Fixed documentation.

This commit is contained in:
Marina Noskova 2016-02-26 14:40:23 +03:00
parent 53711ec29d
commit 3f0a51bda1

View File

@ -1554,10 +1554,8 @@ Note that the parameters margin regularization, initial step size, and step decr
To use SVMSGD algorithm do as follows:
- first, create the SVMSGD object.
- then set parameters (model type, margin type, margin regularization, initial step size, step decreasing power) using the functions
setSvmsgdType(), setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower(), or the function setOptimalParameters().
- first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(),
setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower().
- then the SVM model can be trained using the train features and the correspondent labels by the method train().