mirror of
https://github.com/opencv/opencv.git
synced 2025-01-21 00:20:59 +08:00
added implementation GpuMat::convertTo and merged this with matrix_operations.cpp
This commit is contained in:
parent
7bf29e1488
commit
3f5dd5f1cc
@ -51,6 +51,7 @@ namespace cv
|
||||
namespace gpu
|
||||
{
|
||||
typedef unsigned char uchar;
|
||||
typedef signed char schar;
|
||||
typedef unsigned short ushort;
|
||||
typedef unsigned int uint;
|
||||
|
||||
@ -62,6 +63,8 @@ namespace cv
|
||||
|
||||
extern "C" void set_to_without_mask (const DevMem2D& mat, const double * scalar, int depth, int channels);
|
||||
extern "C" void set_to_with_mask (const DevMem2D& mat, const double * scalar, const DevMem2D& mask, int depth, int channels);
|
||||
|
||||
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -46,10 +46,17 @@
|
||||
#include "cuda_shared.hpp"
|
||||
#include "cuda_runtime.h"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::impl;
|
||||
|
||||
__constant__ __align__(16) float scalar_d[4];
|
||||
|
||||
namespace mat_operators
|
||||
{
|
||||
//////////////////////////////////////////////////////////
|
||||
// SetTo
|
||||
//////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T, int channels>
|
||||
__global__ void kernel_set_to_without_mask(T * mat, int cols, int rows, int step)
|
||||
{
|
||||
@ -76,7 +83,245 @@ namespace mat_operators
|
||||
mat[idx] = scalar_d[ x % channels ];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// ConvertTo
|
||||
//////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T, typename DT, size_t src_elem_size, size_t dst_elem_size>
|
||||
struct Converter
|
||||
{
|
||||
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
if (x < width && y < height)
|
||||
{
|
||||
const T* src = (const T*)(srcmat + src_step * y);
|
||||
DT* dst = (DT*)(dstmat + dst_step * y);
|
||||
|
||||
dst[x] = (DT)__double2int_rn(alpha * src[x] + beta);
|
||||
}
|
||||
}
|
||||
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
|
||||
{
|
||||
return dim3(divUp(width, block.x), divUp(height, block.y));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename DT>
|
||||
struct Converter<T, DT, 1, 1>
|
||||
{
|
||||
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
if (y < height)
|
||||
{
|
||||
const T* src = (const T*)(srcmat + src_step * y);
|
||||
DT* dst = (DT*)(dstmat + dst_step * y);
|
||||
if ((x << 2) + 3 < width)
|
||||
{
|
||||
uchar4 src4b = ((const uchar4*)src)[x];
|
||||
uchar4 dst4b;
|
||||
|
||||
const T* src1b = (const T*) &src4b.x;
|
||||
DT* dst1b = (DT*) &dst4b.x;
|
||||
|
||||
dst1b[0] = (DT)__double2int_rn(alpha * src1b[0] + beta);
|
||||
dst1b[1] = (DT)__double2int_rn(alpha * src1b[1] + beta);
|
||||
dst1b[2] = (DT)__double2int_rn(alpha * src1b[2] + beta);
|
||||
dst1b[3] = (DT)__double2int_rn(alpha * src1b[3] + beta);
|
||||
|
||||
((uchar4*)dst)[x] = dst4b;
|
||||
}
|
||||
else
|
||||
{
|
||||
if ((x << 2) + 0 < width)
|
||||
dst[(x << 2) + 0] = (DT)__double2int_rn(alpha * src[(x << 2) + 0] + beta);
|
||||
|
||||
if ((x << 2) + 1 < width)
|
||||
dst[(x << 2) + 1] = (DT)__double2int_rn(alpha * src[(x << 2) + 1] + beta);
|
||||
|
||||
if ((x << 2) + 2 < width)
|
||||
dst[(x << 2) + 2] = (DT)__double2int_rn(alpha * src[(x << 2) + 2] + beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
|
||||
{
|
||||
return dim3(divUp(width, block.x << 2), divUp(height, block.y));
|
||||
}
|
||||
};/**/
|
||||
|
||||
template <typename T, typename DT>
|
||||
struct Converter<T, DT, 1, 2>
|
||||
{
|
||||
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
if (y < height)
|
||||
{
|
||||
const T* src = (const T*)(srcmat + src_step * y);
|
||||
DT* dst = (DT*)(dstmat + dst_step * y);
|
||||
if ((x << 1) + 1 < width)
|
||||
{
|
||||
uchar2 src2b = ((const uchar2*)src)[x];
|
||||
ushort2 dst2s;
|
||||
|
||||
const T* src1b = (const T*) &src2b;
|
||||
DT* dst1s = (DT*) &dst2s;
|
||||
dst1s[0] = (DT)__double2int_rn(alpha * src1b[0] + beta);
|
||||
dst1s[1] = (DT)__double2int_rn(alpha * src1b[1] + beta);
|
||||
|
||||
((ushort2*)(dst))[x] = dst2s;
|
||||
}
|
||||
else
|
||||
{
|
||||
if ((x << 1) < width)
|
||||
dst[(x << 1)] = (DT)__double2int_rn(alpha * src[(x << 1)] + beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
|
||||
{
|
||||
return dim3(divUp(width, block.x << 1), divUp(height, block.y));
|
||||
}
|
||||
};/**/
|
||||
|
||||
template <typename T, typename DT>
|
||||
struct Converter<T, DT, 2, 1>
|
||||
{
|
||||
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
if (y < height)
|
||||
{
|
||||
const T* src = (const T*)(srcmat + src_step * y);
|
||||
DT* dst = (DT*)(dstmat + dst_step * y);
|
||||
if ((x << 2) + 3 < width)
|
||||
{
|
||||
ushort4 src4s = ((const ushort4*)src)[x];
|
||||
uchar4 dst4b;
|
||||
|
||||
const T* src1s = (const T*) &src4s.x;
|
||||
DT* dst1b = (DT*) &dst4b.x;
|
||||
dst1b[0] = (DT)__double2int_rn(alpha * src1s[0] + beta);
|
||||
dst1b[1] = (DT)__double2int_rn(alpha * src1s[1] + beta);
|
||||
dst1b[2] = (DT)__double2int_rn(alpha * src1s[2] + beta);
|
||||
dst1b[3] = (DT)__double2int_rn(alpha * src1s[3] + beta);
|
||||
|
||||
((uchar4*)(dst))[x] = dst4b;
|
||||
}
|
||||
else
|
||||
{
|
||||
if ((x << 2) + 0 < width)
|
||||
dst[(x << 2) + 0] = (DT)__double2int_rn(alpha * src[(x << 2) + 0] + beta);
|
||||
if ((x << 2) + 1 < width)
|
||||
dst[(x << 2) + 1] = (DT)__double2int_rn(alpha * src[(x << 2) + 1] + beta);
|
||||
if ((x << 2) + 2 < width)
|
||||
dst[(x << 2) + 2] = (DT)__double2int_rn(alpha * src[(x << 2) + 2] + beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
|
||||
{
|
||||
return dim3(divUp(width, block.x << 2), divUp(height, block.y));
|
||||
}
|
||||
};/**/
|
||||
|
||||
template <typename T, typename DT>
|
||||
struct Converter<T, DT, 2, 2>
|
||||
{
|
||||
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
if (y < height)
|
||||
{
|
||||
const T* src = (const T*)(srcmat + src_step * y);
|
||||
DT* dst = (DT*)(dstmat + dst_step * y);
|
||||
if ((x << 1) + 1 < width)
|
||||
{
|
||||
ushort2 src2s = ((const ushort2*)src)[x];
|
||||
ushort2 dst2s;
|
||||
|
||||
const T* src1s = (const T*) &src2s.x;
|
||||
DT* dst1s = (DT*) &dst2s.x;
|
||||
dst1s[0] = (DT)__double2int_rn(alpha * src1s[0] + beta);
|
||||
dst1s[1] = (DT)__double2int_rn(alpha * src1s[1] + beta);
|
||||
|
||||
((ushort2*)dst)[x] = dst2s;
|
||||
}
|
||||
else
|
||||
{
|
||||
if ((x << 1) < width)
|
||||
dst[(x << 1)] = (DT)__double2int_rn(alpha * src[(x << 1)] + beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
|
||||
{
|
||||
return dim3(divUp(width, block.x << 1), divUp(height, block.y));
|
||||
}
|
||||
};/**/
|
||||
|
||||
template <typename T, size_t src_elem_size, size_t dst_elem_size>
|
||||
struct Converter<T, float, src_elem_size, dst_elem_size>
|
||||
{
|
||||
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
if (x < width && y < height)
|
||||
{
|
||||
const T* src = (const T*)(srcmat + src_step * y);
|
||||
float* dst = (float*)(dstmat + dst_step * y);
|
||||
|
||||
dst[x] = (float)(alpha * src[x] + beta);
|
||||
}
|
||||
}
|
||||
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
|
||||
{
|
||||
return dim3(divUp(width, block.x), divUp(height, block.y));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, size_t src_elem_size, size_t dst_elem_size>
|
||||
struct Converter<T, double, src_elem_size, dst_elem_size>
|
||||
{
|
||||
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
if (x < width && y < height)
|
||||
{
|
||||
const T* src = (const T*)(srcmat + src_step * y);
|
||||
double* dst = (double*)(dstmat + dst_step * y);
|
||||
|
||||
dst[x] = (double)(alpha * src[x] + beta);
|
||||
}
|
||||
}
|
||||
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
|
||||
{
|
||||
return dim3(divUp(width, block.x), divUp(height, block.y));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename DT>
|
||||
__global__ static void kernel_convert_to(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
Converter<T, DT, sizeof(T), sizeof(DT)>::convert(srcmat, src_step, dstmat, dst_step, width, height, alpha, beta);
|
||||
}
|
||||
|
||||
} // namespace mat_operators
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// SetTo
|
||||
//////////////////////////////////////////////////////////////
|
||||
|
||||
extern "C" void cv::gpu::impl::set_to_without_mask(const DevMem2D& mat, const double * scalar, int elemSize1, int channels)
|
||||
{
|
||||
@ -158,3 +403,66 @@ extern "C" void cv::gpu::impl::set_to_with_mask(const DevMem2D& mat, const doubl
|
||||
cudaSafeCall ( cudaThreadSynchronize() );
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// ConvertTo
|
||||
//////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
namespace impl
|
||||
{
|
||||
|
||||
typedef void (*CvtFunc)(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta);
|
||||
|
||||
//#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 130)
|
||||
|
||||
template<typename T, typename DT>
|
||||
void cvt_(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid = ::mat_operators::Converter<T, DT, sizeof(T), sizeof(DT)>::calcGrid(width, height, block);
|
||||
::mat_operators::kernel_convert_to<T, DT><<<grid, block>>>(src.ptr, src.step, dst.ptr, dst.step, width, height, alpha, beta);
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
//#endif
|
||||
|
||||
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta)
|
||||
{
|
||||
static CvtFunc tab[8][8] =
|
||||
{
|
||||
{cvt_<uchar, uchar>, cvt_<uchar, schar>, cvt_<uchar, ushort>, cvt_<uchar, short>,
|
||||
cvt_<uchar, int>, cvt_<uchar, float>, cvt_<uchar, double>, 0},
|
||||
|
||||
{cvt_<schar, uchar>, cvt_<schar, schar>, cvt_<schar, ushort>, cvt_<schar, short>,
|
||||
cvt_<schar, int>, cvt_<schar, float>, cvt_<schar, double>, 0},
|
||||
|
||||
{cvt_<ushort, uchar>, cvt_<ushort, schar>, cvt_<ushort, ushort>, cvt_<ushort, short>,
|
||||
cvt_<ushort, int>, cvt_<ushort, float>, cvt_<ushort, double>, 0},
|
||||
|
||||
{cvt_<short, uchar>, cvt_<short, schar>, cvt_<short, ushort>, cvt_<short, short>,
|
||||
cvt_<short, int>, cvt_<short, float>, cvt_<short, double>, 0},
|
||||
|
||||
{cvt_<int, uchar>, cvt_<int, schar>, cvt_<int, ushort>,
|
||||
cvt_<int, short>, cvt_<int, int>, cvt_<int, float>, cvt_<int, double>, 0},
|
||||
|
||||
{cvt_<float, uchar>, cvt_<float, schar>, cvt_<float, ushort>,
|
||||
cvt_<float, short>, cvt_<float, int>, cvt_<float, float>, cvt_<float, double>, 0},
|
||||
|
||||
{cvt_<double, uchar>, cvt_<double, schar>, cvt_<double, ushort>,
|
||||
cvt_<double, short>, cvt_<double, int>, cvt_<double, float>, cvt_<double, double>, 0},
|
||||
|
||||
{0,0,0,0,0,0,0,0}
|
||||
};
|
||||
|
||||
CvtFunc func = tab[sdepth][ddepth];
|
||||
if (func == 0)
|
||||
error("Operation \'ConvertTo\' doesn't supported on your GPU model", __FILE__, __LINE__);
|
||||
func(src, dst, width, height, alpha, beta);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -104,9 +104,31 @@ void cv::gpu::GpuMat::copyTo( GpuMat& /*m*/, const GpuMat&/* mask */) const
|
||||
CV_Assert(!"Not implemented");
|
||||
}
|
||||
|
||||
void cv::gpu::GpuMat::convertTo( GpuMat& /*m*/, int /*rtype*/, double /*alpha*/, double /*beta*/ ) const
|
||||
void cv::gpu::GpuMat::convertTo( GpuMat& dst, int rtype, double alpha, double beta ) const
|
||||
{
|
||||
CV_Assert(!"Not implemented");
|
||||
//CV_Assert(!"Not implemented");
|
||||
|
||||
bool noScale = fabs(alpha-1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();
|
||||
|
||||
if( rtype < 0 )
|
||||
rtype = type();
|
||||
else
|
||||
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
|
||||
|
||||
int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype);
|
||||
/*if( sdepth == ddepth && noScale )
|
||||
{
|
||||
copyTo(dst);
|
||||
return;
|
||||
}*/
|
||||
|
||||
GpuMat temp;
|
||||
const GpuMat* psrc = this;
|
||||
if( sdepth != ddepth && psrc == &dst )
|
||||
psrc = &(temp = *this);
|
||||
|
||||
dst.create( size(), rtype );
|
||||
impl::convert_to(*psrc, sdepth, dst, ddepth, psrc->cols * psrc->channels(), psrc->rows, alpha, beta);
|
||||
}
|
||||
|
||||
GpuMat& GpuMat::operator = (const Scalar& s)
|
||||
|
@ -51,6 +51,7 @@
|
||||
#endif
|
||||
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
|
||||
|
89
tests/gpu/src/convert_to.cpp
Normal file
89
tests/gpu/src/convert_to.cpp
Normal file
@ -0,0 +1,89 @@
|
||||
#include "gputest.hpp"
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <numeric>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
using namespace gpu;
|
||||
|
||||
class CV_GpuMatOpConvertTo : public CvTest
|
||||
{
|
||||
public:
|
||||
CV_GpuMatOpConvertTo();
|
||||
~CV_GpuMatOpConvertTo();
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_GpuMatOpConvertTo::CV_GpuMatOpConvertTo(): CvTest( "GpuMatOperatorConvertTo", "convertTo" ) {}
|
||||
CV_GpuMatOpConvertTo::~CV_GpuMatOpConvertTo() {}
|
||||
|
||||
void CV_GpuMatOpConvertTo::run( int /* start_from */)
|
||||
{
|
||||
const Size img_size(67, 35);
|
||||
|
||||
const int types[] = {CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F/**/};
|
||||
const int types_num = sizeof(types) / sizeof(int);
|
||||
|
||||
const char* types_str[] = {"CV_8U", "CV_8S", "CV_16U", "CV_16S", "CV_32S", "CV_32F", "CV_64F"};
|
||||
|
||||
bool passed = true;
|
||||
|
||||
for (int i = 0; i < types_num && passed; ++i)
|
||||
{
|
||||
for (int j = 0; j < types_num && passed; ++j)
|
||||
{
|
||||
for (int c = 1; c < 2 && passed; ++c)
|
||||
{
|
||||
//if (i == j)
|
||||
// continue;
|
||||
|
||||
const int src_type = CV_MAKETYPE(types[i], c);
|
||||
const int dst_type = types[j];
|
||||
const double alpha = (double)rand() / RAND_MAX * 10.0;
|
||||
const double beta = (double)rand() / RAND_MAX * 10.0;
|
||||
|
||||
Mat cpumatsrc(img_size, src_type);
|
||||
randu(cpumatsrc, Scalar::all(0), Scalar::all(10));
|
||||
GpuMat gpumatsrc(cpumatsrc);
|
||||
Mat cpumatdst;
|
||||
GpuMat gpumatdst;
|
||||
|
||||
//double cput = (double)getTickCount();
|
||||
cpumatsrc.convertTo(cpumatdst, dst_type, alpha, beta);
|
||||
//cput = ((double)getTickCount() - cput) / getTickFrequency();
|
||||
|
||||
//double gput = (double)getTickCount();
|
||||
gpumatsrc.convertTo(gpumatdst, dst_type, alpha, beta);
|
||||
//gput = ((double)getTickCount() - gput) / getTickFrequency();
|
||||
|
||||
/*cout << "convertTo time: " << endl;
|
||||
cout << "CPU time: " << cput << endl;
|
||||
cout << "GPU time: " << gput << endl;/**/
|
||||
|
||||
double r = norm(cpumatdst, gpumatdst, NORM_L1);
|
||||
if (r > 1)
|
||||
{
|
||||
/*namedWindow("CPU");
|
||||
imshow("CPU", cpumatdst);
|
||||
namedWindow("GPU");
|
||||
imshow("GPU", gpumatdst);
|
||||
waitKey();/**/
|
||||
|
||||
cout << "Failed:" << endl;
|
||||
cout << "\tr = " << r << endl;
|
||||
cout << "\tSRC_TYPE=" << types_str[i] << "C" << c << " DST_TYPE=" << types_str[j] << endl;/**/
|
||||
|
||||
passed = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ts->set_failed_test_info(passed ? CvTS::OK : CvTS::FAIL_GENERIC);
|
||||
}
|
||||
|
||||
CV_GpuMatOpConvertTo CV_GpuMatOpConvertTo_test;
|
Loading…
Reference in New Issue
Block a user