mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge pull request #661 from cuda-geek:merge-cpu-gpu-detections
This commit is contained in:
commit
3f8d87d82c
@ -49,18 +49,21 @@
|
||||
namespace cv { namespace softcascade {
|
||||
|
||||
// Representation of detectors result.
|
||||
// We assume that image is less then 2^16x2^16.
|
||||
struct CV_EXPORTS Detection
|
||||
{
|
||||
// Default object type.
|
||||
enum {PEDESTRIAN = 1};
|
||||
|
||||
// Creates Detection from an object bounding box and confidence.
|
||||
// Param b is a bounding box
|
||||
// Param c is a confidence that object belongs to class k
|
||||
// Param k is an object class
|
||||
Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN) : bb(b), confidence(c), kind(k) {}
|
||||
Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN);
|
||||
cv::Rect bb() const;
|
||||
enum {PEDESTRIAN = 1};
|
||||
|
||||
cv::Rect bb;
|
||||
ushort x;
|
||||
ushort y;
|
||||
ushort w;
|
||||
ushort h;
|
||||
float confidence;
|
||||
int kind;
|
||||
};
|
||||
@ -247,19 +250,6 @@ class CV_EXPORTS SCascade : public cv::Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
// Representation of detectors result.
|
||||
struct CV_EXPORTS Detection
|
||||
{
|
||||
ushort x;
|
||||
ushort y;
|
||||
ushort w;
|
||||
ushort h;
|
||||
float confidence;
|
||||
int kind;
|
||||
|
||||
enum {PEDESTRIAN = 0};
|
||||
};
|
||||
|
||||
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF};
|
||||
|
||||
// An empty cascade will be created.
|
||||
|
@ -27,8 +27,8 @@ void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy";
|
||||
namespace {
|
||||
struct DetectionLess
|
||||
{
|
||||
bool operator()(const cv::softcascade::SCascade::Detection& a,
|
||||
const cv::softcascade::SCascade::Detection& b) const
|
||||
bool operator()(const cv::softcascade::Detection& a,
|
||||
const cv::softcascade::Detection& b) const
|
||||
{
|
||||
if (a.x != b.x) return a.x < b.x;
|
||||
else if (a.y != b.y) return a.y < b.y;
|
||||
@ -41,7 +41,7 @@ namespace {
|
||||
{
|
||||
cv::Mat detections(objects);
|
||||
|
||||
typedef cv::softcascade::SCascade::Detection Detection;
|
||||
typedef cv::softcascade::Detection Detection;
|
||||
Detection* begin = (Detection*)(detections.ptr<char>(0));
|
||||
Detection* end = (Detection*)(detections.ptr<char>(0) + detections.cols);
|
||||
std::sort(begin, end, DetectionLess());
|
||||
@ -73,7 +73,7 @@ RUN_GPU(SCascadeTest, detect)
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
rois.setTo(1);
|
||||
|
||||
cascade.detect(colored, rois, objectBoxes);
|
||||
@ -215,7 +215,7 @@ RUN_GPU(SCascadeTest, detectStream)
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
rois.setTo(1);
|
||||
|
||||
cv::gpu::Stream s;
|
||||
|
@ -17,7 +17,7 @@ void extractRacts(std::vector<Detection> objectBoxes, std::vector<Rect>& rects)
|
||||
{
|
||||
rects.clear();
|
||||
for (int i = 0; i < (int)objectBoxes.size(); ++i)
|
||||
rects.push_back(objectBoxes[i].bb);
|
||||
rects.push_back(objectBoxes[i].bb());
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -42,11 +42,14 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using cv::softcascade::Detection;
|
||||
using cv::softcascade::Detector;
|
||||
using cv::softcascade::ChannelFeatureBuilder;
|
||||
cv::softcascade::Detection::Detection(const cv::Rect& b, const float c, int k)
|
||||
: x(static_cast<ushort>(b.x)), y(static_cast<ushort>(b.y)),
|
||||
w(static_cast<ushort>(b.width)), h(static_cast<ushort>(b.height)), confidence(c), kind(k) {}
|
||||
|
||||
using namespace cv;
|
||||
cv::Rect cv::softcascade::Detection::bb() const
|
||||
{
|
||||
return cv::Rect(x, y, w, h);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
@ -151,13 +154,13 @@ struct Level
|
||||
scaleshift = static_cast<int>(relScale * (1 << 16));
|
||||
}
|
||||
|
||||
void addDetection(const int x, const int y, float confidence, std::vector<Detection>& detections) const
|
||||
void addDetection(const int x, const int y, float confidence, std::vector<cv::softcascade::Detection>& detections) const
|
||||
{
|
||||
// fix me
|
||||
int shrinkage = 4;//(*octave).shrinkage;
|
||||
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height);
|
||||
|
||||
detections.push_back(Detection(rect, confidence));
|
||||
detections.push_back(cv::softcascade::Detection(rect, confidence));
|
||||
}
|
||||
|
||||
float rescale(cv::Rect& scaledRect, const float threshold, int idx) const
|
||||
@ -183,7 +186,7 @@ struct ChannelStorage
|
||||
size_t step;
|
||||
int model_height;
|
||||
|
||||
cv::Ptr<ChannelFeatureBuilder> builder;
|
||||
cv::Ptr<cv::softcascade::ChannelFeatureBuilder> builder;
|
||||
|
||||
enum {HOG_BINS = 6, HOG_LUV_BINS = 10};
|
||||
|
||||
@ -192,7 +195,7 @@ struct ChannelStorage
|
||||
model_height = cvRound(colored.rows / (float)shrinkage);
|
||||
if (featureTypeStr == "ICF") featureTypeStr = "HOG6MagLuv";
|
||||
|
||||
builder = ChannelFeatureBuilder::create(featureTypeStr);
|
||||
builder = cv::softcascade::ChannelFeatureBuilder::create(featureTypeStr);
|
||||
(*builder)(colored, hog, cv::Size(cvRound(colored.cols / (float)shrinkage), model_height));
|
||||
|
||||
step = hog.step1();
|
||||
@ -213,8 +216,7 @@ struct ChannelStorage
|
||||
|
||||
}
|
||||
|
||||
|
||||
struct Detector::Fields
|
||||
struct cv::softcascade::Detector::Fields
|
||||
{
|
||||
float minScale;
|
||||
float maxScale;
|
||||
@ -421,17 +423,17 @@ struct Detector::Fields
|
||||
}
|
||||
};
|
||||
|
||||
Detector::Detector(const double mins, const double maxs, const int nsc, const int rej)
|
||||
cv::softcascade::Detector::Detector(const double mins, const double maxs, const int nsc, const int rej)
|
||||
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejCriteria(rej) {}
|
||||
|
||||
Detector::~Detector() { delete fields;}
|
||||
cv::softcascade::Detector::~Detector() { delete fields;}
|
||||
|
||||
void Detector::read(const cv::FileNode& fn)
|
||||
void cv::softcascade::Detector::read(const cv::FileNode& fn)
|
||||
{
|
||||
Algorithm::read(fn);
|
||||
}
|
||||
|
||||
bool Detector::load(const cv::FileNode& fn)
|
||||
bool cv::softcascade::Detector::load(const cv::FileNode& fn)
|
||||
{
|
||||
if (fields) delete fields;
|
||||
|
||||
@ -473,7 +475,7 @@ void DollarNMS(dvector& objects)
|
||||
{
|
||||
const Detection &b = *next;
|
||||
|
||||
const float ovl = overlap(a.bb, b.bb) / std::min(a.bb.area(), b.bb.area());
|
||||
const float ovl = overlap(a.bb(), b.bb()) / std::min(a.bb().area(), b.bb().area());
|
||||
|
||||
if (ovl > DollarThreshold)
|
||||
next = objects.erase(next);
|
||||
@ -485,13 +487,13 @@ void DollarNMS(dvector& objects)
|
||||
|
||||
static void suppress(int type, std::vector<Detection>& objects)
|
||||
{
|
||||
CV_Assert(type == Detector::DOLLAR);
|
||||
CV_Assert(type == cv::softcascade::Detector::DOLLAR);
|
||||
DollarNMS(objects);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Detector::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
|
||||
void cv::softcascade::Detector::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
|
||||
{
|
||||
Fields& fld = *fields;
|
||||
// create integrals
|
||||
@ -518,7 +520,7 @@ void Detector::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects
|
||||
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
|
||||
}
|
||||
|
||||
void Detector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
|
||||
void cv::softcascade::Detector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
|
||||
{
|
||||
// only color images are suppered
|
||||
cv::Mat image = _image.getMat();
|
||||
@ -570,7 +572,7 @@ void Detector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<D
|
||||
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
|
||||
}
|
||||
|
||||
void Detector::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const
|
||||
void cv::softcascade::Detector::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const
|
||||
{
|
||||
std::vector<Detection> objects;
|
||||
detect( _image, _rois, objects);
|
||||
@ -588,7 +590,7 @@ void Detector::detect(InputArray _image, InputArray _rois, OutputArray _rects,
|
||||
int i = 0;
|
||||
for (IDet it = objects.begin(); it != objects.end(); ++it, ++i)
|
||||
{
|
||||
rectPtr[i] = (*it).bb;
|
||||
rectPtr[i] = (*it).bb();
|
||||
confPtr[i] = (*it).confidence;
|
||||
}
|
||||
}
|
@ -76,7 +76,7 @@ TEST(SCascadeTest, readCascade)
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef cv::softcascade::SCascade::Detection Detection;
|
||||
typedef cv::softcascade::Detection Detection;
|
||||
|
||||
cv::Rect getFromTable(int idx)
|
||||
{
|
||||
@ -194,7 +194,7 @@ TEST_P(SCascadeTestRoi, Detect)
|
||||
cascade.detect(colored, rois, objectBoxes);
|
||||
|
||||
cv::Mat dt(objectBoxes);
|
||||
typedef cv::softcascade::SCascade::Detection Detection;
|
||||
typedef cv::softcascade::Detection Detection;
|
||||
|
||||
Detection* dts = ((Detection*)dt.data) + 1;
|
||||
int* count = dt.ptr<int>(0);
|
||||
@ -262,7 +262,7 @@ TEST_P(SCascadeTestAll, detect)
|
||||
|
||||
cascade.detect(colored, rois, objectBoxes);
|
||||
|
||||
typedef cv::softcascade::SCascade::Detection Detection;
|
||||
typedef cv::softcascade::Detection Detection;
|
||||
cv::Mat dt(objectBoxes);
|
||||
|
||||
|
||||
@ -303,7 +303,7 @@ TEST_P(SCascadeTestAll, detectStream)
|
||||
cascade.detect(colored, rois, objectBoxes, s);
|
||||
s.waitForCompletion();
|
||||
|
||||
typedef cv::softcascade::SCascade::Detection Detection;
|
||||
typedef cv::softcascade::Detection Detection;
|
||||
cv::Mat detections(objectBoxes);
|
||||
int a = *(detections.ptr<int>(0));
|
||||
ASSERT_EQ(a, expected);
|
||||
|
@ -139,12 +139,11 @@ int main(int argc, char** argv)
|
||||
std::stringstream conf(std::stringstream::in | std::stringstream::out);
|
||||
conf << d.confidence;
|
||||
|
||||
cv::rectangle(frame, cv::Rect(d.bb.x, d.bb.y, d.bb.width, d.bb.height), cv::Scalar(b, 0, 255 - b, 255), 2);
|
||||
cv::putText(frame, conf.str() , cv::Point(d.bb.x + 10, d.bb.y - 5),1, 1.1, cv::Scalar(25, 133, 255, 0), 1, CV_AA);
|
||||
cv::rectangle(frame, cv::Rect((int)d.x, (int)d.y, (int)d.w, (int)d.h), cv::Scalar(b, 0, 255 - b, 255), 2);
|
||||
cv::putText(frame, conf.str() , cv::Point((int)d.x + 10, (int)d.y - 5),1, 1.1, cv::Scalar(25, 133, 255, 0), 1, CV_AA);
|
||||
|
||||
if (wf)
|
||||
myfile << d.bb.x << "," << d.bb.y << ","
|
||||
<< d.bb.width << "," << d.bb.height << "," << d.confidence << "\n";
|
||||
myfile << d.x << "," << d.y << "," << d.w << "," << d.h << "," << d.confidence << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -3,6 +3,8 @@
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iostream>
|
||||
|
||||
typedef cv::softcascade::Detection Detection;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const std::string keys =
|
||||
@ -64,7 +66,7 @@ int main(int argc, char** argv)
|
||||
return 1;
|
||||
}
|
||||
|
||||
cv::gpu::GpuMat objects(1, sizeof(SCascade::Detection) * 10000, CV_8UC1);
|
||||
cv::gpu::GpuMat objects(1, sizeof(Detection) * 10000, CV_8UC1);
|
||||
cv::gpu::printShortCudaDeviceInfo(parser.get<int>("device"));
|
||||
for (;;)
|
||||
{
|
||||
@ -80,7 +82,6 @@ int main(int argc, char** argv)
|
||||
cascade.detect(dframe, roi, objects);
|
||||
|
||||
cv::Mat dt(objects);
|
||||
typedef cv::softcascade::SCascade::Detection Detection;
|
||||
|
||||
Detection* dts = ((Detection*)dt.data) + 1;
|
||||
int* count = dt.ptr<int>(0);
|
||||
|
Loading…
Reference in New Issue
Block a user