Merge pull request #18323 from liqi-c:tengine-lite-update

Tengine lite update

* update tengine

* Modify for arm32 build.

* format optimization

* add teng_ befor some tengine api

* update graph_t to teng_graph_t

* update graph_t to teng_graph_t

* Code structure optimization

* optimization

* optimization

* remove space

* update tengine url

Co-authored-by: liqi <qli@openailab.com>
This commit is contained in:
NesQl 2020-09-23 17:34:29 +08:00 committed by GitHub
parent 48ddb53332
commit 3fc1487cc9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 208 additions and 152 deletions

View File

@ -20,9 +20,8 @@
# Author: qtang@openailab.com or https://github.com/BUG1989
# qli@openailab.com
# sqfu@openailab.com
#
SET(TENGINE_COMMIT_VERSION "8a4c58e0e05cd850f4bb0936a330edc86dc0e28c")
SET(TENGINE_COMMIT_VERSION "e89cf8870de2ff0a80cfe626c0b52b2a16fb302e")
SET(OCV_TENGINE_DIR "${OpenCV_BINARY_DIR}/3rdparty/libtengine")
SET(OCV_TENGINE_SOURCE_PATH "${OCV_TENGINE_DIR}/Tengine-${TENGINE_COMMIT_VERSION}")
@ -32,11 +31,10 @@ IF(EXISTS "${OCV_TENGINE_SOURCE_PATH}")
SET(Tengine_FOUND ON)
SET(BUILD_TENGINE ON)
ELSE()
SET(OCV_TENGINE_FILENAME "${TENGINE_COMMIT_VERSION}.zip")#name2
SET(OCV_TENGINE_URL "https://github.com/OAID/Tengine/archive/") #url2
SET(tengine_md5sum f51ca8f3963faeeff3f019a6f6edc206) #md5sum2
SET(OCV_TENGINE_FILENAME "${TENGINE_COMMIT_VERSION}.zip")#name
SET(OCV_TENGINE_URL "https://github.com/OAID/Tengine/archive/") #url
SET(tengine_md5sum 23f61ebb1dd419f1207d8876496289c5) #md5sum
#MESSAGE(STATUS "**** TENGINE DOWNLOAD BEGIN ****")
ocv_download(FILENAME ${OCV_TENGINE_FILENAME}
HASH ${tengine_md5sum}
URL
@ -62,24 +60,17 @@ ENDIF()
if(BUILD_TENGINE)
SET(HAVE_TENGINE 1)
# android system
if(ANDROID)
if(${ANDROID_ABI} STREQUAL "armeabi-v7a")
SET(CONFIG_ARCH_ARM32 ON)
elseif(${ANDROID_ABI} STREQUAL "arm64-v8a")
SET(CONFIG_ARCH_ARM64 ON)
endif()
else()
if(NOT ANDROID)
# linux system
if(CMAKE_SYSTEM_PROCESSOR STREQUAL arm)
SET(CONFIG_ARCH_ARM32 ON)
SET(TENGINE_TOOLCHAIN_FLAG "-march=armv7-a")
elseif(CMAKE_SYSTEM_PROCESSOR STREQUAL aarch64) ## AARCH64
SET(CONFIG_ARCH_ARM64 ON)
SET(TENGINE_TOOLCHAIN_FLAG "-march=armv8-a")
endif()
endif()
SET(BUILT_IN_OPENCV ON) ## set for tengine compile discern .
SET(Tengine_INCLUDE_DIR "${OCV_TENGINE_SOURCE_PATH}/core/include" CACHE INTERNAL "")
SET(Tengine_INCLUDE_DIR "${OCV_TENGINE_SOURCE_PATH}/include" CACHE INTERNAL "")
if(EXISTS "${OCV_TENGINE_SOURCE_PATH}/CMakeLists.txt")
add_subdirectory("${OCV_TENGINE_SOURCE_PATH}" "${OCV_TENGINE_DIR}/build")
else()

View File

@ -128,18 +128,11 @@ else()
set(sources_options ${sources_options} EXCLUDE_CUDA)
endif()
if(HAVE_TENGINE)
list(APPEND include_dirs ${TENGINE_INCLUDE_DIRS})
if(EXISTS ${TENGINE_LIBRARIES})
list(APPEND libs ${TENGINE_LIBRARIES})
else()
ocv_add_dependencies(opencv_dnn tengine)
list(APPEND libs ${TENGINE_LIBRARIES})
endif()
list(APPEND libs -Wl,--whole-archive ${TENGINE_LIBRARIES} -Wl,--no-whole-archive)
endif()
ocv_module_include_directories(${include_dirs})
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
ocv_append_source_files_cxx_compiler_options(fw_srcs "-Wno-suggest-override") # GCC

View File

@ -1585,7 +1585,9 @@ struct Net::Impl : public detail::NetImplBase
{
CV_TRACE_FUNCTION();
if (preferableBackend == DNN_BACKEND_OPENCV)
{
CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
}
else if (preferableBackend == DNN_BACKEND_HALIDE)
initHalideBackend();
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)

View File

@ -248,6 +248,10 @@ public:
float power;
#endif
#ifdef HAVE_TENGINE
teng_graph_t tengine_graph;
#endif
#ifdef HAVE_CUDA
cuda4dnn::ConvolutionConfiguration::FusionMode cudaFusionMode;
cuda4dnn::ConvolutionConfiguration::ActivationType cudaActType;
@ -266,8 +270,20 @@ public:
#ifdef HAVE_CUDA
cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE;
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
#endif
#ifdef HAVE_TENGINE
tengine_graph=NULL;
#endif
}
#ifdef HAVE_TENGINE
~ConvolutionLayerImpl()
{
if(NULL != tengine_graph )
{
tengine_release(tengine_graph);
}
}
#endif
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
{
@ -391,6 +407,13 @@ public:
for(int i = 0; i < numOutput; i++ )
biasvec[i] = biasMat.at<float>(i);
}
#ifdef HAVE_TENGINE
if(NULL != tengine_graph )
{
tengine_release(tengine_graph);
tengine_graph = NULL ;
}
#endif
#ifdef HAVE_OPENCL
convolutionOp.release();
#endif
@ -1765,26 +1788,50 @@ public:
}
#ifdef HAVE_TENGINE
int inch = inputs[0].size[1]; // inch
int in_h = inputs[0].size[2]; // in_h
int in_w = inputs[0].size[3]; // in_w
bool tengine_ret = false; ;
int out_b = outputs[0].size[0]; // out batch size
int outch = outputs[0].size[1]; // outch
int out_h = outputs[0].size[2]; // out_h
int out_w = outputs[0].size[3]; // out_w
std::vector<Mat> teng_in, teng_out;
inputs_arr.getMatVector(teng_in);
outputs_arr.getMatVector(teng_out);
float *input_ = inputs[0].ptr<float>();
float *output_ = outputs[0].ptr<float>();
int inch = teng_in[0].size[1]; // inch
int in_h = teng_in[0].size[2]; // in_h
int in_w = teng_in[0].size[3]; // in_w
int out_b = teng_out[0].size[0]; // out batch size
int outch = teng_out[0].size[1]; // outch
int out_h = teng_out[0].size[2]; // out_h
int out_w = teng_out[0].size[3]; // out_w
float *input_ = teng_in[0].ptr<float>();
float *output_ = teng_out[0].ptr<float>();
float *kernel_ = weightsMat.ptr<float>();
float *teg_bias = &biasvec[0];
bool tengine_ret = tengine_forward(input_, inch, ngroups, in_h, in_w,
output_, out_b, outch, out_h, out_w,
kernel_, kernel_size.size(), kernel.height, kernel.width,
teg_bias, stride.height, stride.width,
pad.height, pad.width, dilation.height, dilation.width,
weightsMat.step1(), padMode);
int nstripes = std::max(getNumThreads(), 1);
/* tengine_init will run when first time. */
if(NULL == tengine_graph)
{
tengine_graph = tengine_init(name.c_str(), input_, inch, ngroups, in_h, in_w,
output_, out_b, outch, out_h, out_w,
kernel_, kernel_size.size(), kernel.height, kernel.width,
teg_bias, stride.height, stride.width,
pad.height, pad.width, dilation.height, dilation.width,
weightsMat.step1(), padMode, tengine_graph, nstripes);
/*printf("Init(%s): input=%p(%d %d %d %d ),output=%p(%d %d %d %d ),kernel=%p(%ld %d %d ), bias=%p ,"
"stride(%d %d), pad(%d %d), dilation(%d %d) ,weightsMat=%ld, padMode=%s ,tengine_graph = %p \n",
name.c_str(),input_, inch, ngroups, in_h, in_w,
output_, out_b, outch, out_h, out_w,
kernel_, kernel_size.size(), kernel.height, kernel.width,
teg_bias, stride.height, stride.width,
pad.height, pad.width, dilation.height, dilation.width,
weightsMat.step1(), padMode.c_str() ,tengine_graph);*/
}
if(NULL != tengine_graph)
{
tengine_ret = tengine_forward(tengine_graph);
}
/* activation */
if((true == tengine_ret) && activ )
{

View File

@ -26,17 +26,24 @@
#define TENGINE_GRAPH_CONVOLUTION_HPP
#define FLOAT_TO_REALSIZE (4)
#ifdef HAVE_TENGINE
#include "tengine_c_api.h"
namespace cv
{
namespace dnn
{
bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
teng_graph_t tengine_init(const char* name , float* input_, int inch, int group, int in_h, int in_w,
float *output_, int out_b, int outch, int out_h, int out_w,
float *kernel_,int kernel_s , int kernel_h, int kernel_w,
float *teg_bias, int stride_h,int stride_w,
int pad_h, int pad_w, int dilation_h, int dilation_w,
size_t wstep, const std::string padMode) ;
size_t wstep, const std::string padMode , teng_graph_t& graph, int nstripes) ;
bool tengine_forward(teng_graph_t& graph) ;
bool tengine_release(teng_graph_t& graph) ;
}
}
#endif /* TENGINE_GRAPH_CONVOLUTION_HPP */
#endif
#endif /* TENGINE_GRAPH_CONVOLUTION_HPP */

View File

@ -34,80 +34,78 @@
#ifdef HAVE_TENGINE
#include "tengine_c_api.h"
#include "tengine_c_compat.h"
#include "tengine_operations.h"
namespace cv
{
namespace dnn
{
int create_input_node(graph_t graph, const char* node_name, int inch, int in_h, int in_w)
static int create_input_node(teng_graph_t graph, const char* node_name, int inch, int in_h, int in_w)
{
node_t node = create_graph_node(graph, node_name, "InputOp");
tensor_t tensor = create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
set_node_output_tensor(node, 0, tensor, TENSOR_TYPE_INPUT);
node_t node = teng_create_graph_node(graph, node_name, "InputOp");
tensor_t tensor = teng_create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
teng_set_node_output_tensor(node, 0, tensor, TENSOR_TYPE_INPUT);
int dims[4] = {1, inch, in_h, in_w};
set_tensor_shape(tensor, dims, 4);
teng_set_tensor_shape(tensor, dims, 4);
release_graph_tensor(tensor);
release_graph_node(node);
teng_release_graph_tensor(tensor);
teng_release_graph_node(node);
return 0;
}
int create_conv_node(graph_t graph, const char* node_name, const char* input_name, int in_h, int in_w, int out_h, int out_w,
static int create_conv_node(teng_graph_t graph, const char* node_name, const char* input_name, int in_h, int in_w, int out_h, int out_w,
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, int pad_w, int inch, int outch, int group,
int dilation_h, int dilation_w, int activation, std::string padMode)
{
node_t conv_node = create_graph_node(graph, node_name, "Convolution");
tensor_t input_tensor = get_graph_tensor(graph, input_name);
node_t conv_node = teng_create_graph_node(graph, node_name, "Convolution");
tensor_t input_tensor = teng_get_graph_tensor(graph, input_name);
if (input_tensor == NULL)
{
CV_LOG_WARNING(NULL,"Tengine :input_tensor is NULL . " );
CV_LOG_WARNING(NULL,"Tengine: input_tensor is NULL." );
return -1;
}
set_node_input_tensor(conv_node, 0, input_tensor);
release_graph_tensor(input_tensor);
teng_set_node_input_tensor(conv_node, 0, input_tensor);
teng_release_graph_tensor(input_tensor);
/* output */
tensor_t output_tensor = create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
tensor_t output_tensor = teng_create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
set_node_output_tensor(conv_node, 0, output_tensor, TENSOR_TYPE_VAR);
release_graph_tensor(output_tensor);
teng_set_node_output_tensor(conv_node, 0, output_tensor, TENSOR_TYPE_VAR);
teng_release_graph_tensor(output_tensor);
/* weight */
std::string weight_name(node_name);
weight_name += "/weight";
node_t w_node = create_graph_node(graph, weight_name.c_str(), "Const");
tensor_t w_tensor = create_graph_tensor(graph, weight_name.c_str(), TENGINE_DT_FP32);
set_node_output_tensor(w_node, 0, w_tensor, TENSOR_TYPE_CONST);
set_node_input_tensor(conv_node, 1, w_tensor);
node_t w_node = teng_create_graph_node(graph, weight_name.c_str(), "Const");
tensor_t w_tensor = teng_create_graph_tensor(graph, weight_name.c_str(), TENGINE_DT_FP32);
teng_set_node_output_tensor(w_node, 0, w_tensor, TENSOR_TYPE_CONST);
teng_set_node_input_tensor(conv_node, 1, w_tensor);
int w_dims[] = {outch, inch / group, kernel_h, kernel_w};
set_tensor_shape(w_tensor, w_dims, 4);
teng_set_tensor_shape(w_tensor, w_dims, 4);
release_graph_node(w_node);
release_graph_tensor(w_tensor);
teng_release_graph_node(w_node);
teng_release_graph_tensor(w_tensor);
/* bias */
std::string bias_name(node_name);
bias_name += "/bias";
node_t b_node = create_graph_node(graph, bias_name.c_str(), "Const");
tensor_t b_tensor = create_graph_tensor(graph, bias_name.c_str(), TENGINE_DT_FP32);
set_node_output_tensor(b_node, 0, b_tensor, TENSOR_TYPE_CONST);
node_t b_node = teng_create_graph_node(graph, bias_name.c_str(), "Const");
tensor_t b_tensor = teng_create_graph_tensor(graph, bias_name.c_str(), TENGINE_DT_FP32);
teng_set_node_output_tensor(b_node, 0, b_tensor, TENSOR_TYPE_CONST);
int b_dims[] = {outch};
set_tensor_shape(b_tensor, b_dims, 1);
teng_set_tensor_shape(b_tensor, b_dims, 1);
set_node_input_tensor(conv_node, 2, b_tensor);
release_graph_node(b_node);
release_graph_tensor(b_tensor);
teng_set_node_input_tensor(conv_node, 2, b_tensor);
teng_release_graph_node(b_node);
teng_release_graph_tensor(b_tensor);
int pad_h1 = pad_h;
int pad_w1 = pad_w;
@ -127,31 +125,32 @@ int create_conv_node(graph_t graph, const char* node_name, const char* input_nam
}
/* attr */
set_node_attr_int(conv_node, "kernel_h", &kernel_h);
set_node_attr_int(conv_node, "kernel_w", &kernel_w);
set_node_attr_int(conv_node, "stride_h", &stride_h);
set_node_attr_int(conv_node, "stride_w", &stride_w);
set_node_attr_int(conv_node, "pad_h0", &pad_h);
set_node_attr_int(conv_node, "pad_w0", &pad_w);
set_node_attr_int(conv_node, "pad_h1", &pad_h1);
set_node_attr_int(conv_node, "pad_w1", &pad_w1);
set_node_attr_int(conv_node, "output_channel", &outch);
set_node_attr_int(conv_node, "group", &group);
set_node_attr_int(conv_node, "dilation_h", &dilation_h);
set_node_attr_int(conv_node, "dilation_w", &dilation_w);
set_node_attr_int(conv_node, "activation", &activation);
teng_set_node_attr_int(conv_node, "kernel_h", &kernel_h);
teng_set_node_attr_int(conv_node, "kernel_w", &kernel_w);
teng_set_node_attr_int(conv_node, "stride_h", &stride_h);
teng_set_node_attr_int(conv_node, "stride_w", &stride_w);
teng_set_node_attr_int(conv_node, "pad_h0", &pad_h);
teng_set_node_attr_int(conv_node, "pad_w0", &pad_w);
teng_set_node_attr_int(conv_node, "pad_h1", &pad_h1);
teng_set_node_attr_int(conv_node, "pad_w1", &pad_w1);
teng_set_node_attr_int(conv_node, "output_channel", &outch);
teng_set_node_attr_int(conv_node, "input_channel", &inch);
teng_set_node_attr_int(conv_node, "group", &group);
teng_set_node_attr_int(conv_node, "dilation_h", &dilation_h);
teng_set_node_attr_int(conv_node, "dilation_w", &dilation_w);
// set_node_attr_int(conv_node, "activation", &activation);
release_graph_node(conv_node);
teng_release_graph_node(conv_node);
return 0;
}
graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int in_w,
float *output_data, int outch, int out_h, int out_w,
static teng_graph_t create_conv_graph(const char* layer_name, float* input_data, int inch, int group, int in_h, int in_w,
float* output_data, int outch, int out_h, int out_w,
int kernel_h, int kernel_w,
int stride_h,int stride_w,
int pad_h, int pad_w, int dilation_h, int dilation_w, int activation,
float * teg_weight , float * teg_bias , std::string padMode)
float* teg_weight, float* teg_bias, std::string padMode, int nstripes)
{
node_t conv_node = NULL;
@ -170,28 +169,28 @@ graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int
int input_num = 0;
/* create graph */
graph_t graph = create_graph(NULL, NULL, NULL);
teng_graph_t graph = teng_create_graph(NULL, NULL, NULL);
bool ok = true;
if(graph == NULL)
{
CV_LOG_WARNING(NULL,"Tengine :create_graph failed . " );
CV_LOG_WARNING(NULL,"Tengine: create_graph failed." );
ok = false;
}
const char* input_name = "data";
const char* conv_name = "conv";
const char* conv_name = layer_name;
if (ok && create_input_node(graph, input_name, inch, in_h, in_w) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :create_input_node failed. " );
CV_LOG_WARNING(NULL,"Tengine: create_input_node failed." );
ok = false;
}
if (ok && create_conv_node(graph, conv_name, input_name, in_h, in_w, out_h, out_w, kernel_h, kernel_w,
stride_h, stride_w, pad_h, pad_w, inch, outch, group, dilation_h, dilation_w, activation, padMode) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :create conv node failed. " );
CV_LOG_WARNING(NULL,"Tengine: create conv node failed." );
ok = false;
}
@ -199,94 +198,101 @@ graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int
const char* inputs_name[] = {input_name};
const char* outputs_name[] = {conv_name};
if (ok && set_graph_input_node(graph, inputs_name, sizeof(inputs_name) / sizeof(char*)) < 0)
if (ok && teng_set_graph_input_node(graph, inputs_name, sizeof(inputs_name) / sizeof(char*)) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :set inputs failed . " );
CV_LOG_WARNING(NULL,"Tengine: set inputs failed." );
ok = false;
}
if (ok && set_graph_output_node(graph, outputs_name, sizeof(outputs_name) / sizeof(char*)) < 0)
if (ok && teng_set_graph_output_node(graph, outputs_name, sizeof(outputs_name) / sizeof(char*)) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :set outputs failed . " );
CV_LOG_WARNING(NULL,"Tengine: set outputs failed." );
ok = false;
}
/* set input data */
if (ok)
{
input_tensor = get_graph_input_tensor(graph, 0, 0);
buf_size = get_tensor_buffer_size(input_tensor);
input_tensor = teng_get_graph_input_tensor(graph, 0, 0);
buf_size = teng_get_tensor_buffer_size(input_tensor);
if (buf_size != in_size * FLOAT_TO_REALSIZE)
{
CV_LOG_WARNING(NULL,"Tengine :Input data size check failed . ");
CV_LOG_WARNING(NULL,"Tengine: Input data size check failed.");
ok = false;
}
}
if (ok)
{
set_tensor_buffer(input_tensor, (float *)input_data, buf_size);
release_graph_tensor(input_tensor);
teng_set_tensor_buffer(input_tensor, (float *)input_data, buf_size);
teng_release_graph_tensor(input_tensor);
/* create convolution node */
/* set weight node */
conv_node = get_graph_node(graph, "conv");
weight_tensor = get_node_input_tensor(conv_node, 1);
buf_size = get_tensor_buffer_size(weight_tensor);
conv_node = teng_get_graph_node(graph, conv_name);
weight_tensor = teng_get_node_input_tensor(conv_node, 1);
buf_size = teng_get_tensor_buffer_size(weight_tensor);
if (buf_size != weight_size * FLOAT_TO_REALSIZE)
{
CV_LOG_WARNING(NULL,"Input weight size check failed . ");
CV_LOG_WARNING(NULL,"Tengine: Input weight size check failed.");
ok = false;
}
}
if (ok)
{
set_tensor_buffer(weight_tensor, teg_weight, buf_size);
teng_set_tensor_buffer(weight_tensor, teg_weight, buf_size);
/* set bias node */
input_num = get_node_input_number(conv_node);
input_num = teng_get_node_input_number(conv_node);
if (input_num > 2)
{
bias_tensor = get_node_input_tensor(conv_node, 2);
buf_size = get_tensor_buffer_size(bias_tensor);
bias_tensor = teng_get_node_input_tensor(conv_node, 2);
buf_size = teng_get_tensor_buffer_size(bias_tensor);
if (buf_size != bias_size * FLOAT_TO_REALSIZE)
{
CV_LOG_WARNING(NULL,"Tengine :Input bias size check failed . ");
CV_LOG_WARNING(NULL,"Tengine: Input bias size check failed.");
ok = false;
}
else set_tensor_buffer(bias_tensor, teg_bias, buf_size);
else teng_set_tensor_buffer(bias_tensor, teg_bias, buf_size);
}
}
/* prerun */
if (ok && teng_prerun_graph_multithread(graph, TENGINE_CLUSTER_BIG, nstripes) < 0)
{
CV_LOG_WARNING(NULL, "Tengine: prerun_graph failed.");
ok = false;
}
if (ok)
{
/* set output data */
output_tensor = get_node_output_tensor(conv_node, 0);
int ret = set_tensor_buffer(output_tensor, output_data, out_size * FLOAT_TO_REALSIZE);
output_tensor = teng_get_node_output_tensor(conv_node, 0);
int ret = teng_set_tensor_buffer(output_tensor, output_data, out_size * FLOAT_TO_REALSIZE);
if(ret)
{
CV_LOG_WARNING(NULL,"Tengine :Set output tensor buffer failed . " );
CV_LOG_WARNING(NULL,"Tengine: Set output tensor buffer failed." );
ok = false;
}
}
if (!ok)
if (false == ok)
{
destroy_graph(graph);
return NULL;
teng_destroy_graph(graph) ;
return NULL ;
}
return graph;
}
bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
static bool tengine_init_flag = false;
teng_graph_t tengine_init(const char* layer_name, float* input_, int inch, int group, int in_h, int in_w,
float *output_, int out_b, int outch, int out_h, int out_w,
float *kernel_, int kernel_s ,int kernel_h, int kernel_w,
float *teg_bias, int stride_h,int stride_w,
int pad_h, int pad_w, int dilation_h, int dilation_w,
size_t wstep,const std::string padMode)
size_t wstep, const std::string padMode, teng_graph_t &graph, int nstripes)
{
graph_t graph = NULL;
std::vector<float> teg_weight_vec;
float *teg_weight = NULL;
int kernel_inwh = (inch / group) * kernel_w * kernel_h;
@ -296,17 +302,20 @@ bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
if (!(kernel_s == 2 && kernel_h == kernel_w && pad_h == pad_w
&& dilation_h == dilation_w && stride_h == stride_w
&& out_b == 1 && pad_h < 10)) // just for Conv2D
return false;
{
// printf("return : just for Conv2D\n");
return NULL;
}
{
/*printf("Tengine: input (1 x %d x %d x %d),output (%d x %d x %d x %d), kernel (%d x %d), stride (%d x %d), dilation (%d x %d), pad (%d x %d).\n",
inch, in_h, in_w,
out_b,outch,out_h,out_w,
/* printf("Tengine(%s): input (1 x %d x %d x %d),output (%d x %d x %d x %d), kernel (%d x %d), stride (%d x %d), dilation (%d x %d), pad (%d x %d).\n",
layer_name, inch, in_h, in_w,
out_b, outch, out_h, out_w,
kernel_w, kernel_h,
stride_w, stride_h,
dilation_w, dilation_h,
pad_w,pad_h);*/
pad_w, pad_h);
*/
// weight
if (kernel_inwh != wstep)
{
@ -323,35 +332,42 @@ bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
}
/* initial the resoruce of tengine */
init_tengine();
if(false == tengine_init_flag)
{
init_tengine();
tengine_init_flag = true;
}
/* create the convolution graph */
graph = create_conv_graph( input_, inch, group, in_h, in_w,
graph = create_conv_graph(layer_name, input_, inch, group, in_h, in_w,
output_, outch, out_h, out_w,
kernel_h, kernel_w, stride_h,stride_w,
pad_h, pad_w, dilation_h, dilation_w, activation,
teg_weight , teg_bias , padMode);
/* prerun */
if(prerun_graph(graph) < 0)
teg_weight, teg_bias, padMode, nstripes);
if(NULL == graph )
{
CV_LOG_WARNING(NULL, "Tengine :prerun_graph failed .");
return false ;
return NULL;
}
/* run */
if(run_graph(graph, 1) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :run_graph failed .");
return false ;
}
postrun_graph(graph);
destroy_graph(graph);
}
return true ;
return graph ;
}
bool tengine_forward(teng_graph_t &graph)
{
/* run */
if(teng_run_graph(graph, 1) < 0)
{
CV_LOG_WARNING(NULL,"Tengine: run_graph failed.");
return false ;
}
return true;
}
bool tengine_release(teng_graph_t &graph)
{
teng_postrun_graph(graph);
teng_destroy_graph(graph);
return true;
}
}
}
#endif