,
|
||||
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
|
||||
if (!kmax.run(1, internal_globalSize, internal_localSize, false))
|
||||
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrReadWrite(bufMat));
|
||||
if (!kmax.run(1, internal_globalSize, NULL, false))
|
||||
return false;
|
||||
|
||||
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
|
||||
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
|
||||
if (!ksub.run(1, total_globalSize, total_localSize, false))
|
||||
ocl::KernelArg::PtrReadOnly(bufMat),
|
||||
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(dstMat));
|
||||
if (!ksub.run(1, total_globalSize, NULL, false))
|
||||
return false;
|
||||
|
||||
cv::exp(dstMat, dstMat);
|
||||
|
||||
ksum.args((int)outerSize, (int)channels, (int)innerSize,
|
||||
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
|
||||
if (!ksum.run(1, internal_globalSize, internal_localSize, false))
|
||||
if (!ksum.run(1, internal_globalSize, NULL, false))
|
||||
return false;
|
||||
|
||||
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
|
||||
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
|
||||
if (!kdiv.run(1, total_globalSize, total_localSize, false))
|
||||
if (!kdiv.run(1, total_globalSize, NULL, false))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
@ -195,7 +188,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
||||
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
||||
|
||||
|
@ -59,7 +59,8 @@ struct OCL4DNNConvConfig
|
||||
stride(1, 1),
|
||||
dilation(1, 1),
|
||||
group(1),
|
||||
bias_term(false)
|
||||
bias_term(false),
|
||||
use_half(false)
|
||||
{}
|
||||
MatShape in_shape;
|
||||
MatShape out_shape;
|
||||
@ -69,6 +70,7 @@ struct OCL4DNNConvConfig
|
||||
Size dilation;
|
||||
int group; // = 1;
|
||||
bool bias_term; // = false;
|
||||
bool use_half; // = false;
|
||||
};
|
||||
|
||||
typedef enum {
|
||||
@ -272,6 +274,8 @@ class OCL4DNNConvSpatial
|
||||
int32_t group_;
|
||||
bool bias_term_;
|
||||
UMat swizzled_weights_umat;
|
||||
UMat weights_half;
|
||||
UMat bias_half;
|
||||
UMat bottom_data2_;
|
||||
|
||||
int32_t bottom_index_;
|
||||
@ -327,6 +331,7 @@ class OCL4DNNConvSpatial
|
||||
ocl4dnnFusedActiv_t fused_activ_;
|
||||
float power_;
|
||||
bool fused_eltwise_;
|
||||
bool use_half_;
|
||||
};
|
||||
|
||||
typedef enum {
|
||||
@ -345,7 +350,8 @@ struct OCL4DNNPoolConfig
|
||||
channels(0),
|
||||
pool_method(LIBDNN_POOLING_METHOD_MAX),
|
||||
global_pooling(false),
|
||||
avePoolPaddedArea(false)
|
||||
avePoolPaddedArea(true),
|
||||
use_half(false)
|
||||
{}
|
||||
MatShape in_shape;
|
||||
MatShape out_shape;
|
||||
@ -358,6 +364,7 @@ struct OCL4DNNPoolConfig
|
||||
ocl4dnnPoolingMethod_t pool_method; // = LIBDNN_POOLING_METHOD_MAX;
|
||||
bool global_pooling; // = false;
|
||||
bool avePoolPaddedArea;
|
||||
bool use_half;
|
||||
};
|
||||
|
||||
template<typename Dtype>
|
||||
@ -391,13 +398,14 @@ class OCL4DNNPool
|
||||
int32_t pooled_height_;
|
||||
int32_t pooled_width_;
|
||||
bool avePoolPaddedArea;
|
||||
bool use_half;
|
||||
};
|
||||
|
||||
struct OCL4DNNInnerProductConfig
|
||||
{
|
||||
OCL4DNNInnerProductConfig() :
|
||||
num_output(0), M(0), K(0),
|
||||
bias_term(false), transpose(false), phase_test(true)
|
||||
bias_term(false), transpose(false), phase_test(true), use_half(false)
|
||||
{}
|
||||
int num_output;
|
||||
int M;
|
||||
@ -405,6 +413,7 @@ struct OCL4DNNInnerProductConfig
|
||||
bool bias_term;
|
||||
bool transpose; // = false;
|
||||
bool phase_test; // = true;
|
||||
bool use_half; // = false;
|
||||
};
|
||||
|
||||
template<typename Dtype>
|
||||
@ -428,6 +437,7 @@ class OCL4DNNInnerProduct
|
||||
bool transpose_;
|
||||
bool image_copied_;
|
||||
bool phase_test_;
|
||||
bool use_half_;
|
||||
};
|
||||
|
||||
typedef enum {
|
||||
@ -441,7 +451,7 @@ struct OCL4DNNLRNConfig
|
||||
lrn_type(LRNParameter_NormRegion_ACROSS_CHANNELS),
|
||||
phase_test(true),
|
||||
local_size(0), alpha(0.f), beta(0.f), k(0.f), norm_by_size(false),
|
||||
batch_size(0), channels(0), height(0), width(0)
|
||||
batch_size(0), channels(0), height(0), width(0), use_half(false)
|
||||
{}
|
||||
MatShape in_shape;
|
||||
LRNParameter_NormRegion_WITHIN_CHANNEL_t lrn_type;
|
||||
@ -455,6 +465,7 @@ struct OCL4DNNLRNConfig
|
||||
int32_t channels;
|
||||
int32_t height;
|
||||
int32_t width;
|
||||
bool use_half;
|
||||
};
|
||||
|
||||
template<typename Dtype>
|
||||
@ -477,16 +488,18 @@ class OCL4DNNLRN
|
||||
int32_t height_;
|
||||
int32_t width_;
|
||||
bool norm_by_size_;
|
||||
bool use_half_;
|
||||
};
|
||||
|
||||
struct OCL4DNNSoftmaxConfig
|
||||
{
|
||||
OCL4DNNSoftmaxConfig() : axis(0), channels(0), logsoftmax(false)
|
||||
OCL4DNNSoftmaxConfig() : axis(0), channels(0), logsoftmax(false), use_half(false)
|
||||
{}
|
||||
MatShape in_shape;
|
||||
int axis;
|
||||
int channels;
|
||||
bool logsoftmax;
|
||||
bool use_half;
|
||||
};
|
||||
|
||||
template<typename Dtype>
|
||||
@ -506,6 +519,7 @@ class OCL4DNNSoftmax
|
||||
bool use_slm_;
|
||||
bool log_softmax_;
|
||||
UMat scale_data_;
|
||||
bool use_half_;
|
||||
};
|
||||
|
||||
}}} // namespace cv::dnn::ocl4dnn
|
||||
|
@ -48,6 +48,12 @@
|
||||
|
||||
namespace cv { namespace dnn { namespace ocl4dnn {
|
||||
|
||||
enum gemm_data_type_t
|
||||
{
|
||||
TYPE_FLOAT = 1,
|
||||
TYPE_HALF = 2
|
||||
};
|
||||
|
||||
// Create and copy buffer to image for GEMM's matrix A and B.
|
||||
// Will return image to caller if the input image is NULL. Otherwise,
|
||||
// will use the image directly. It's caller's responsibility to
|
||||
@ -60,6 +66,7 @@ ocl::Image2D ocl4dnnGEMMCopyBufferToImage(UMat buffer, int offset,
|
||||
int width, int ld)
|
||||
{
|
||||
ocl::Image2D image;
|
||||
String opts = format("-DTYPE=%d", TYPE_FLOAT);
|
||||
|
||||
if (!is_matrix_a && transpose)
|
||||
{
|
||||
@ -73,7 +80,8 @@ ocl::Image2D ocl4dnnGEMMCopyBufferToImage(UMat buffer, int offset,
|
||||
UMat mat(height, width, CV_32FC1);
|
||||
image = ocl::Image2D(mat);
|
||||
|
||||
ocl::Kernel oclk_gemm_copy("gemm_buffer_copy_image_transpose_float", ocl::dnn::gemm_image_oclsrc);
|
||||
ocl::Kernel oclk_gemm_copy("gemm_buffer_copy_image_transpose_float",
|
||||
ocl::dnn::gemm_image_oclsrc, opts);
|
||||
|
||||
size_t global_copy[2];
|
||||
global_copy[0] = width;
|
||||
@ -96,7 +104,7 @@ ocl::Image2D ocl4dnnGEMMCopyBufferToImage(UMat buffer, int offset,
|
||||
image = ocl::Image2D(mat);
|
||||
|
||||
ocl::Kernel oclk_gemm_copy("gemm_buffer_copy_image_no_transpose_float",
|
||||
ocl::dnn::gemm_image_oclsrc);
|
||||
ocl::dnn::gemm_image_oclsrc, opts);
|
||||
|
||||
size_t global_copy[2];
|
||||
global_copy[0] = padded_width;
|
||||
@ -129,7 +137,7 @@ enum gemm_type_t
|
||||
GEMM_TYPE_FAST_IMAGE_32_1,
|
||||
GEMM_TYPE_FAST_IMAGE_32_2,
|
||||
GEMM_TYPE_FAST_IMAGE_B_IMAGE,
|
||||
GEMM_TYPE_MAX
|
||||
GEMM_TYPE_FAST_BUFFER
|
||||
};
|
||||
|
||||
template<typename Dtype>
|
||||
@ -145,6 +153,8 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
CHECK_EQ(gemm_type == GEMM_TYPE_FAST_IMAGE_32_1 || gemm_type == GEMM_TYPE_FAST_IMAGE_32_2 ||
|
||||
gemm_type == GEMM_TYPE_FAST_IMAGE_B_IMAGE, true) << "Invalid fast image gemm type." << std::endl;
|
||||
|
||||
bool halfPrecisionMode = (A.depth() == CV_16S);
|
||||
|
||||
if (is_image_a)
|
||||
{
|
||||
CHECK_EQ(offA, 0) << "Invalid input image offset." << std::endl;
|
||||
@ -157,6 +167,7 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
return false;
|
||||
}
|
||||
|
||||
String opts = format("-DTYPE=%d", halfPrecisionMode ? TYPE_HALF : TYPE_FLOAT);
|
||||
int widthA = (TransA == CblasNoTrans) ? K : M;
|
||||
int heightA = (TransA == CblasNoTrans) ? M : K;
|
||||
int widthB = (TransB == CblasNoTrans) ? N : K;
|
||||
@ -178,7 +189,7 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
int blockC_width = blocksize;
|
||||
int blockC_height = blocksize;
|
||||
|
||||
int use_buffer_indicator = 8;
|
||||
int use_buffer_indicator = (halfPrecisionMode) ? 16 : 8;
|
||||
// To fix the edge problem caused by the sub group block read.
|
||||
// we have to pad the image if it's not multiple of tile.
|
||||
// just padding one line is enough as the sub group block read
|
||||
@ -221,9 +232,13 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
else
|
||||
kernel_name += "1";
|
||||
|
||||
kernel_name += "_float";
|
||||
if (halfPrecisionMode) {
|
||||
kernel_name += "_half";
|
||||
} else {
|
||||
kernel_name += "_float";
|
||||
}
|
||||
|
||||
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_image_oclsrc);
|
||||
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_image_oclsrc, opts);
|
||||
if (oclk_gemm_float.empty())
|
||||
return false;
|
||||
|
||||
@ -255,6 +270,10 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
bool padding_A = false;
|
||||
bool padding_B = false;
|
||||
|
||||
if (halfPrecisionMode && is_image_b) {
|
||||
padding_A = true;
|
||||
}
|
||||
|
||||
if (!is_image_a && !is_image_b)
|
||||
{
|
||||
if (M * K < N * K)
|
||||
@ -265,17 +284,19 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
|
||||
if (!is_image_a)
|
||||
{
|
||||
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
|
||||
true, TransA != CblasNoTrans,
|
||||
padding_A, imageA_h, imageA_w,
|
||||
blockA_height, blockA_width, ldA);
|
||||
if (!halfPrecisionMode)
|
||||
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
|
||||
true, TransA != CblasNoTrans,
|
||||
padding_A, imageA_h, imageA_w,
|
||||
blockA_height, blockA_width, ldA);
|
||||
}
|
||||
if (!is_image_b)
|
||||
{
|
||||
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
|
||||
false, false,
|
||||
padding_B, imageB_h, imageB_w,
|
||||
blockB_height, blockB_width, ldB);
|
||||
if (!halfPrecisionMode)
|
||||
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
|
||||
false, false,
|
||||
padding_B, imageB_h, imageB_w,
|
||||
blockB_height, blockB_width, ldB);
|
||||
}
|
||||
} else {
|
||||
// We will use normal read_imagef to read image B when B has transpose.
|
||||
@ -283,32 +304,48 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
if (!is_image_a)
|
||||
{
|
||||
bool padding;
|
||||
padding = !is_image_b;
|
||||
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
|
||||
true, TransA != CblasNoTrans,
|
||||
padding, imageA_h, imageA_w,
|
||||
blockA_height, blockA_width, ldA);
|
||||
padding = !is_image_b || halfPrecisionMode;
|
||||
if (!halfPrecisionMode)
|
||||
ImA = ocl4dnnGEMMCopyBufferToImage<Dtype>(A, blockA_offset,
|
||||
true, TransA != CblasNoTrans,
|
||||
padding, imageA_h, imageA_w,
|
||||
blockA_height, blockA_width, ldA);
|
||||
}
|
||||
|
||||
if (!is_image_b && (K % use_buffer_indicator != 0))
|
||||
{
|
||||
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
|
||||
false, true, false, imageB_h, imageB_w,
|
||||
blockB_height, blockB_width, ldB);
|
||||
if (!halfPrecisionMode)
|
||||
ImB = ocl4dnnGEMMCopyBufferToImage<Dtype>(B, blockB_offset,
|
||||
false, true, false,
|
||||
imageB_h, imageB_w,
|
||||
blockB_height, blockB_width, ldB);
|
||||
}
|
||||
}
|
||||
|
||||
size_t global[2];
|
||||
if (gemm_type == GEMM_TYPE_FAST_IMAGE_32_1 || gemm_type == GEMM_TYPE_FAST_IMAGE_B_IMAGE)
|
||||
{
|
||||
global[0] = (size_t)( blockC_width + 7 ) & ~7;
|
||||
if (halfPrecisionMode) {
|
||||
global[0] = (size_t)( blockC_width + 15 ) & ~15;
|
||||
} else {
|
||||
global[0] = (size_t)( blockC_width + 7 ) & ~7;
|
||||
}
|
||||
} else {
|
||||
global[0] = (size_t)( (blockC_width / 2 ) + 7 ) ^ ~7;
|
||||
if (halfPrecisionMode) {
|
||||
global[0] = (size_t)( (blockC_width / 2 ) + 15 ) ^ ~15;
|
||||
} else {
|
||||
global[0] = (size_t)( (blockC_width / 2 ) + 7 ) ^ ~7;
|
||||
}
|
||||
}
|
||||
global[1] = (size_t)(blockC_height + 31) / 32;
|
||||
|
||||
size_t local[2];
|
||||
local[0] = 8;
|
||||
if (halfPrecisionMode)
|
||||
{
|
||||
local[0] = 16;
|
||||
} else {
|
||||
local[0] = 8;
|
||||
}
|
||||
local[1] = 1;
|
||||
|
||||
cl_uint arg_idx = 0;
|
||||
@ -385,6 +422,101 @@ static bool ocl4dnnFastImageGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename Dtype>
|
||||
static bool ocl4dnnFastBufferGEMM(const CBLAS_TRANSPOSE TransA,
|
||||
const CBLAS_TRANSPOSE TransB, const int32_t M,
|
||||
const int32_t N, const int32_t K, const Dtype alpha,
|
||||
const UMat A, const int32_t offA, const UMat B,
|
||||
const int32_t offB, const Dtype beta, UMat C,
|
||||
const int32_t offC, enum gemm_type_t gemm_type)
|
||||
{
|
||||
CHECK_EQ(gemm_type == GEMM_TYPE_FAST_BUFFER, true)
|
||||
<< "Invalid fast buffer gemm type." << std::endl;
|
||||
|
||||
bool halfPrecisionMode = (A.depth() == CV_16S);
|
||||
|
||||
size_t sub_group_size = 8;
|
||||
bool is_small_batch = (M == 2 || M == 4 || M == 8);
|
||||
String kernel_name("gemm_buffer_");
|
||||
if (TransA == CblasNoTrans && TransB == CblasNoTrans) {
|
||||
kernel_name += "NN";
|
||||
if (halfPrecisionMode) {
|
||||
sub_group_size = 16;
|
||||
}
|
||||
} else if (TransA == CblasNoTrans && TransB != CblasNoTrans) {
|
||||
if (M == 2)
|
||||
kernel_name +="NT_M_2";
|
||||
else if (M == 4)
|
||||
kernel_name +="NT_M_4";
|
||||
else if (M == 8)
|
||||
kernel_name +="NT_M_8";
|
||||
else
|
||||
kernel_name += "NT";
|
||||
}
|
||||
|
||||
if (halfPrecisionMode) {
|
||||
kernel_name += "_half";
|
||||
} else {
|
||||
kernel_name += "_float";
|
||||
}
|
||||
|
||||
String opts = format("-DTYPE=%d", halfPrecisionMode ? TYPE_HALF : TYPE_FLOAT);
|
||||
ocl::Kernel oclk_gemm_float(kernel_name.c_str(), ocl::dnn::gemm_buffer_oclsrc, opts);
|
||||
size_t local[2] = {};
|
||||
size_t global[2] = {};
|
||||
if (TransA == CblasNoTrans && TransB != CblasNoTrans && is_small_batch) {
|
||||
if (M == 8)
|
||||
local[0] = 16;
|
||||
else if (M == 4)
|
||||
local[0] = 32;
|
||||
else
|
||||
local[0] = 64;
|
||||
local[1] = 1;
|
||||
|
||||
if (M == 8)
|
||||
global[0] = N * local[0];
|
||||
else
|
||||
global[0] = (N + 3) / 4 * local[0];
|
||||
global[1] = 1;
|
||||
} else {
|
||||
size_t lx = sub_group_size;
|
||||
size_t ly = (TransB != CblasNoTrans && TransA == CblasNoTrans && halfPrecisionMode) ? 2 : 4;
|
||||
int dx = (TransB != CblasNoTrans && TransA == CblasNoTrans) ? 1 : 4;
|
||||
int dy = 8;
|
||||
size_t gx = (size_t)(N + dx - 1) / dx;
|
||||
size_t gy = (size_t)(M + dy - 1) / dy;
|
||||
global[0] = (gx + lx - 1) / lx * lx;
|
||||
global[1] = (gy + ly - 1) / ly * ly;
|
||||
local[0] = lx;
|
||||
local[1] = ly;
|
||||
}
|
||||
|
||||
int arg_idx = 0;
|
||||
oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrReadOnly(A));
|
||||
oclk_gemm_float.set(arg_idx++, offA);
|
||||
oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrReadOnly(B));
|
||||
oclk_gemm_float.set(arg_idx++, offB);
|
||||
oclk_gemm_float.set(arg_idx++, ocl::KernelArg::PtrWriteOnly(C));
|
||||
oclk_gemm_float.set(arg_idx++, offC);
|
||||
oclk_gemm_float.set(arg_idx++, M);
|
||||
oclk_gemm_float.set(arg_idx++, N);
|
||||
oclk_gemm_float.set(arg_idx++, K);
|
||||
oclk_gemm_float.set(arg_idx++, (float)alpha);
|
||||
oclk_gemm_float.set(arg_idx++, (float)beta);
|
||||
|
||||
bool ret;
|
||||
if (TransB == CblasNoTrans || TransA != CblasNoTrans) {
|
||||
int stride = 256;
|
||||
for (int start_index = 0; start_index < K; start_index += stride) {
|
||||
oclk_gemm_float.set(arg_idx, start_index);
|
||||
ret = oclk_gemm_float.run(2, global, local, false);
|
||||
}
|
||||
} else {
|
||||
ret = oclk_gemm_float.run(2, global, local, false);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<typename Dtype>
|
||||
bool ocl4dnnGEMMCommon(const CBLAS_TRANSPOSE TransB,
|
||||
const int32_t M, const int32_t N, const int32_t K,
|
||||
@ -392,7 +524,8 @@ bool ocl4dnnGEMMCommon(const CBLAS_TRANSPOSE TransB,
|
||||
const UMat B_image, UMat C,
|
||||
const size_t max_image_size)
|
||||
{
|
||||
gemm_type_t gemm_type = GEMM_TYPE_FAST_IMAGE_32_1;
|
||||
bool halfPrecisionMode = (A.depth() == CV_16S);
|
||||
gemm_type_t gemm_type = halfPrecisionMode ? GEMM_TYPE_FAST_BUFFER : GEMM_TYPE_FAST_IMAGE_32_1;
|
||||
|
||||
if (gemm_type == GEMM_TYPE_FAST_IMAGE_32_1 ||
|
||||
gemm_type == GEMM_TYPE_FAST_IMAGE_32_2)
|
||||
@ -409,6 +542,11 @@ bool ocl4dnnGEMMCommon(const CBLAS_TRANSPOSE TransB,
|
||||
GEMM_TYPE_FAST_IMAGE_B_IMAGE,
|
||||
max_image_size);
|
||||
}
|
||||
else if (gemm_type == GEMM_TYPE_FAST_BUFFER)
|
||||
{
|
||||
return ocl4dnnFastBufferGEMM<Dtype>(CblasNoTrans, TransB, M, N, K,
|
||||
1.f, A, 0, B, 0, 0.f, C, 0, gemm_type);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -436,10 +574,17 @@ bool ocl4dnnGEMV<float>(const CBLAS_TRANSPOSE TransA,
|
||||
const int32_t offy)
|
||||
{
|
||||
bool ret = false;
|
||||
bool use_half = (A.depth() == CV_16S);
|
||||
String opts;
|
||||
if (use_half)
|
||||
opts = format("-DDtype=%s -DDtype4=%s -Dconvert_Dtype=convert_%s", "half", "half4", "half");
|
||||
else
|
||||
opts = format("-DDtype=%s -DDtype4=%s -Dconvert_Dtype=convert_%s", "float", "float4", "float");
|
||||
|
||||
if (TransA == CblasNoTrans)
|
||||
{
|
||||
ocl::Kernel k(CL_KERNEL_SELECT("matvec_mul4"), cv::ocl::dnn::matvec_mul_oclsrc);
|
||||
String kname = format("matvec_mul4_%s", use_half ? "half" : "float");
|
||||
ocl::Kernel k(kname.c_str(), cv::ocl::dnn::matvec_mul_oclsrc, opts);
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
@ -469,7 +614,8 @@ bool ocl4dnnGEMV<float>(const CBLAS_TRANSPOSE TransA,
|
||||
|
||||
if ((row_size % 4) != 0 && ret)
|
||||
{
|
||||
ocl::Kernel k_1(CL_KERNEL_SELECT("matvec_mul1"), cv::ocl::dnn::matvec_mul_oclsrc);
|
||||
String kname = format("matvec_mul1_%s", use_half ? "half" : "float");
|
||||
ocl::Kernel k_1(kname.c_str(), cv::ocl::dnn::matvec_mul_oclsrc, opts);
|
||||
size_t localsize[] = { 128 };
|
||||
size_t globalsize[] = { row_size % 4 * localsize[0] };
|
||||
uint row_offset = row_size - (row_size % 4);
|
||||
@ -499,7 +645,15 @@ bool ocl4dnnAXPY(const int32_t N, const Dtype alpha,
|
||||
const UMat X, const int32_t offX, UMat Y,
|
||||
const int32_t offY)
|
||||
{
|
||||
ocl::Kernel oclk_axpy(CL_KERNEL_SELECT("axpy"), cv::ocl::dnn::math_oclsrc);
|
||||
bool use_half = (X.depth() == CV_16S);
|
||||
String opts;
|
||||
if (use_half)
|
||||
opts = "-DDtype=half -DDtype4=half4 -Dconvert_Dtype=convert_half";
|
||||
else
|
||||
opts = "-DDtype=float -DDtype4=float4 -Dconvert_Dtype=convert_float";
|
||||
|
||||
String kname = format("axpy_%s", use_half ? "half" : "float");
|
||||
ocl::Kernel oclk_axpy(kname.c_str(), cv::ocl::dnn::math_oclsrc, opts);
|
||||
if (oclk_axpy.empty())
|
||||
return false;
|
||||
|
||||
|
@ -54,6 +54,7 @@
|
||||
#include "opencl_kernels_dnn.hpp"
|
||||
#include "../include/math_functions.hpp"
|
||||
#include "../include/default_kernel_config.hpp"
|
||||
#include "opencv2/dnn/shape_utils.hpp"
|
||||
|
||||
#if defined WIN32 || defined _WIN32
|
||||
#include <windows.h>
|
||||
@ -85,6 +86,7 @@ OCL4DNNConvSpatial<Dtype>::OCL4DNNConvSpatial(OCL4DNNConvConfig config)
|
||||
max_value_ = 0;
|
||||
prev_kernel_type_ = -1;
|
||||
tuned_ = false;
|
||||
use_half_ = config.use_half;
|
||||
|
||||
// assumption: spatial dimension is 2.
|
||||
kernel_h_ = config.kernel.height;
|
||||
@ -204,18 +206,40 @@ void OCL4DNNConvSpatial<Dtype>::setFusionArg(ocl4dnnFusedActiv_t fused_activ, bo
|
||||
return;
|
||||
}
|
||||
|
||||
typedef enum {
|
||||
TYPE_FLOAT = 1,
|
||||
TYPE_HALF = 2
|
||||
} ocl4dnnConvSpatialType_t;
|
||||
|
||||
template<typename Dtype>
|
||||
void OCL4DNNConvSpatial<Dtype>::collectCommonInformation()
|
||||
{
|
||||
addDef("Dtype", "float");
|
||||
addDef("Dtype2", "float2");
|
||||
addDef("Dtype4", "float4");
|
||||
addDef("Dtype8", "float8");
|
||||
addDef("Dtype16", "float16");
|
||||
addDef("as_Dtype", "as_float");
|
||||
addDef("as_Dtype2", "as_float2");
|
||||
addDef("as_Dtype4", "as_float4");
|
||||
addDef("as_Dtype8", "as_float8");
|
||||
if (use_half_)
|
||||
{
|
||||
addDef("TYPE", TYPE_HALF);
|
||||
addDef("Dtype", "half");
|
||||
addDef("Dtype2", "half2");
|
||||
addDef("Dtype4", "half4");
|
||||
addDef("Dtype8", "half8");
|
||||
addDef("Dtype16", "half16");
|
||||
addDef("as_Dtype", "as_half");
|
||||
addDef("as_Dtype2", "as_half2");
|
||||
addDef("as_Dtype4", "as_half4");
|
||||
addDef("as_Dtype8", "as_half8");
|
||||
}
|
||||
else
|
||||
{
|
||||
addDef("TYPE", TYPE_FLOAT);
|
||||
addDef("Dtype", "float");
|
||||
addDef("Dtype2", "float2");
|
||||
addDef("Dtype4", "float4");
|
||||
addDef("Dtype8", "float8");
|
||||
addDef("Dtype16", "float16");
|
||||
addDef("as_Dtype", "as_float");
|
||||
addDef("as_Dtype2", "as_float2");
|
||||
addDef("as_Dtype4", "as_float4");
|
||||
addDef("as_Dtype8", "as_float8");
|
||||
}
|
||||
}
|
||||
|
||||
typedef enum {
|
||||
@ -477,10 +501,16 @@ bool OCL4DNNConvSpatial<Dtype>::Forward(const UMat& bottom,
|
||||
fused_eltwise_ = false;
|
||||
}
|
||||
|
||||
prepareKernel(bottom, top, weight, bias, numImages);
|
||||
if (use_half_ && bias_half.empty() && !bias.empty())
|
||||
convertFp16((UMat&)bias, bias_half);
|
||||
|
||||
if (use_half_ && weights_half.empty())
|
||||
convertFp16((UMat&)weight, weights_half);
|
||||
|
||||
prepareKernel(bottom, top, weight, (use_half_) ? bias_half : bias, numImages);
|
||||
if (bestKernelConfig.empty())
|
||||
return false;
|
||||
return convolve(bottom, top, weight, bias, numImages, bestKernelConfig);
|
||||
return convolve(bottom, top, weight, (use_half_) ? bias_half : bias, numImages, bestKernelConfig);
|
||||
}
|
||||
|
||||
template<typename Dtype>
|
||||
@ -556,6 +586,12 @@ std::string OCL4DNNConvSpatial<Dtype>::generateSpecificKey(int32_t type, int32_t
|
||||
<< "_" << blockWidth
|
||||
<< "_" << blockHeight
|
||||
<< "_" << blockDepth;
|
||||
|
||||
if (!use_half_)
|
||||
keyBuilder << "_float";
|
||||
else
|
||||
keyBuilder << "_half";
|
||||
|
||||
return keyBuilder.str();
|
||||
}
|
||||
|
||||
@ -637,9 +673,13 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
|
||||
|
||||
if (swizzled_weights_umat.empty())
|
||||
swizzled_weights_umat.create(1, (int)alignSize(num_output_, 16) * channels_ *
|
||||
kernel_h_ * (int)alignSize(kernel_w_, 2), CV_32FC1);
|
||||
kernel_h_ * (int)alignSize(kernel_w_, 2),
|
||||
(use_half_) ? CV_16SC1 : CV_32FC1);
|
||||
|
||||
UMat swizzled_weights_tmp;
|
||||
if (use_half_)
|
||||
swizzled_weights_tmp.create(shape(swizzled_weights_umat), CV_32F);
|
||||
|
||||
ocl::Queue queue = ocl::Queue::getDefault();
|
||||
if (!interleave) {
|
||||
cl_uint argIdx = 0;
|
||||
int32_t channels = channels_ / group_;
|
||||
@ -650,7 +690,10 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
|
||||
return false;
|
||||
|
||||
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
|
||||
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrWriteOnly(swizzled_weights_umat));
|
||||
if (use_half_)
|
||||
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrWriteOnly(swizzled_weights_tmp));
|
||||
else
|
||||
oclk_copy_weight.set(argIdx++, ocl::KernelArg::PtrWriteOnly(swizzled_weights_umat));
|
||||
oclk_copy_weight.set(argIdx++, kernel_w_);
|
||||
oclk_copy_weight.set(argIdx++, kernel_h_);
|
||||
oclk_copy_weight.set(argIdx++, channels);
|
||||
@ -669,7 +712,11 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
|
||||
// assumption: kernel dimesion is 2
|
||||
Mat weightMat = weight.getMat(ACCESS_READ);
|
||||
Dtype* cpu_weight = (Dtype *)weightMat.ptr<float>();
|
||||
Mat swizzledWeightMat = swizzled_weights_umat.getMat(ACCESS_WRITE);
|
||||
Mat swizzledWeightMat;
|
||||
if (use_half_)
|
||||
swizzledWeightMat = swizzled_weights_tmp.getMat(ACCESS_WRITE);
|
||||
else
|
||||
swizzledWeightMat = swizzled_weights_umat.getMat(ACCESS_WRITE);
|
||||
Dtype* cpu_swizzled_weight = (Dtype *)swizzledWeightMat.ptr<float>();
|
||||
|
||||
int interleavedRows = (kernel_w_ / 2) * 2;
|
||||
@ -694,6 +741,10 @@ bool OCL4DNNConvSpatial<Dtype>::swizzleWeight(const UMat &weight,
|
||||
rowAlignment);
|
||||
free(tmpSwizzledWeight);
|
||||
}
|
||||
|
||||
if (use_half_)
|
||||
convertFp16(swizzled_weights_tmp, swizzled_weights_umat);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -727,9 +778,10 @@ void OCL4DNNConvSpatial<float>::CreateSubBuffer(const UMat& buffer, UMat& sub_bu
|
||||
cl_mem sub_mem;
|
||||
cl_buffer_region region;
|
||||
cl_int err;
|
||||
size_t element_size = (use_half_) ? sizeof(short) : sizeof(float);
|
||||
|
||||
region.origin = offset * sizeof(float);
|
||||
region.size = size * sizeof(float);
|
||||
region.origin = offset * element_size;
|
||||
region.size = size * element_size;
|
||||
sub_mem = clCreateSubBuffer((cl_mem)buffer.handle(ACCESS_READ),
|
||||
write_only ? CL_MEM_WRITE_ONLY : CL_MEM_READ_ONLY,
|
||||
CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
||||
@ -739,8 +791,9 @@ void OCL4DNNConvSpatial<float>::CreateSubBuffer(const UMat& buffer, UMat& sub_bu
|
||||
return;
|
||||
}
|
||||
|
||||
int step = sizeof(float), rows = size, cols = 1;
|
||||
ocl::convertFromBuffer(sub_mem, step, rows, cols, CV_32FC1, sub_buffer);
|
||||
int step = element_size, rows = size, cols = 1;
|
||||
ocl::convertFromBuffer(sub_mem, step, rows, cols,
|
||||
(use_half_) ? CV_16SC1 : CV_32FC1, sub_buffer);
|
||||
|
||||
//decrease ocl mem refcount
|
||||
clReleaseMemObject(sub_mem);
|
||||
@ -978,7 +1031,10 @@ bool OCL4DNNConvSpatial<float>::convolve(const UMat &bottom, UMat &top,
|
||||
cl_uint argIdx = 0;
|
||||
setFusionArg(fused_activ_, fused_eltwise_, kernel, argIdx);
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bottom));
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
|
||||
if (use_half_)
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weights_half));
|
||||
else
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
|
||||
if (bias_term_)
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bias));
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrWriteOnly(top));
|
||||
@ -1018,7 +1074,10 @@ bool OCL4DNNConvSpatial<float>::convolve(const UMat &bottom, UMat &top,
|
||||
setFusionArg(fused_activ_, fused_eltwise_, kernel, argIdx);
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bottom));
|
||||
kernel.set(argIdx++, image_offset);
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
|
||||
if (use_half_)
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weights_half));
|
||||
else
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(weight));
|
||||
kernel.set(argIdx++, kernel_offset);
|
||||
if (bias_term_)
|
||||
kernel.set(argIdx++, ocl::KernelArg::PtrReadOnly(bias));
|
||||
@ -1132,14 +1191,27 @@ bool OCL4DNNConvSpatial<float>::verifyResult(const UMat &bottom,
|
||||
return false;
|
||||
|
||||
int32_t sz[4] = {numImages, num_output_, output_h_, output_w_};
|
||||
top.zeros(4, sz, CV_32FC1);
|
||||
top.zeros(4, sz, (use_half_) ? CV_16SC1 : CV_32FC1);
|
||||
bool saved_tuned = tuned_;
|
||||
tuned_ = false;
|
||||
convolve(bottom, top, weight, bias, numImages, config);
|
||||
tuned_ = saved_tuned;
|
||||
|
||||
float *data = (float *)top.getMat(ACCESS_READ).ptr<float>();
|
||||
float *verify_data = (float *)verifyTop.getMat(ACCESS_READ).ptr<float>();
|
||||
UMat new_top, new_verify_top;
|
||||
float *data, *verify_data;
|
||||
if (use_half_)
|
||||
{
|
||||
convertFp16(top, new_top);
|
||||
convertFp16(verifyTop, new_verify_top);
|
||||
|
||||
data = (float *)new_top.getMat(ACCESS_READ).ptr<float>();
|
||||
verify_data = (float *)new_verify_top.getMat(ACCESS_READ).ptr<float>();
|
||||
}
|
||||
else
|
||||
{
|
||||
data = (float *)top.getMat(ACCESS_READ).ptr<float>();
|
||||
verify_data = (float *)verifyTop.getMat(ACCESS_READ).ptr<float>();
|
||||
}
|
||||
|
||||
for (int32_t n = 0; n < num_; ++n) {
|
||||
for (int32_t g = 0; g < group_; ++g) {
|
||||
@ -1148,9 +1220,19 @@ bool OCL4DNNConvSpatial<float>::verifyResult(const UMat &bottom,
|
||||
for (int h = 0; h < output_h_ && !verificationFail; h++)
|
||||
for (int w = 0; w < output_w_; w++) {
|
||||
size_t offset = output_image_offset + out_ch * output_w_ * output_h_ + h * output_w_ + w;
|
||||
if (fabs(data[offset] - verify_data[offset]) > 0.1 * fabs(verify_data[offset]) &&
|
||||
!(fabs(verify_data[offset]) < 1.e-3 &&
|
||||
fabs(data[offset] - verify_data[offset]) < 1.e-4))
|
||||
|
||||
float error_factor = fabs(data[offset] - verify_data[offset]);
|
||||
if (use_half_ && error_factor > 0.1 * fabs(verify_data[offset]) &&
|
||||
error_factor > 0.04 && !(fabs(verify_data[offset]) < 1.e-3 && error_factor < 1.e-4))
|
||||
{
|
||||
dbgPrint(printf("test verification failed @ image %d group %d"
|
||||
"out_ch %d h %d w %d got %G expected %G\n",
|
||||
n, g, out_ch, h, w, data[offset], verify_data[offset]));
|
||||
verificationFail = 1;
|
||||
goto out;
|
||||
}
|
||||
else if (!use_half_ && error_factor > 0.1 * fabs(verify_data[offset]) &&
|
||||
!(fabs(verify_data[offset]) < 1.e-3 && error_factor < 1.e-4))
|
||||
{
|
||||
dbgPrint(printf("test verification failed @ image %d group %d"
|
||||
"out_ch %d h %d w %d got %G expected %G\n",
|
||||
@ -1719,15 +1801,16 @@ void OCL4DNNConvSpatial<Dtype>::prepareKernel(const UMat &bottom, UMat &top,
|
||||
if (loadTunedConfig()) // check external storage
|
||||
return;
|
||||
|
||||
UMat benchData(1, numImages * top_dim_, CV_32FC1);
|
||||
UMat benchData(1, numImages * top_dim_, (use_half_) ? CV_16SC1 : CV_32FC1);
|
||||
|
||||
calculateBenchmark(bottom, benchData, (use_half_) ? weights_half : weight, bias, numImages);
|
||||
|
||||
if (force_auto_tuning_)
|
||||
{
|
||||
calculateBenchmark(bottom, benchData, weight, bias, numImages);
|
||||
setupConvolution(bottom, top, weight, bias, numImages, benchData);
|
||||
}
|
||||
else
|
||||
{
|
||||
calculateBenchmark(bottom, benchData, weight, bias, numImages);
|
||||
useFirstAvailable(bottom, top, weight, bias, numImages, benchData);
|
||||
}
|
||||
cacheTunedConfig();
|
||||
|
@ -56,6 +56,7 @@ OCL4DNNInnerProduct<Dtype>::OCL4DNNInnerProduct(OCL4DNNInnerProductConfig config
|
||||
K_ = config.K;
|
||||
phase_test_ = config.phase_test;
|
||||
image_copied_ = false;
|
||||
use_half_ = config.use_half;
|
||||
}
|
||||
|
||||
template<typename Dtype>
|
||||
@ -89,13 +90,24 @@ bool OCL4DNNInnerProduct<Dtype>::Forward(const UMat& bottom,
|
||||
if (M_ <= max_image_size &&
|
||||
N_ <= max_image_size &&
|
||||
K_ <= max_image_size &&
|
||||
cv::traits::Depth<Dtype>::value == CV_32F &&
|
||||
ocl::Device::getDefault().intelSubgroupsSupport())
|
||||
{
|
||||
ret = ocl4dnnGEMMCommon<Dtype>(transpose_ ? CblasNoTrans : CblasTrans,
|
||||
M_, N_, K_, bottom, weight, UMat(), top,
|
||||
max_image_size);
|
||||
}
|
||||
|
||||
if (use_half_ && bias_term_)
|
||||
{
|
||||
UMat biasOneMat = UMat::ones(M_, 1, CV_32F);
|
||||
UMat newbias, tmpTop;
|
||||
|
||||
convertFp16(bias, newbias);
|
||||
convertFp16(top, tmpTop);
|
||||
cv::gemm(biasOneMat, newbias, 1, tmpTop, 1, tmpTop, 0);
|
||||
convertFp16(tmpTop, top);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
@ -61,6 +61,7 @@ OCL4DNNLRN<Dtype>::OCL4DNNLRN(OCL4DNNLRNConfig config)
|
||||
channels_ = config.channels;
|
||||
height_ = config.height;
|
||||
width_ = config.width;
|
||||
use_half_ = config.use_half;
|
||||
}
|
||||
|
||||
template<typename Dtype>
|
||||
@ -97,8 +98,10 @@ bool OCL4DNNLRN<Dtype>::crossChannelForward(const UMat& bottom, UMat& top)
|
||||
int32_t n_threads = num_ * height_ * width_;
|
||||
size_t global_work_size_[1] = {(size_t)n_threads};
|
||||
String opts = clOptionSupport("-cl-no-subgroup-ifp") ? " -cl-no-subgroup-ifp " : "";
|
||||
opts += format("-D Dtype=%s", (use_half_) ? "half" : "float");
|
||||
ocl::Kernel oclk_lrn_fill;
|
||||
if (!oclk_lrn_fill.create(CL_KERNEL_SELECT("lrn_full_no_scale"), ocl::dnn::ocl4dnn_lrn_oclsrc, opts))
|
||||
String kname = format("lrn_full_no_scale_%s", (use_half_) ? "half" : "float");
|
||||
if (!oclk_lrn_fill.create(kname.c_str(), ocl::dnn::ocl4dnn_lrn_oclsrc, opts))
|
||||
return false;
|
||||
|
||||
oclk_lrn_fill.set(argIdx++, n_threads);
|
||||
|
@ -56,6 +56,7 @@ OCL4DNNPool<Dtype>::OCL4DNNPool(OCL4DNNPoolConfig config)
|
||||
channels_ = config.channels;
|
||||
pool_method_ = config.pool_method;
|
||||
avePoolPaddedArea = config.avePoolPaddedArea;
|
||||
use_half = config.use_half;
|
||||
|
||||
for (int i = 0; i < spatial_dims; ++i)
|
||||
{
|
||||
@ -105,12 +106,15 @@ bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
|
||||
case LIBDNN_POOLING_METHOD_MAX:
|
||||
{
|
||||
bool haveMask = !top_mask.empty();
|
||||
String kname = haveMask ? "max_pool_forward_mask" : "max_pool_forward";
|
||||
kname += (use_half) ? "_half" : "_float";
|
||||
ocl::Kernel oclk_max_pool_forward(
|
||||
haveMask ? CL_KERNEL_SELECT("max_pool_forward_mask") : CL_KERNEL_SELECT("max_pool_forward"),
|
||||
kname.c_str(),
|
||||
ocl::dnn::ocl4dnn_pooling_oclsrc,
|
||||
format("-D KERNEL_MAX_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
||||
format(" -D Dtype=%s -D KERNEL_MAX_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
||||
" -D STRIDE_W=%d -D STRIDE_H=%d"
|
||||
" -D PAD_W=%d -D PAD_H=%d%s",
|
||||
(use_half) ? "half" : "float",
|
||||
kernel_w_, kernel_h_,
|
||||
stride_w_, stride_h_,
|
||||
pad_w_, pad_h_,
|
||||
@ -139,11 +143,14 @@ bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
|
||||
{
|
||||
CV_Assert(top_mask.empty());
|
||||
|
||||
ocl::Kernel oclk_ave_pool_forward(CL_KERNEL_SELECT("ave_pool_forward"),
|
||||
String kname = format("ave_pool_forward_%s", (use_half) ? "half" : "float");
|
||||
ocl::Kernel oclk_ave_pool_forward(
|
||||
kname.c_str(),
|
||||
ocl::dnn::ocl4dnn_pooling_oclsrc,
|
||||
format("-D KERNEL_AVE_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
||||
format(" -D Dtype=%s -D KERNEL_AVE_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
||||
" -D STRIDE_W=%d -D STRIDE_H=%d"
|
||||
" -D PAD_W=%d -D PAD_H=%d%s",
|
||||
(use_half) ? "half" : "float",
|
||||
kernel_w_, kernel_h_,
|
||||
stride_w_, stride_h_,
|
||||
pad_w_, pad_h_,
|
||||
@ -171,7 +178,9 @@ bool OCL4DNNPool<Dtype>::Forward(const UMat& bottom,
|
||||
{
|
||||
CV_Assert(top_mask.empty());
|
||||
|
||||
ocl::Kernel oclk_sto_pool_forward(CL_KERNEL_SELECT("sto_pool_forward_test"),
|
||||
String kname = format("sto_pool_forward_test_%s", (use_half) ? "half" : "float");
|
||||
ocl::Kernel oclk_sto_pool_forward(
|
||||
kname.c_str(),
|
||||
ocl::dnn::ocl4dnn_pooling_oclsrc,
|
||||
format("-D KERNEL_STO_POOL=1 -D KERNEL_W=%d -D KERNEL_H=%d"
|
||||
" -D STRIDE_W=%d -D STRIDE_H=%d",
|
||||
|
@ -52,6 +52,7 @@ OCL4DNNSoftmax<Dtype>::OCL4DNNSoftmax(OCL4DNNSoftmaxConfig config)
|
||||
softmax_axis_ = config.axis;
|
||||
channels_ = config.channels;
|
||||
log_softmax_ = config.logsoftmax;
|
||||
use_half_ = config.use_half;
|
||||
|
||||
inner_num_ = 1;
|
||||
outer_num_ = 1;
|
||||
@ -91,10 +92,13 @@ bool OCL4DNNSoftmax<Dtype>::Forward(const UMat& bottom, UMat& top)
|
||||
|
||||
if (log_softmax_) opts += " -DLOG_SOFTMAX ";
|
||||
if (use_slm_)
|
||||
kname = CL_KERNEL_SELECT("softmax_forward_slm");
|
||||
kname = "softmax_forward_slm";
|
||||
else
|
||||
kname = CL_KERNEL_SELECT("softmax_forward");
|
||||
kname = "softmax_forward";
|
||||
|
||||
kname += format("%s", (use_half_) ? "_half" : "_float");
|
||||
opts += format(" -D Dtype=%s -D DTYPE_MAX=%s", (use_half_) ? "half" : "float",
|
||||
(use_half_) ? "HALF_MAX" : "FLT_MAX");
|
||||
if (!oclk_softmax_forward_kernel.create(kname.c_str(), ocl::dnn::softmax_loss_oclsrc, opts))
|
||||
return false;
|
||||
|
||||
|
@ -40,9 +40,17 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
#define KERNEL_ARG_DTYPE float
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
__kernel void ReLUForward(const int count, __global const T* in, __global T* out
|
||||
#ifndef RELU_NO_SLOPE
|
||||
, T negative_slope
|
||||
, KERNEL_ARG_DTYPE negative_slope
|
||||
#endif
|
||||
) {
|
||||
int index = get_global_id(0);
|
||||
@ -55,18 +63,19 @@ __kernel void ReLUForward(const int count, __global const T* in, __global T* out
|
||||
}
|
||||
|
||||
__kernel void ReLU6Forward(const int count, __global const T* in, __global T* out,
|
||||
const T minValue, const T maxValue)
|
||||
const KERNEL_ARG_DTYPE minValue, const KERNEL_ARG_DTYPE maxValue)
|
||||
{
|
||||
int index = get_global_id(0);
|
||||
if(index < count)
|
||||
{
|
||||
T x = in[index];
|
||||
out[index] = clamp(x, minValue, maxValue);
|
||||
out[index] = clamp(x, convert_T(minValue), convert_T(maxValue));
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void PReLUForward(const int count, const int channels, const int plane_size,
|
||||
__global const T* in, __global T* out, __global const T* slope_data)
|
||||
__global const T* in, __global T* out,
|
||||
__global const KERNEL_ARG_DTYPE* slope_data)
|
||||
{
|
||||
int index = get_global_id(0);
|
||||
int c = (index / plane_size) % channels;
|
||||
@ -99,8 +108,22 @@ __kernel void AbsValForward(const int n, __global const T* in, __global T* out)
|
||||
out[index] = fabs(in[index]);
|
||||
}
|
||||
|
||||
__kernel void PowForward(const int n, __global const T* in, __global T* out, const T power, const T scale, const T shift) {
|
||||
__kernel void PowForward(const int n, __global const T* in, __global T* out,
|
||||
const KERNEL_ARG_DTYPE power,
|
||||
const KERNEL_ARG_DTYPE scale,
|
||||
const KERNEL_ARG_DTYPE shift)
|
||||
{
|
||||
int index = get_global_id(0);
|
||||
if (index < n)
|
||||
out[index] = pow(shift + scale * in[index], power);
|
||||
}
|
||||
|
||||
__kernel void ELUForward(const int n, __global const T* in, __global T* out)
|
||||
{
|
||||
int index = get_global_id(0);
|
||||
if (index < n)
|
||||
{
|
||||
T src = in[index];
|
||||
out[index] = (src >= 0.f) ? src : exp(src) - 1;
|
||||
}
|
||||
}
|
||||
|
@ -39,22 +39,29 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
__kernel void concat(const int nthreads,
|
||||
__global const Dtype* in_data,
|
||||
const int num_concats,
|
||||
const int concat_size,
|
||||
const int top_concat_axis,
|
||||
const int bottom_concat_axis,
|
||||
const int offset_concat_axis,
|
||||
__global Dtype* out_data) {
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
for (int index = get_global_id(0); index < nthreads;
|
||||
index += get_global_size(0)) {
|
||||
const int total_concat_size = concat_size * bottom_concat_axis;
|
||||
const int concat_num = index / total_concat_size;
|
||||
const int concat_index = index % total_concat_size;
|
||||
const int top_index = concat_index
|
||||
+ (concat_num * top_concat_axis + offset_concat_axis) * concat_size;
|
||||
out_data[top_index] = in_data[index];
|
||||
}
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
|
||||
__kernel void TEMPLATE(concat, Dtype)(const int nthreads,
|
||||
__global const Dtype* in_data,
|
||||
const int num_concats,
|
||||
const int concat_size,
|
||||
const int top_concat_axis,
|
||||
const int bottom_concat_axis,
|
||||
const int offset_concat_axis,
|
||||
__global Dtype* out_data)
|
||||
{
|
||||
for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
|
||||
{
|
||||
const int total_concat_size = concat_size * bottom_concat_axis;
|
||||
const int concat_num = index / total_concat_size;
|
||||
const int concat_index = index % total_concat_size;
|
||||
const int top_index = concat_index +
|
||||
(concat_num * top_concat_axis + offset_concat_axis) * concat_size;
|
||||
out_data[top_index] = in_data[index];
|
||||
}
|
||||
}
|
||||
|
@ -40,27 +40,29 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if APPLY_BIAS
|
||||
#define BIAS_KERNEL_ARG __global Dtype * biases_base,
|
||||
#else
|
||||
#define BIAS_KERNEL_ARG
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
#define KERNEL_ARG_DTYPE float
|
||||
#define TYPE_FLOAT 1
|
||||
#define TYPE_HALF 2
|
||||
|
||||
#if defined(FUSED_CONV_RELU)
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (Dtype)(negative_slope)))
|
||||
#define FUSED_ARG Dtype negative_slope,
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (negative_slope)))
|
||||
#define FUSED_ARG KERNEL_ARG_DTYPE negative_slope,
|
||||
#elif defined(FUSED_CONV_PRELU)
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (Dtype)(negative_slope[c])))
|
||||
#define FUSED_ARG __global const Dtype *negative_slope,
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) ((Dtype)(x) > 0 ? (Dtype)(x) : ((Dtype)(x) * (negative_slope[c])))
|
||||
#define FUSED_ARG __global const KERNEL_ARG_DTYPE* negative_slope,
|
||||
#elif defined(FUSED_CONV_POWER)
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) pow(x, power)
|
||||
#define FUSED_ARG Dtype power,
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) pow(x, (Dtype)power)
|
||||
#define FUSED_ARG KERNEL_ARG_DTYPE power,
|
||||
#elif defined(FUSED_CONV_TANH)
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) tanh(x)
|
||||
#define FUSED_ARG
|
||||
#elif defined(FUSED_CONV_RELU6)
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) (clamp((Dtype)(x), min_value, max_value))
|
||||
#define FUSED_ARG Dtype min_value, Dtype max_value,
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) (clamp((Dtype)(x), (Dtype)min_value, (Dtype)max_value))
|
||||
#define FUSED_ARG KERNEL_ARG_DTYPE min_value, KERNEL_ARG_DTYPE max_value,
|
||||
#else
|
||||
#define ACTIVATION_RELU_FUNCTION(x, c) (x)
|
||||
#define FUSED_ARG
|
||||
@ -74,6 +76,11 @@
|
||||
#define ELTWISE_DATA_ARG
|
||||
#endif
|
||||
|
||||
#if APPLY_BIAS
|
||||
#define BIAS_KERNEL_ARG __global Dtype * biases_base,
|
||||
#else
|
||||
#define BIAS_KERNEL_ARG
|
||||
#endif
|
||||
|
||||
#define __CAT(x, y) x##y
|
||||
#define CAT(x, y) __CAT(x, y)
|
||||
@ -97,6 +104,16 @@
|
||||
#define LOOP(N, VAR, STMT) CAT(LOOP, N)((VAR), (STMT))
|
||||
|
||||
#if defined(convolve_simd) || defined(Conv_Interleaved)
|
||||
#if TYPE == TYPE_HALF
|
||||
#define INT_TYPE ushort
|
||||
#define INT_TYPE2 ushort2
|
||||
#define INT_TYPE4 ushort4
|
||||
#define INT_TYPE8 ushort8
|
||||
#define SUB_GROUP_BLOCK_READ2 intel_sub_group_block_read_us2
|
||||
#define SUB_GROUP_BLOCK_READ4 intel_sub_group_block_read_us4
|
||||
#define SUB_GROUP_BLOCK_READ8 intel_sub_group_block_read_us8
|
||||
#define SUB_GROUP_BLOCK_READ intel_sub_group_block_read_us
|
||||
#else
|
||||
#define INT_TYPE uint
|
||||
#define INT_TYPE2 uint2
|
||||
#define INT_TYPE4 uint4
|
||||
@ -106,6 +123,7 @@
|
||||
#define SUB_GROUP_BLOCK_READ8 intel_sub_group_block_read8
|
||||
#define SUB_GROUP_BLOCK_READ intel_sub_group_block_read
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef KERNEL_BASIC
|
||||
|
||||
@ -418,6 +436,25 @@ typedef struct float15 { float s0; float s1; float s2; float s3; float s4; float
|
||||
float s6; float s7; float s8; float s9; float sa; float sb; float sc; float sd; float se; } float15;
|
||||
typedef struct float0 { float s0; } float0; //never used but makes compiler happy.
|
||||
|
||||
typedef struct half1 { half s0; } half1;
|
||||
typedef struct half5 { half s0; half s1; half s2; half s3; half s4; } half5;
|
||||
typedef struct half6 { half s0; half s1; half s2; half s3; half s4; half s5; } half6;
|
||||
typedef struct half7 { half s0; half s1; half s2; half s3; half s4; half s5; half s6; } half7;
|
||||
typedef struct half9 { half s0; half s1; half s2; half s3; half s4; half s5; half s6; half s7; half s8; } half9;
|
||||
typedef struct half10 { half s0; half s1; half s2; half s3; half s4; half s5;
|
||||
half s6; half s7; half s8; half s9; } half10;
|
||||
typedef struct half11 { half s0; half s1; half s2; half s3; half s4; half s5;
|
||||
half s6; half s7; half s8; half s9; half sa; } half11;
|
||||
typedef struct half12 { half s0; half s1; half s2; half s3; half s4; half s5;
|
||||
half s6; half s7; half s8; half s9; half sa; half sb; } half12;
|
||||
typedef struct half13 { half s0; half s1; half s2; half s3; half s4; half s5;
|
||||
half s6; half s7; half s8; half s9; half sa; half sb; half sc; } half13;
|
||||
typedef struct half14 { half s0; half s1; half s2; half s3; half s4; half s5;
|
||||
half s6; half s7; half s8; half s9; half sa; half sb; half sc; half sd; } half14;
|
||||
typedef struct half15 { half s0; half s1; half s2; half s3; half s4; half s5;
|
||||
half s6; half s7; half s8; half s9; half sa; half sb; half sc; half sd; half se; } half15;
|
||||
typedef struct half0 { half s0; } half0; //never used but makes compiler happy.
|
||||
|
||||
#define OUT_PITCH_X output_width
|
||||
#define ROW_PITCH input_width
|
||||
|
||||
|
@ -40,9 +40,9 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#define Dtype float
|
||||
#define Dtype4 float4
|
||||
#define Dtype8 float8
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
__kernel void op_sum4(__global const Dtype * A,
|
||||
__global const Dtype * B,
|
||||
@ -73,20 +73,20 @@ __kernel void op_sum4(__global const Dtype * A,
|
||||
a2 = vload4(i, src0_read + 2 * A_col_size);
|
||||
a3 = vload4(i, src0_read + 3 * A_col_size);
|
||||
|
||||
dot0 = a0 * coeff1 + b0 * coeff2;
|
||||
dot1 = a1 * coeff1 + b1 * coeff2;
|
||||
dot2 = a2 * coeff1 + b2 * coeff2;
|
||||
dot3 = a3 * coeff1 + b3 * coeff2;
|
||||
dot0 = a0 * (Dtype4)coeff1 + b0 * (Dtype4)coeff2;
|
||||
dot1 = a1 * (Dtype4)coeff1 + b1 * (Dtype4)coeff2;
|
||||
dot2 = a2 * (Dtype4)coeff1 + b2 * (Dtype4)coeff2;
|
||||
dot3 = a3 * (Dtype4)coeff1 + b3 * (Dtype4)coeff2;
|
||||
#else
|
||||
a0 = vload4(i, dst0_read);
|
||||
a1 = vload4(i, dst0_read + A_col_size);
|
||||
a2 = vload4(i, dst0_read + 2 * A_col_size);
|
||||
a3 = vload4(i, dst0_read + 3 * A_col_size);
|
||||
|
||||
dot0 = a0 + b0 * coeff2;
|
||||
dot1 = a1 + b1 * coeff2;
|
||||
dot2 = a2 + b2 * coeff2;
|
||||
dot3 = a3 + b3 * coeff2;
|
||||
dot0 = a0 + b0 * (Dtype4)coeff2;
|
||||
dot1 = a1 + b1 * (Dtype4)coeff2;
|
||||
dot2 = a2 + b2 * (Dtype4)coeff2;
|
||||
dot3 = a3 + b3 * (Dtype4)coeff2;
|
||||
#endif
|
||||
vstore4(dot0, i, dst0_read);
|
||||
vstore4(dot1, i, dst0_read + A_col_size);
|
||||
|
1342
modules/dnn/src/opencl/gemm_buffer.cl
Normal file
1342
modules/dnn/src/opencl/gemm_buffer.cl
Normal file
File diff suppressed because it is too large
Load Diff
@ -39,24 +39,42 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
|
||||
// Types used for parameters, offset computations and so on
|
||||
#define int_tp int
|
||||
#define uint_tp unsigned int
|
||||
#define KERNEL_ARG_DTYPE float
|
||||
#define TYPE_FLOAT 1
|
||||
#define TYPE_HALF 2
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define Dtype half
|
||||
#define Dtype2 half2
|
||||
#define Dtype4 half4
|
||||
#define Dtype8 half8
|
||||
#define Dtype16 half16
|
||||
|
||||
#define as_Dtype as_half
|
||||
#define as_Dtype2 as_half2
|
||||
#define as_Dtype4 as_half4
|
||||
#define as_Dtype8 as_half8
|
||||
#define as_Dtype16 as_half16
|
||||
#else
|
||||
#define Dtype float
|
||||
#define Dtype2 float2
|
||||
#define Dtype4 float4
|
||||
#define Dtype8 float8
|
||||
#define Dtype16 float16
|
||||
|
||||
#define as_Dtype as_float
|
||||
#define as_Dtype2 as_float2
|
||||
#define as_Dtype4 as_float4
|
||||
#define as_Dtype8 as_float8
|
||||
|
||||
#define KERNEL_ARG_DTYPE float
|
||||
#define as_Dtype16 as_float16
|
||||
#endif
|
||||
|
||||
#if defined(cl_intel_subgroups)
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
@ -67,6 +85,15 @@
|
||||
|
||||
// common block to calculate (alpha * AxB + beta * C) and output to destination image.
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define SUBGROUP_BLOCK_READ8( __image, __coord ) intel_sub_group_block_read_us8( __image, __coord )
|
||||
#define SHUFFLE_TYPE2(val) as_ushort2(val)
|
||||
#define SHUFFLE_TYPE8(val) as_ushort8(val)
|
||||
#define READ_IMAGE(__image, __coord) read_imageh(__image, sampler, __coord)
|
||||
#define SIZE_OF_ELEMENT sizeof(ushort)
|
||||
#define SIMD_SIZE_GEMM 16
|
||||
#define TILE_N 16
|
||||
#else
|
||||
#define SUBGROUP_BLOCK_READ8( __image, __coord ) intel_sub_group_block_read8( __image, __coord )
|
||||
#define SHUFFLE_TYPE2(val) val
|
||||
#define SHUFFLE_TYPE8(val) val
|
||||
@ -74,11 +101,17 @@
|
||||
#define SIZE_OF_ELEMENT sizeof(uint)
|
||||
#define SIMD_SIZE_GEMM 8
|
||||
#define TILE_N 8
|
||||
#endif
|
||||
|
||||
//#define USE_IMAGE_C
|
||||
#ifdef USE_IMAGE_C
|
||||
#if TYPE == TYPE_HALF
|
||||
#define BLOCKC_READ8( _C, _coordC ) as_Dtype8( intel_sub_group_block_read_us8( _C, _coordC ) )
|
||||
#define BLOCKC_WRITE8( _C, _coordC, _val ) intel_sub_group_block_write_us8( _C, _coordC, as_ushort8( _val ) )
|
||||
#else
|
||||
#define BLOCKC_READ8( _C, _coordC ) as_Dtype8( intel_sub_group_block_read8( _C, _coordC ) )
|
||||
#define BLOCKC_WRITE8( _C, _coordC, _val ) intel_sub_group_block_write8( _C, _coordC, as_uint8( _val ) )
|
||||
#endif
|
||||
#define MATC_PARAMETER __read_only image2d_t C, __write_only image2d_t dst
|
||||
#define GEMM_OUTPUT(ALPHA1, BETA_NOT0) GEMM_OUTPUT_EXT(ALPHA1, BETA_NOT0, C, dst, sizeof(uint))
|
||||
#else
|
||||
@ -139,10 +172,10 @@
|
||||
blockC03 += blockAxB03; \
|
||||
} \
|
||||
} else { \
|
||||
blockC00 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
|
||||
blockC01 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
|
||||
blockC02 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
|
||||
blockC03 = isFirstColBlock ? BLOCKC_READ8( _C, coordC ) * beta : BLOCKC_READ8( _C, coordC ); \
|
||||
blockC00 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
|
||||
blockC01 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
|
||||
blockC02 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); coordC.y += 8; \
|
||||
blockC03 = isFirstColBlock ? (Dtype)0. : BLOCKC_READ8( _C, coordC ); \
|
||||
if (!ALPHA1) { \
|
||||
blockC00 = mad(blockAxB00, (Dtype8)alpha, blockC00); \
|
||||
blockC01 = mad(blockAxB01, (Dtype8)alpha, blockC01); \
|
||||
@ -172,6 +205,43 @@
|
||||
intel_sub_group_shuffle( _block.s7, _col ) );
|
||||
|
||||
// A's column block multiply B 's row block.
|
||||
#if TYPE == TYPE_HALF
|
||||
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB00, _blockB01 ) \
|
||||
{ \
|
||||
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
|
||||
const Dtype8 acol1 = TRANSPOSE_BLOCK_8( _blockA, 1 ); \
|
||||
const Dtype8 acol2 = TRANSPOSE_BLOCK_8( _blockA, 2 ); \
|
||||
const Dtype8 acol3 = TRANSPOSE_BLOCK_8( _blockA, 3 ); \
|
||||
const Dtype8 acol4 = TRANSPOSE_BLOCK_8( _blockA, 4 ); \
|
||||
const Dtype8 acol5 = TRANSPOSE_BLOCK_8( _blockA, 5 ); \
|
||||
const Dtype8 acol6 = TRANSPOSE_BLOCK_8( _blockA, 6 ); \
|
||||
const Dtype8 acol7 = TRANSPOSE_BLOCK_8( _blockA, 7 ); \
|
||||
const Dtype8 acol8 = TRANSPOSE_BLOCK_8( _blockA, 8 ); \
|
||||
const Dtype8 acol9 = TRANSPOSE_BLOCK_8( _blockA, 9 ); \
|
||||
const Dtype8 acola = TRANSPOSE_BLOCK_8( _blockA, 10 ); \
|
||||
const Dtype8 acolb = TRANSPOSE_BLOCK_8( _blockA, 11 ); \
|
||||
const Dtype8 acolc = TRANSPOSE_BLOCK_8( _blockA, 12 ); \
|
||||
const Dtype8 acold = TRANSPOSE_BLOCK_8( _blockA, 13 ); \
|
||||
const Dtype8 acole = TRANSPOSE_BLOCK_8( _blockA, 14 ); \
|
||||
const Dtype8 acolf = TRANSPOSE_BLOCK_8( _blockA, 15 ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s0), acol0, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s1), acol1, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s2), acol2, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s3), acol3, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s4), acol4, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s5), acol5, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s6), acol6, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB00.s7), acol7, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s0), acol8, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s1), acol9, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s2), acola, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s3), acolb, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s4), acolc, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s5), acold, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s6), acole, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB01.s7), acolf, _result ); \
|
||||
}
|
||||
#else
|
||||
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB ) \
|
||||
{ \
|
||||
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
|
||||
@ -191,7 +261,50 @@
|
||||
_result = mad( (Dtype8)(_blockB.s6), acol6, _result ); \
|
||||
_result = mad( (Dtype8)(_blockB.s7), acol7, _result ); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define GEMM_NN(ALPHA1, BETA_NOT0) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
__kernel void TEMPLATE(gemm_32_1_NN_ ##ALPHA1 ##_ ##BETA_NOT0, Dtype)( \
|
||||
__read_only image2d_t A, \
|
||||
__read_only image2d_t B, \
|
||||
MATC_PARAMETER, \
|
||||
KERNEL_ARG_DTYPE alpha_in, \
|
||||
KERNEL_ARG_DTYPE beta_in, \
|
||||
int width0, \
|
||||
int isFirstColBlock) \
|
||||
{ \
|
||||
const Dtype alpha = (Dtype)alpha_in; \
|
||||
const Dtype beta = (Dtype)beta_in; \
|
||||
const int group_x = get_group_id(0); \
|
||||
const int group_y = get_group_id(1); \
|
||||
Dtype8 blockAxB00 = 0; \
|
||||
Dtype8 blockAxB01 = 0; \
|
||||
Dtype8 blockAxB02 = 0; \
|
||||
Dtype8 blockAxB03 = 0; \
|
||||
int2 coordA = (int2)( 0, group_y * TILE_M ); \
|
||||
int2 coordB = (int2)( ( group_x * TILE_N ) * SIZE_OF_ELEMENT, 0 ); \
|
||||
do \
|
||||
{ \
|
||||
int2 coordBTemp = coordB; \
|
||||
Dtype8 blockB00 = as_Dtype8( SUBGROUP_BLOCK_READ8( B, coordBTemp ) ); coordB.y += TILE_K; \
|
||||
Dtype8 blockB01 = as_Dtype8( SUBGROUP_BLOCK_READ8( B, coordBTemp ) ); coordB.y += TILE_K; \
|
||||
int2 coordATemp = coordA; \
|
||||
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
|
||||
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
|
||||
Dtype8 blockA02 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
|
||||
Dtype8 blockA03 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.x += TILE_K * SIZE_OF_ELEMENT * 2; \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00, blockB01 ); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA01, blockB00, blockB01 ); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA02, blockB00, blockB01 ); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA03, blockB00, blockB01 ); \
|
||||
} \
|
||||
while( coordB.y < width0 ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
|
||||
}
|
||||
#else
|
||||
#define GEMM_NN(ALPHA1, BETA_NOT0) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
@ -231,6 +344,7 @@ __kernel void TEMPLATE(gemm_32_1_NN_ ##ALPHA1 ##_ ##BETA_NOT0, Dtype)( \
|
||||
while( coordB.y < width0 ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
|
||||
}
|
||||
#endif
|
||||
|
||||
GEMM_NN(1, 0) // ALPHA == 1, BETA == 0
|
||||
GEMM_NN(1, 1) // ALPHA == 1, BETA != 0
|
||||
@ -264,6 +378,45 @@ GEMM_NN(0, 1) // ALPHA != 1, BETA != 0
|
||||
_result = mad( (Dtype8)(_blockB.s7), TRANSPOSE_BLOCK_8(_blockA.s7, _col), _result ); \
|
||||
}
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define GEMM_TN(ALPHA1, BETA_NOT0) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
__kernel void TEMPLATE(gemm_32_1_TN_ ##ALPHA1 ##_ ##BETA_NOT0,Dtype)( \
|
||||
__read_only image2d_t A, \
|
||||
__read_only image2d_t B, \
|
||||
MATC_PARAMETER, \
|
||||
KERNEL_ARG_DTYPE alpha_in, \
|
||||
KERNEL_ARG_DTYPE beta_in, \
|
||||
int width0, \
|
||||
int isFirstColBlock) \
|
||||
{ \
|
||||
const Dtype alpha = (Dtype)alpha_in; \
|
||||
const Dtype beta = (Dtype)beta_in; \
|
||||
const int group_x = get_group_id(0);\
|
||||
const int group_y = get_group_id(1);\
|
||||
Dtype8 blockAxB00 = 0;\
|
||||
Dtype8 blockAxB01 = 0;\
|
||||
Dtype8 blockAxB02 = 0;\
|
||||
Dtype8 blockAxB03 = 0;\
|
||||
int2 coordA = (int2)( group_y * TILE_M * SIZE_OF_ELEMENT, 0 );\
|
||||
int2 coordB = (int2)( ( group_x * TILE_N ) * SIZE_OF_ELEMENT, 0 );\
|
||||
do\
|
||||
{\
|
||||
int2 coordBTemp = coordB;\
|
||||
Dtype8 blockB00 = as_Dtype8( SUBGROUP_BLOCK_READ8( B, coordBTemp ) ); coordB.y += TILE_K;\
|
||||
int2 coordATemp = coordA;\
|
||||
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.x += 16 * SIZE_OF_ELEMENT;\
|
||||
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.y += TILE_K;\
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00, 0); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA00, blockB00, 8); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA01, blockB00, 0); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA01, blockB00, 8); \
|
||||
} \
|
||||
while( coordB.y < width0 ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
|
||||
}
|
||||
#else
|
||||
#define GEMM_TN(ALPHA1, BETA_NOT0) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
@ -303,6 +456,7 @@ __kernel void TEMPLATE(gemm_32_1_TN_ ##ALPHA1 ##_ ##BETA_NOT0,Dtype)( \
|
||||
while( coordB.y < width0 ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
|
||||
}
|
||||
#endif
|
||||
|
||||
GEMM_TN(1, 0) // ALPHA == 1, BETA == 0
|
||||
GEMM_TN(1, 1) // ALPHA == 1, BETA != 0
|
||||
@ -324,6 +478,43 @@ GEMM_TN(0, 1) // ALPHA != 1, BETA != 0
|
||||
intel_sub_group_shuffle( _block.s6, _col), \
|
||||
intel_sub_group_shuffle( _block.s7, _col) )
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB ) \
|
||||
{ \
|
||||
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
|
||||
const Dtype8 acol1 = TRANSPOSE_BLOCK_8( _blockA, 1 ); \
|
||||
const Dtype8 acol2 = TRANSPOSE_BLOCK_8( _blockA, 2 ); \
|
||||
const Dtype8 acol3 = TRANSPOSE_BLOCK_8( _blockA, 3 ); \
|
||||
const Dtype8 acol4 = TRANSPOSE_BLOCK_8( _blockA, 4 ); \
|
||||
const Dtype8 acol5 = TRANSPOSE_BLOCK_8( _blockA, 5 ); \
|
||||
const Dtype8 acol6 = TRANSPOSE_BLOCK_8( _blockA, 6 ); \
|
||||
const Dtype8 acol7 = TRANSPOSE_BLOCK_8( _blockA, 7 ); \
|
||||
const Dtype8 acol8 = TRANSPOSE_BLOCK_8( _blockA, 8 ); \
|
||||
const Dtype8 acol9 = TRANSPOSE_BLOCK_8( _blockA, 9 ); \
|
||||
const Dtype8 acola = TRANSPOSE_BLOCK_8( _blockA, 10 ); \
|
||||
const Dtype8 acolb = TRANSPOSE_BLOCK_8( _blockA, 11 ); \
|
||||
const Dtype8 acolc = TRANSPOSE_BLOCK_8( _blockA, 12 ); \
|
||||
const Dtype8 acold = TRANSPOSE_BLOCK_8( _blockA, 13 ); \
|
||||
const Dtype8 acole = TRANSPOSE_BLOCK_8( _blockA, 14 ); \
|
||||
const Dtype8 acolf = TRANSPOSE_BLOCK_8( _blockA, 15 ); \
|
||||
_result = mad( (Dtype8)_blockB.s0, acol0, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s1, acol1, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s2, acol2, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s3, acol3, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s4, acol4, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s5, acol5, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s6, acol6, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s7, acol7, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s8, acol8, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s9, acol9, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.sa, acola, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.sb, acolb, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.sc, acolc, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.sd, acold, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.se, acole, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.sf, acolf, _result ); \
|
||||
}
|
||||
#else
|
||||
#define MULTIPLY_BLOCKS_8x8( _result, _blockA, _blockB ) \
|
||||
{ \
|
||||
const Dtype8 acol0 = TRANSPOSE_BLOCK_8( _blockA, 0 ); \
|
||||
@ -343,7 +534,51 @@ GEMM_TN(0, 1) // ALPHA != 1, BETA != 0
|
||||
_result = mad( (Dtype8)_blockB.s6, acol6, _result ); \
|
||||
_result = mad( (Dtype8)_blockB.s7, acol7, _result ); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define GEMM_NT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
__kernel void TEMPLATE(gemm_32_1_NT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0,Dtype)( \
|
||||
__read_only image2d_t A, \
|
||||
MATB_PARAMETER, \
|
||||
MATC_PARAMETER, \
|
||||
KERNEL_ARG_DTYPE alpha_in, \
|
||||
KERNEL_ARG_DTYPE beta_in, \
|
||||
int padded_k, \
|
||||
int k, \
|
||||
int isFirstColBlock) \
|
||||
{ \
|
||||
const Dtype alpha = (Dtype)alpha_in; \
|
||||
const Dtype beta = (Dtype)beta_in; \
|
||||
const int group_x = get_group_id(0); \
|
||||
const int group_y = get_group_id(1); \
|
||||
Dtype8 blockAxB00 = 0; \
|
||||
Dtype8 blockAxB01 = 0; \
|
||||
Dtype8 blockAxB02 = 0; \
|
||||
Dtype8 blockAxB03 = 0; \
|
||||
int2 coordA = (int2)( 0, group_y * TILE_M ); \
|
||||
int2 coordB = (int2)( 0, ( group_x * TILE_N )); \
|
||||
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; \
|
||||
do \
|
||||
{ \
|
||||
Dtype16 blockB00; \
|
||||
BLOCKB_READ8(blockB00, B, coordB); \
|
||||
int2 coordATemp = coordA; \
|
||||
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
|
||||
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
|
||||
Dtype8 blockA02 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.y += 8; \
|
||||
Dtype8 blockA03 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.x += TILE_K * SIZE_OF_ELEMENT * 2; \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00 ); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA01, blockB00 ); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA02, blockB00 ); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA03, blockB00 ); \
|
||||
} \
|
||||
while( coordB.x < padded_k / VECSIZE ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
|
||||
}
|
||||
#else
|
||||
#define GEMM_NT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
@ -385,12 +620,23 @@ __kernel void TEMPLATE(gemm_32_1_NT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0,Dt
|
||||
while( coordB.x < padded_k / VECSIZE ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
_blockb.s0123 = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s4567 = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s89ab = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.scdef = READ_IMAGE(_B, _coordBTemp); _coordB.x += 4;
|
||||
#else
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
_blockb.s0123 = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s4567 = READ_IMAGE(_B, _coordBTemp); _coordB.x += 2;
|
||||
#endif
|
||||
|
||||
#define MATB_PARAMETER __read_only image2d_t B
|
||||
|
||||
@ -401,12 +647,21 @@ GEMM_NT(0, 1, VEC4, 4) // ALPHA != 1, BETA != 0
|
||||
#undef BLOCKB_READ8
|
||||
#undef MATB_PARAMETER
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
const __global float *B_read = (__global float *)(_B + (_coordBTemp.y * ldb) + _coordBTemp.x + offB); \
|
||||
_blockb = as_Dtype16(as_ushort16(vload8(0, B_read))); \
|
||||
_coordB.x += TILE_K * 2;
|
||||
#else
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
const __global Dtype *B_read = (__global Dtype *)(_B + (_coordBTemp.y * ldb) + _coordBTemp.x + offB); \
|
||||
_blockb = vload8(0, B_read); \
|
||||
_coordB.x += TILE_K;
|
||||
#endif
|
||||
|
||||
#define MATB_PARAMETER __global Dtype *B, int offB, int ldb
|
||||
|
||||
@ -417,6 +672,45 @@ GEMM_NT(0, 1, BUFFER, 1) // ALPHA != 1, BETA != 0
|
||||
#undef BLOCKB_READ8
|
||||
#undef MATB_PARAMETER
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
Dtype4 temp; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s0 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s1 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s2 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s3 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s4 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s5 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s6 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s7 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s8 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s9 = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.sa = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.sb = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.sc = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.sd = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.se = temp.s0; \
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.sf = temp.s0; \
|
||||
_coordB.x += 16;
|
||||
#else
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
@ -438,6 +732,7 @@ GEMM_NT(0, 1, BUFFER, 1) // ALPHA != 1, BETA != 0
|
||||
temp = READ_IMAGE(_B, _coordBTemp); _coordBTemp.x += 1; \
|
||||
_blockb.s7 = temp.s0; \
|
||||
_coordB.x += 8;
|
||||
#endif
|
||||
|
||||
#define MATB_PARAMETER __read_only image2d_t B
|
||||
|
||||
@ -483,6 +778,47 @@ GEMM_NT(0, 1, SCALAR, 1) // ALPHA != 1, BETA != 0
|
||||
_result = mad( (Dtype8)_blockB.s7, acol7, _result ); \
|
||||
}
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define GEMM_TT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
__kernel void TEMPLATE(gemm_32_1_TT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0, Dtype)( \
|
||||
__read_only image2d_t A, \
|
||||
MATB_PARAMETER, \
|
||||
MATC_PARAMETER, \
|
||||
KERNEL_ARG_DTYPE alpha_in, \
|
||||
KERNEL_ARG_DTYPE beta_in, \
|
||||
int padded_k, \
|
||||
int k, \
|
||||
int isFirstColBlock) \
|
||||
{ \
|
||||
const Dtype alpha = (Dtype)alpha_in; \
|
||||
const Dtype beta = (Dtype)beta_in; \
|
||||
const int group_x = get_group_id(0); \
|
||||
const int group_y = get_group_id(1); \
|
||||
Dtype8 blockAxB00 = 0; \
|
||||
Dtype8 blockAxB01 = 0; \
|
||||
Dtype8 blockAxB02 = 0; \
|
||||
Dtype8 blockAxB03 = 0; \
|
||||
int2 coordA = (int2)( group_y * TILE_M * SIZE_OF_ELEMENT, 0 ); \
|
||||
int2 coordB = (int2)( 0, ( group_x * TILE_N )); \
|
||||
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; \
|
||||
do \
|
||||
{ \
|
||||
Dtype8 blockB00; \
|
||||
BLOCKB_READ8(blockB00, B, coordB); \
|
||||
int2 coordATemp = coordA; \
|
||||
Dtype8 blockA00 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordATemp.x += 16 * SIZE_OF_ELEMENT;\
|
||||
Dtype8 blockA01 = as_Dtype8( SUBGROUP_BLOCK_READ8( A, coordATemp ) ); coordA.y += TILE_K;\
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB00, blockA00, blockB00, 0); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB01, blockA00, blockB00, 8); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB02, blockA01, blockB00, 0); \
|
||||
MULTIPLY_BLOCKS_8x8( blockAxB03, blockA01, blockB00, 8); \
|
||||
} \
|
||||
while( coordB.x < padded_k / VECSIZE ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0);\
|
||||
}
|
||||
#else
|
||||
#define GEMM_TT(ALPHA1, BETA_NOT0, VECSCALAR, VECSIZE) \
|
||||
__attribute__((intel_reqd_sub_group_size(SIMD_SIZE_GEMM))) \
|
||||
__attribute__((reqd_work_group_size(SIMD_SIZE_GEMM, 1, 1))) \
|
||||
@ -524,6 +860,7 @@ __kernel void TEMPLATE(gemm_32_1_TT_ ##VECSCALAR ##_ ##ALPHA1 ##_ ##BETA_NOT0, D
|
||||
while( coordB.x < padded_k / VECSIZE ); \
|
||||
GEMM_OUTPUT(ALPHA1, BETA_NOT0);\
|
||||
}
|
||||
#endif
|
||||
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
@ -540,12 +877,21 @@ GEMM_TT(0, 1, VEC4, 4) // ALPHA != 1, BETA != 0
|
||||
#undef BLOCKB_READ8
|
||||
#undef MATB_PARAMETER
|
||||
|
||||
#if TYPE == TYPE_HALF
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
const __global float *B_read = (__global float *)(_B + (_coordBTemp.y * k) + _coordBTemp.x + offB); \
|
||||
_blockb = as_Dtype8(as_ushort8(vload4(0, B_read))); \
|
||||
_coordB.x += TILE_K;
|
||||
#else
|
||||
#define BLOCKB_READ8(_blockb, _B, _coordB) \
|
||||
int2 _coordBTemp = _coordB; \
|
||||
_coordBTemp.y += get_local_id(0); \
|
||||
const __global Dtype *B_read = (__global Dtype *)(_B + (_coordBTemp.y * k) + _coordBTemp.x + offB); \
|
||||
_blockb = vload8(0, B_read); \
|
||||
_coordB.x += TILE_K;
|
||||
#endif
|
||||
|
||||
#define MATB_PARAMETER __global Dtype *B, int offB, int ldb
|
||||
|
||||
@ -598,7 +944,7 @@ GEMM_TT(0, 1, SCALAR, 1) // ALPHA != 1, BETA != 0
|
||||
#undef READ_IMAGE
|
||||
#undef SIZE_OF_ELEMENT
|
||||
|
||||
__kernel void TEMPLATE(gemm_buffer_copy_image_transpose,Dtype)(
|
||||
__kernel void TEMPLATE(gemm_buffer_copy_image_transpose, Dtype)(
|
||||
__global Dtype* A,
|
||||
__write_only image2d_t ImA,
|
||||
int offA,
|
||||
@ -611,10 +957,14 @@ __kernel void TEMPLATE(gemm_buffer_copy_image_transpose,Dtype)(
|
||||
int2 coord_dst = (int2)(gidx, gidy);
|
||||
__global Dtype* A_off = A + offA;
|
||||
Dtype srcA = A_off[gidy * ldA + gidx];
|
||||
#if TYPE == TYPE_HALF
|
||||
write_imageh(ImA, coord_dst, (Dtype4)srcA);
|
||||
#else
|
||||
write_imagef(ImA, coord_dst, (Dtype4)srcA);
|
||||
#endif
|
||||
}
|
||||
|
||||
__kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose,Dtype)(
|
||||
__kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose, Dtype)(
|
||||
__global Dtype* A,
|
||||
__write_only image2d_t ImA,
|
||||
int offA,
|
||||
@ -625,6 +975,14 @@ __kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose,Dtype)(
|
||||
const int gidx = get_global_id(0);
|
||||
const int gidy = get_global_id(1);
|
||||
int2 coord_dst = (int2)(gidx, gidy);
|
||||
#if TYPE == TYPE_HALF
|
||||
if (gidx >= width || gidy >= height) {
|
||||
write_imageh(ImA, coord_dst, 0);
|
||||
return;
|
||||
}
|
||||
__global Dtype* A_off = A + offA;
|
||||
write_imageh(ImA, coord_dst, A_off[gidy * ldA + gidx]);
|
||||
#else
|
||||
if (gidx >= width || gidy >= height) {
|
||||
write_imageui(ImA, coord_dst, (uint4)0);
|
||||
return;
|
||||
@ -632,4 +990,5 @@ __kernel void TEMPLATE(gemm_buffer_copy_image_no_transpose,Dtype)(
|
||||
__global Dtype* A_off = A + offA;
|
||||
uint4 srcA = convert_uint4(as_uchar4(A_off[gidy * ldA + gidx]));
|
||||
write_imageui(ImA, coord_dst, srcA);
|
||||
#endif
|
||||
}
|
||||
|
@ -40,16 +40,20 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
#define Dtype float
|
||||
#define KERNEL_ARG_DTYPE float
|
||||
|
||||
__kernel void TEMPLATE(axpy,Dtype)(const int n, const Dtype alpha, __global const Dtype* x,
|
||||
__kernel void TEMPLATE(axpy,Dtype)(const int n, const KERNEL_ARG_DTYPE alpha, __global const Dtype* x,
|
||||
const int offx, __global Dtype* y,
|
||||
const int offy) {
|
||||
for (int index = get_global_id(0); index < n; index += get_global_size(0)) {
|
||||
Dtype src = x[offx + index];
|
||||
Dtype dst = y[offy + index];
|
||||
y[offy + index] = alpha * src + dst;
|
||||
y[offy + index] = convert_Dtype(alpha) * src + dst;
|
||||
}
|
||||
}
|
||||
|
@ -39,41 +39,45 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
#define Dtype float
|
||||
#define KERNEL_ARG_DTYPE float
|
||||
|
||||
__kernel void TEMPLATE(matvec_mul4,Dtype)(
|
||||
__global const float * A,
|
||||
__global const Dtype * A,
|
||||
int offA,
|
||||
unsigned int A_col_size,
|
||||
unsigned int trail_item,
|
||||
__global const float * v,
|
||||
__global const Dtype * v,
|
||||
int offv,
|
||||
float alpha,
|
||||
float beta,
|
||||
__global float4 * result,
|
||||
KERNEL_ARG_DTYPE alpha,
|
||||
KERNEL_ARG_DTYPE beta,
|
||||
__global Dtype4* result,
|
||||
int offr,
|
||||
__local float4 * work)
|
||||
__local Dtype4* work)
|
||||
{
|
||||
unsigned int row_gid = get_group_id(0);
|
||||
unsigned int lid = get_local_id(0);
|
||||
const __global float *src0_read = A + row_gid * 4 * A_col_size + offA;
|
||||
const __global float *src1_read = v + offv;
|
||||
result = (__global float4*)((__global float*)result + offr);
|
||||
float4 dot0 = (float4)(0.f);
|
||||
float4 dot1 = (float4)(0.f);
|
||||
float4 dot2 = (float4)(0.f);
|
||||
float4 dot3 = (float4)(0.f);
|
||||
const __global Dtype *src0_read = A + row_gid * 4 * A_col_size + offA;
|
||||
const __global Dtype *src1_read = v + offv;
|
||||
result = (__global Dtype4*)((__global Dtype*)result + offr);
|
||||
Dtype4 dot0 = (Dtype4)(0.f);
|
||||
Dtype4 dot1 = (Dtype4)(0.f);
|
||||
Dtype4 dot2 = (Dtype4)(0.f);
|
||||
Dtype4 dot3 = (Dtype4)(0.f);
|
||||
|
||||
unsigned int i = lid;
|
||||
while( i < A_col_size / 4) {
|
||||
const float4 a0 = vload4(i, src0_read);
|
||||
const float4 a1 = vload4(i, src0_read + A_col_size);
|
||||
const float4 a2 = vload4(i, src0_read + 2 * A_col_size);
|
||||
const float4 a3 = vload4(i, src0_read + 3 * A_col_size);
|
||||
const Dtype4 a0 = vload4(i, src0_read);
|
||||
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
|
||||
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
|
||||
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
|
||||
|
||||
const float4 b0 = vload4(i, src1_read);
|
||||
const Dtype4 b0 = vload4(i, src1_read);
|
||||
|
||||
dot0 += a0 * b0;
|
||||
dot1 += a1 * b0;
|
||||
@ -92,15 +96,15 @@ __kernel void TEMPLATE(matvec_mul4,Dtype)(
|
||||
{
|
||||
if(trail_item != 0)
|
||||
{
|
||||
const __global float *src0_trail = src0_read + i * 4;
|
||||
const __global float *src1_trail = src1_read + i * 4;
|
||||
const __global Dtype *src0_trail = src0_read + i * 4;
|
||||
const __global Dtype *src1_trail = src1_read + i * 4;
|
||||
for(unsigned int i = 0; i < trail_item; ++i) {
|
||||
const float at0 = src0_trail[i];
|
||||
const float at1 = src0_trail[i + A_col_size];
|
||||
const float at2 = src0_trail[i + 2 * A_col_size];
|
||||
const float at3 = src0_trail[i + 3 * A_col_size];
|
||||
const Dtype at0 = src0_trail[i];
|
||||
const Dtype at1 = src0_trail[i + A_col_size];
|
||||
const Dtype at2 = src0_trail[i + 2 * A_col_size];
|
||||
const Dtype at3 = src0_trail[i + 3 * A_col_size];
|
||||
|
||||
const float bt = src1_trail[i];
|
||||
const Dtype bt = src1_trail[i];
|
||||
|
||||
work[lid].s0 += at0 * bt;
|
||||
work[lid].s1 += at1 * bt;
|
||||
@ -118,40 +122,40 @@ __kernel void TEMPLATE(matvec_mul4,Dtype)(
|
||||
}
|
||||
if(lid == 0) {
|
||||
if(beta == (Dtype)0)
|
||||
result[row_gid] = alpha * work[0];
|
||||
result[row_gid] = convert_Dtype(alpha) * work[0];
|
||||
else
|
||||
result[row_gid] = alpha * work[0] + beta * result[row_gid];
|
||||
result[row_gid] = convert_Dtype(alpha) * work[0] + convert_Dtype(beta) * result[row_gid];
|
||||
}
|
||||
}
|
||||
|
||||
/* This kernel used for the trailing rows when row_of_A %4 !=0 */
|
||||
__kernel void TEMPLATE(matvec_mul1,Dtype)(
|
||||
__global const float * A,
|
||||
__global const Dtype * A,
|
||||
int offA,
|
||||
unsigned int A_col_size,
|
||||
unsigned int row_offset,
|
||||
unsigned int trail_item,
|
||||
__global const float * v,
|
||||
__global const Dtype * v,
|
||||
int offv,
|
||||
float alpha,
|
||||
float beta,
|
||||
__global float * result,
|
||||
KERNEL_ARG_DTYPE alpha,
|
||||
KERNEL_ARG_DTYPE beta,
|
||||
__global Dtype * result,
|
||||
int offr,
|
||||
__local float * work)
|
||||
__local Dtype * work)
|
||||
{
|
||||
unsigned int row_gid = get_group_id(0);
|
||||
unsigned int lid = get_local_id(0);
|
||||
|
||||
const __global float *src0_read = A + (row_offset + row_gid) * A_col_size + offA;
|
||||
const __global float *src1_read = v + + offv;
|
||||
const __global Dtype *src0_read = A + (row_offset + row_gid) * A_col_size + offA;
|
||||
const __global Dtype *src1_read = v + + offv;
|
||||
result = result + offr;
|
||||
float4 dot0 = (float4)(0.f);
|
||||
Dtype4 dot0 = (Dtype4)(0.f);
|
||||
|
||||
unsigned int i = lid;
|
||||
while( i < A_col_size / 4)
|
||||
{
|
||||
const float4 a0 = vload4(i, src0_read);
|
||||
const float4 b0 = vload4(i, src1_read);
|
||||
const Dtype4 a0 = vload4(i, src0_read);
|
||||
const Dtype4 b0 = vload4(i, src1_read);
|
||||
|
||||
dot0 += a0 * b0;
|
||||
i += get_local_size(0);
|
||||
@ -163,11 +167,11 @@ __kernel void TEMPLATE(matvec_mul1,Dtype)(
|
||||
{
|
||||
if(trail_item != 0)
|
||||
{
|
||||
const __global float *src0_trail = src0_read + i * 4;
|
||||
const __global float *src1_trail = src1_read + i * 4;
|
||||
const __global Dtype *src0_trail = src0_read + i * 4;
|
||||
const __global Dtype *src1_trail = src1_read + i * 4;
|
||||
for(unsigned int i = 0; i < trail_item; ++i) {
|
||||
const float at0 = src0_trail[i];
|
||||
const float bt = src1_trail[i];
|
||||
const Dtype at0 = src0_trail[i];
|
||||
const Dtype bt = src1_trail[i];
|
||||
|
||||
work[lid] += at0 * bt;
|
||||
}
|
||||
@ -182,10 +186,10 @@ __kernel void TEMPLATE(matvec_mul1,Dtype)(
|
||||
|
||||
if(lid == 0) {
|
||||
if(beta == (Dtype)0) {
|
||||
result[row_gid+row_offset] = alpha * work[0];
|
||||
result[row_gid+row_offset] = convert_Dtype(alpha) * work[0];
|
||||
} else {
|
||||
result[row_gid+row_offset] *= beta;
|
||||
result[row_gid+row_offset] += alpha * work[0];
|
||||
result[row_gid+row_offset] *= convert_Dtype(beta);
|
||||
result[row_gid+row_offset] += convert_Dtype(alpha) * work[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -40,7 +40,11 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#define Dtype float
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
#define Dtype float
|
||||
#define Dtype4 float4
|
||||
#define Dtype8 float8
|
||||
|
||||
@ -135,17 +139,17 @@ __kernel void MVN(__global const Dtype* src,
|
||||
store(dst_vec, dst, index);
|
||||
}
|
||||
|
||||
__kernel void MEAN_FUSE(__global const Dtype * A,
|
||||
__kernel void MEAN_FUSE(__global const T * A,
|
||||
unsigned int A_col_size,
|
||||
float alpha,
|
||||
__global Dtype4 * result,
|
||||
__global Dtype * B,
|
||||
__global T4 * mean,
|
||||
__global Dtype * tmp,
|
||||
__local Dtype4 * work)
|
||||
{
|
||||
unsigned int row_gid = get_group_id(0);
|
||||
unsigned int lid = get_local_id(0);
|
||||
const __global Dtype *src0_read = A + row_gid * 4 * A_col_size;
|
||||
__global Dtype *dst0_read = B + row_gid * 4 * A_col_size;
|
||||
const __global T *src0_read = A + row_gid * 4 * A_col_size;
|
||||
__global Dtype *dst0_read = tmp + row_gid * 4 * A_col_size;
|
||||
Dtype4 dot0, dot1, dot2, dot3;
|
||||
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
|
||||
|
||||
@ -153,15 +157,15 @@ __kernel void MEAN_FUSE(__global const Dtype * A,
|
||||
const Dtype4 b0 = (Dtype4)1.f;
|
||||
while( i < A_col_size / 4)
|
||||
{
|
||||
const Dtype4 a0 = vload4(i, src0_read);
|
||||
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
|
||||
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
|
||||
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
|
||||
const T4 a0 = vload4(i, src0_read);
|
||||
const T4 a1 = vload4(i, src0_read + A_col_size);
|
||||
const T4 a2 = vload4(i, src0_read + 2 * A_col_size);
|
||||
const T4 a3 = vload4(i, src0_read + 3 * A_col_size);
|
||||
|
||||
dot0 += a0;
|
||||
dot1 += a1;
|
||||
dot2 += a2;
|
||||
dot3 += a3;
|
||||
dot0 += convert_float4(a0);
|
||||
dot1 += convert_float4(a1);
|
||||
dot2 += convert_float4(a2);
|
||||
dot3 += convert_float4(a3);
|
||||
|
||||
i += get_local_size(0);
|
||||
}
|
||||
@ -181,22 +185,22 @@ __kernel void MEAN_FUSE(__global const Dtype * A,
|
||||
|
||||
if(lid == 0)
|
||||
{
|
||||
result[row_gid] = alpha * work[0];
|
||||
mean[row_gid] = convert_T(alpha * work[0]);
|
||||
}
|
||||
|
||||
Dtype4 sum = work[0] * alpha;
|
||||
i = lid;
|
||||
while( i < A_col_size / 4)
|
||||
{
|
||||
const Dtype4 a0 = vload4(i, src0_read);
|
||||
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
|
||||
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
|
||||
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
|
||||
const T4 a0 = vload4(i, src0_read);
|
||||
const T4 a1 = vload4(i, src0_read + A_col_size);
|
||||
const T4 a2 = vload4(i, src0_read + 2 * A_col_size);
|
||||
const T4 a3 = vload4(i, src0_read + 3 * A_col_size);
|
||||
|
||||
dot0 = native_powr(a0 - (Dtype4)sum.x, 2);
|
||||
dot1 = native_powr(a1 - (Dtype4)sum.y, 2);
|
||||
dot2 = native_powr(a2 - (Dtype4)sum.z, 2);
|
||||
dot3 = native_powr(a3 - (Dtype4)sum.w, 2);
|
||||
dot0 = native_powr(convert_float4(a0) - (Dtype4)sum.x, 2);
|
||||
dot1 = native_powr(convert_float4(a1) - (Dtype4)sum.y, 2);
|
||||
dot2 = native_powr(convert_float4(a2) - (Dtype4)sum.z, 2);
|
||||
dot3 = native_powr(convert_float4(a3) - (Dtype4)sum.w, 2);
|
||||
|
||||
vstore4(dot0, i, dst0_read);
|
||||
vstore4(dot1, i, dst0_read + A_col_size);
|
||||
@ -208,22 +212,22 @@ __kernel void MEAN_FUSE(__global const Dtype * A,
|
||||
}
|
||||
|
||||
__kernel void MVN_FUSE(__global const Dtype * tmp,
|
||||
__global const Dtype * A,
|
||||
__global const Dtype4 * mean,
|
||||
__global const T * A,
|
||||
__global const T4 * mean,
|
||||
unsigned int A_col_size,
|
||||
const float alpha_val,
|
||||
const float eps,
|
||||
const float relu_slope,
|
||||
__global const Dtype4 * bnorm_weight,
|
||||
__global const Dtype4 * bnorm_bias,
|
||||
__global Dtype * B,
|
||||
__global T * B,
|
||||
__local Dtype4 * work)
|
||||
{
|
||||
unsigned int row_gid = get_group_id(0);
|
||||
unsigned int lid = get_local_id(0);
|
||||
const __global Dtype *src0_read = tmp + row_gid * 4 * A_col_size;
|
||||
const __global Dtype *src1_read = A + row_gid * 4 * A_col_size;
|
||||
__global Dtype *dst0_read = B + row_gid * 4 * A_col_size;
|
||||
const __global T *src1_read = A + row_gid * 4 * A_col_size;
|
||||
__global T *dst0_read = B + row_gid * 4 * A_col_size;
|
||||
Dtype4 dot0, dot1, dot2, dot3;
|
||||
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
|
||||
|
||||
@ -257,7 +261,7 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
Dtype4 mean_val = mean[row_gid];
|
||||
Dtype4 mean_val = convert_float4(mean[row_gid]);
|
||||
Dtype4 dev_val = sqrt(work[0] * alpha_val) + (Dtype4)eps;
|
||||
Dtype4 alpha = (Dtype4)1.f / dev_val;
|
||||
|
||||
@ -271,15 +275,15 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
|
||||
i = lid;
|
||||
while( i < A_col_size / 4)
|
||||
{
|
||||
const Dtype4 a0 = vload4(i, src1_read);
|
||||
const Dtype4 a1 = vload4(i, src1_read + A_col_size);
|
||||
const Dtype4 a2 = vload4(i, src1_read + 2 * A_col_size);
|
||||
const Dtype4 a3 = vload4(i, src1_read + 3 * A_col_size);
|
||||
const T4 a0 = vload4(i, src1_read);
|
||||
const T4 a1 = vload4(i, src1_read + A_col_size);
|
||||
const T4 a2 = vload4(i, src1_read + 2 * A_col_size);
|
||||
const T4 a3 = vload4(i, src1_read + 3 * A_col_size);
|
||||
|
||||
dot0 = (a0 - (Dtype4)mean_val.x) * alpha.x;
|
||||
dot1 = (a1 - (Dtype4)mean_val.y) * alpha.y;
|
||||
dot2 = (a2 - (Dtype4)mean_val.z) * alpha.z;
|
||||
dot3 = (a3 - (Dtype4)mean_val.w) * alpha.w;
|
||||
dot0 = (convert_float4(a0) - (Dtype4)mean_val.x) * alpha.x;
|
||||
dot1 = (convert_float4(a1) - (Dtype4)mean_val.y) * alpha.y;
|
||||
dot2 = (convert_float4(a2) - (Dtype4)mean_val.z) * alpha.z;
|
||||
dot3 = (convert_float4(a3) - (Dtype4)mean_val.w) * alpha.w;
|
||||
|
||||
dot0 = dot0 * w.x + (Dtype4)b.x;
|
||||
dot1 = dot1 * w.y + (Dtype4)b.y;
|
||||
@ -300,10 +304,10 @@ __kernel void MVN_FUSE(__global const Dtype * tmp,
|
||||
dot3 = select(new3, dot3, dot3 > (Dtype4)0.f);
|
||||
#endif
|
||||
|
||||
vstore4(dot0, i, dst0_read);
|
||||
vstore4(dot1, i, dst0_read + A_col_size);
|
||||
vstore4(dot2, i, dst0_read + 2 * A_col_size);
|
||||
vstore4(dot3, i, dst0_read + 3 * A_col_size);
|
||||
vstore4(convert_T(dot0), i, dst0_read);
|
||||
vstore4(convert_T(dot1), i, dst0_read + A_col_size);
|
||||
vstore4(convert_T(dot2), i, dst0_read + 2 * A_col_size);
|
||||
vstore4(convert_T(dot3), i, dst0_read + 3 * A_col_size);
|
||||
|
||||
i += get_local_size(0);
|
||||
}
|
||||
|
@ -42,14 +42,18 @@
|
||||
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
#define Dtype float
|
||||
#define KERNEL_ARG_DTYPE float
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
__kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global const Dtype* in,
|
||||
const int num, const int channels,
|
||||
const int height, const int width, const int size,
|
||||
const Dtype alpha_over_size, const Dtype k,
|
||||
const KERNEL_ARG_DTYPE alpha_over_size, const KERNEL_ARG_DTYPE k,
|
||||
__global Dtype* const out,
|
||||
const Dtype negative_beta) {
|
||||
const KERNEL_ARG_DTYPE negative_beta) {
|
||||
for (int index = get_global_id(0); index < nthreads;
|
||||
index += get_global_size(0)) {
|
||||
// find out the local offset
|
||||
@ -60,11 +64,11 @@ __kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global con
|
||||
const int step = height * width;
|
||||
__global const Dtype* in_off = in + offset;
|
||||
__global Dtype* out_off = out + offset;
|
||||
Dtype scale_val;
|
||||
KERNEL_ARG_DTYPE scale_val;
|
||||
int head = 0;
|
||||
const int pre_pad = (size - 1) / 2;
|
||||
const int post_pad = size - pre_pad - 1;
|
||||
Dtype accum_scale = 0;
|
||||
KERNEL_ARG_DTYPE accum_scale = 0;
|
||||
// fill the scale at [n, :, h, w]
|
||||
// accumulate values
|
||||
while (head < post_pad && head < channels) {
|
||||
@ -79,7 +83,7 @@ __kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global con
|
||||
* in_off[(head - size) * step];
|
||||
}
|
||||
scale_val = k + accum_scale * alpha_over_size;
|
||||
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((float)scale_val, (float)negative_beta);
|
||||
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((Dtype)scale_val, (Dtype)negative_beta);
|
||||
++head;
|
||||
}
|
||||
// subtract only
|
||||
@ -89,7 +93,7 @@ __kernel void TEMPLATE(lrn_full_no_scale,Dtype)(const int nthreads, __global con
|
||||
* in_off[(head - size) * step];
|
||||
}
|
||||
scale_val = k + accum_scale * alpha_over_size;
|
||||
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((float)scale_val, (float)negative_beta);
|
||||
out_off[(head - post_pad) * step] = in_off[(head - post_pad) * step] * (Dtype)native_powr((Dtype)scale_val, (Dtype)negative_beta);
|
||||
++head;
|
||||
}
|
||||
}
|
||||
|
@ -42,7 +42,10 @@
|
||||
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
#define Dtype float
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
#if defined KERNEL_MAX_POOL
|
||||
|
||||
|
@ -40,9 +40,9 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#define Dtype float
|
||||
#define Dtype4 float4
|
||||
#define Dtype8 float8
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
__kernel void slice(__global const Dtype* src,
|
||||
const int src_plane_size,
|
||||
|
@ -24,6 +24,10 @@
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
**************************************************************************************/
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
__kernel void kernel_channel_max(const int num, const int channels,
|
||||
const int spatial_dim, __global const T* data, __global T* out) {
|
||||
int index = get_global_id(0);
|
||||
@ -40,12 +44,12 @@ __kernel void kernel_channel_max(const int num, const int channels,
|
||||
|
||||
__kernel void kernel_channel_subtract(const int count,
|
||||
const int num, const int channels,
|
||||
const int spatial_dim, __global const T* channel_max, __global T* data) {
|
||||
const int spatial_dim, __global const T* channel_max, __global const T* src, __global T* data) {
|
||||
int index = get_global_id(0);
|
||||
if(index < count) {
|
||||
int n = index / channels / spatial_dim;
|
||||
int s = index % spatial_dim;
|
||||
data[index] -= channel_max[n * spatial_dim + s];
|
||||
data[index] = exp(src[index] - channel_max[n * spatial_dim + s]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -42,12 +42,15 @@
|
||||
|
||||
#define CONCAT(A,B) A##_##B
|
||||
#define TEMPLATE(name,type) CONCAT(name,type)
|
||||
#define Dtype float
|
||||
|
||||
#if defined(cl_intel_subgroups)
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#endif
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#endif
|
||||
|
||||
__kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int channels,
|
||||
const int spatial_dim,
|
||||
__global Dtype* scale,
|
||||
@ -60,12 +63,12 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
|
||||
int n = get_global_id(1);
|
||||
for (int index = get_global_id(0), s = 0; index < spatial_dim * get_local_size(0); index +=
|
||||
get_global_size(0), ++s) {
|
||||
float maxval = -FLT_MAX;
|
||||
Dtype maxval = -DTYPE_MAX;
|
||||
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
|
||||
Dtype tmp = data[(n * channels + c) * spatial_dim + s];
|
||||
maxval = max((Dtype)tmp, (Dtype)maxval);
|
||||
}
|
||||
maxval = sub_group_reduce_max(maxval * 100000);
|
||||
maxval = sub_group_reduce_max(maxval);
|
||||
//if (get_sub_group_local_id() == 0)
|
||||
group_tmp[get_sub_group_id() * spatial_dim + s] = maxval;
|
||||
}
|
||||
@ -77,7 +80,7 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
|
||||
int s = index / get_max_sub_group_size();
|
||||
Dtype maxval = sub_group_reduce_max(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
|
||||
//if (get_sub_group_local_id() == 0)
|
||||
scale_tmp[s] = maxval / 100000;
|
||||
scale_tmp[s] = maxval;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -95,7 +98,7 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
|
||||
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
|
||||
sum += out_tmp[c * spatial_dim + s];
|
||||
}
|
||||
sum = sub_group_reduce_add(sum * 100000);
|
||||
sum = sub_group_reduce_add(sum);
|
||||
group_tmp[get_sub_group_id() * spatial_dim + s] = sum;
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -105,7 +108,7 @@ __kernel void TEMPLATE(softmax_forward_slm,Dtype)(const int num, const int chann
|
||||
int s = index / get_max_sub_group_size();
|
||||
Dtype sum = sub_group_reduce_add(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
|
||||
//if (get_sub_group_local_id() == 0)
|
||||
scale_tmp[s] = sum / 100000;
|
||||
scale_tmp[s] = sum;
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
@ -130,12 +133,12 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
|
||||
__global Dtype *group_tmp = scale + spatial_dim * num + n * get_max_sub_group_size() * spatial_dim;
|
||||
for (int index = get_global_id(0), s = 0; index < spatial_dim * get_local_size(0); index +=
|
||||
get_global_size(0), ++s) {
|
||||
float maxval = -FLT_MAX;
|
||||
Dtype maxval = -DTYPE_MAX;
|
||||
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
|
||||
Dtype tmp = data[(n * channels + c) * spatial_dim + s];
|
||||
maxval = max((Dtype)tmp, (Dtype)maxval);
|
||||
}
|
||||
maxval = sub_group_reduce_max(maxval * 100000);
|
||||
maxval = sub_group_reduce_max(maxval);
|
||||
//if (get_sub_group_local_id() == 0)
|
||||
group_tmp[get_sub_group_id() * spatial_dim + s] = maxval;
|
||||
}
|
||||
@ -146,7 +149,7 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
|
||||
int s = index / get_max_sub_group_size();
|
||||
Dtype maxval = sub_group_reduce_max(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
|
||||
//if (get_sub_group_local_id() == 0)
|
||||
scale[n * spatial_dim + s] = maxval / 100000;
|
||||
scale[n * spatial_dim + s] = maxval;
|
||||
}
|
||||
|
||||
barrier(CLK_GLOBAL_MEM_FENCE);
|
||||
@ -164,7 +167,7 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
|
||||
for (int c = get_global_id(0); c < channels; c += get_global_size(0)) {
|
||||
sum += out[n * channels * spatial_dim + c * spatial_dim + s];
|
||||
}
|
||||
sum = sub_group_reduce_add(sum * 100000);
|
||||
sum = sub_group_reduce_add(sum);
|
||||
group_tmp[get_sub_group_id() * spatial_dim + s] = sum;
|
||||
}
|
||||
barrier(CLK_GLOBAL_MEM_FENCE);
|
||||
@ -174,7 +177,7 @@ __kernel void TEMPLATE(softmax_forward,Dtype)(const int num, const int channels,
|
||||
int s = index / get_max_sub_group_size();
|
||||
Dtype sum = sub_group_reduce_add(group_tmp[get_sub_group_local_id() * spatial_dim + s]);
|
||||
//if (get_sub_group_local_id() == 0)
|
||||
scale[n * spatial_dim + s] = sum / 100000;
|
||||
scale[n * spatial_dim + s] = sum;
|
||||
}
|
||||
barrier(CLK_GLOBAL_MEM_FENCE);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user