mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #18323 from liqi-c:tengine-lite-update
Tengine lite update * update tengine * Modify for arm32 build. * format optimization * add teng_ befor some tengine api * update graph_t to teng_graph_t * update graph_t to teng_graph_t * Code structure optimization * optimization * optimization * remove space * update tengine url Co-authored-by: liqi <qli@openailab.com>
This commit is contained in:
parent
48ddb53332
commit
3fc1487cc9
25
3rdparty/libtengine/tengine.cmake
vendored
25
3rdparty/libtengine/tengine.cmake
vendored
@ -20,9 +20,8 @@
|
||||
# Author: qtang@openailab.com or https://github.com/BUG1989
|
||||
# qli@openailab.com
|
||||
# sqfu@openailab.com
|
||||
#
|
||||
|
||||
SET(TENGINE_COMMIT_VERSION "8a4c58e0e05cd850f4bb0936a330edc86dc0e28c")
|
||||
SET(TENGINE_COMMIT_VERSION "e89cf8870de2ff0a80cfe626c0b52b2a16fb302e")
|
||||
SET(OCV_TENGINE_DIR "${OpenCV_BINARY_DIR}/3rdparty/libtengine")
|
||||
SET(OCV_TENGINE_SOURCE_PATH "${OCV_TENGINE_DIR}/Tengine-${TENGINE_COMMIT_VERSION}")
|
||||
|
||||
@ -32,11 +31,10 @@ IF(EXISTS "${OCV_TENGINE_SOURCE_PATH}")
|
||||
SET(Tengine_FOUND ON)
|
||||
SET(BUILD_TENGINE ON)
|
||||
ELSE()
|
||||
SET(OCV_TENGINE_FILENAME "${TENGINE_COMMIT_VERSION}.zip")#name2
|
||||
SET(OCV_TENGINE_URL "https://github.com/OAID/Tengine/archive/") #url2
|
||||
SET(tengine_md5sum f51ca8f3963faeeff3f019a6f6edc206) #md5sum2
|
||||
SET(OCV_TENGINE_FILENAME "${TENGINE_COMMIT_VERSION}.zip")#name
|
||||
SET(OCV_TENGINE_URL "https://github.com/OAID/Tengine/archive/") #url
|
||||
SET(tengine_md5sum 23f61ebb1dd419f1207d8876496289c5) #md5sum
|
||||
|
||||
#MESSAGE(STATUS "**** TENGINE DOWNLOAD BEGIN ****")
|
||||
ocv_download(FILENAME ${OCV_TENGINE_FILENAME}
|
||||
HASH ${tengine_md5sum}
|
||||
URL
|
||||
@ -62,24 +60,17 @@ ENDIF()
|
||||
if(BUILD_TENGINE)
|
||||
SET(HAVE_TENGINE 1)
|
||||
|
||||
# android system
|
||||
if(ANDROID)
|
||||
if(${ANDROID_ABI} STREQUAL "armeabi-v7a")
|
||||
SET(CONFIG_ARCH_ARM32 ON)
|
||||
elseif(${ANDROID_ABI} STREQUAL "arm64-v8a")
|
||||
SET(CONFIG_ARCH_ARM64 ON)
|
||||
endif()
|
||||
else()
|
||||
if(NOT ANDROID)
|
||||
# linux system
|
||||
if(CMAKE_SYSTEM_PROCESSOR STREQUAL arm)
|
||||
SET(CONFIG_ARCH_ARM32 ON)
|
||||
SET(TENGINE_TOOLCHAIN_FLAG "-march=armv7-a")
|
||||
elseif(CMAKE_SYSTEM_PROCESSOR STREQUAL aarch64) ## AARCH64
|
||||
SET(CONFIG_ARCH_ARM64 ON)
|
||||
SET(TENGINE_TOOLCHAIN_FLAG "-march=armv8-a")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
SET(BUILT_IN_OPENCV ON) ## set for tengine compile discern .
|
||||
SET(Tengine_INCLUDE_DIR "${OCV_TENGINE_SOURCE_PATH}/core/include" CACHE INTERNAL "")
|
||||
SET(Tengine_INCLUDE_DIR "${OCV_TENGINE_SOURCE_PATH}/include" CACHE INTERNAL "")
|
||||
if(EXISTS "${OCV_TENGINE_SOURCE_PATH}/CMakeLists.txt")
|
||||
add_subdirectory("${OCV_TENGINE_SOURCE_PATH}" "${OCV_TENGINE_DIR}/build")
|
||||
else()
|
||||
|
@ -128,17 +128,10 @@ else()
|
||||
set(sources_options ${sources_options} EXCLUDE_CUDA)
|
||||
endif()
|
||||
|
||||
|
||||
if(HAVE_TENGINE)
|
||||
list(APPEND include_dirs ${TENGINE_INCLUDE_DIRS})
|
||||
if(EXISTS ${TENGINE_LIBRARIES})
|
||||
list(APPEND libs ${TENGINE_LIBRARIES})
|
||||
else()
|
||||
ocv_add_dependencies(opencv_dnn tengine)
|
||||
list(APPEND libs ${TENGINE_LIBRARIES})
|
||||
list(APPEND libs -Wl,--whole-archive ${TENGINE_LIBRARIES} -Wl,--no-whole-archive)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
ocv_module_include_directories(${include_dirs})
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
|
@ -1585,7 +1585,9 @@ struct Net::Impl : public detail::NetImplBase
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
if (preferableBackend == DNN_BACKEND_OPENCV)
|
||||
{
|
||||
CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
|
||||
}
|
||||
else if (preferableBackend == DNN_BACKEND_HALIDE)
|
||||
initHalideBackend();
|
||||
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
|
@ -248,6 +248,10 @@ public:
|
||||
float power;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_TENGINE
|
||||
teng_graph_t tengine_graph;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
cuda4dnn::ConvolutionConfiguration::FusionMode cudaFusionMode;
|
||||
cuda4dnn::ConvolutionConfiguration::ActivationType cudaActType;
|
||||
@ -266,8 +270,20 @@ public:
|
||||
#ifdef HAVE_CUDA
|
||||
cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE;
|
||||
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
|
||||
#endif
|
||||
#ifdef HAVE_TENGINE
|
||||
tengine_graph=NULL;
|
||||
#endif
|
||||
}
|
||||
#ifdef HAVE_TENGINE
|
||||
~ConvolutionLayerImpl()
|
||||
{
|
||||
if(NULL != tengine_graph )
|
||||
{
|
||||
tengine_release(tengine_graph);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
|
||||
{
|
||||
@ -391,6 +407,13 @@ public:
|
||||
for(int i = 0; i < numOutput; i++ )
|
||||
biasvec[i] = biasMat.at<float>(i);
|
||||
}
|
||||
#ifdef HAVE_TENGINE
|
||||
if(NULL != tengine_graph )
|
||||
{
|
||||
tengine_release(tengine_graph);
|
||||
tengine_graph = NULL ;
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_OPENCL
|
||||
convolutionOp.release();
|
||||
#endif
|
||||
@ -1765,26 +1788,50 @@ public:
|
||||
}
|
||||
|
||||
#ifdef HAVE_TENGINE
|
||||
int inch = inputs[0].size[1]; // inch
|
||||
int in_h = inputs[0].size[2]; // in_h
|
||||
int in_w = inputs[0].size[3]; // in_w
|
||||
bool tengine_ret = false; ;
|
||||
|
||||
int out_b = outputs[0].size[0]; // out batch size
|
||||
int outch = outputs[0].size[1]; // outch
|
||||
int out_h = outputs[0].size[2]; // out_h
|
||||
int out_w = outputs[0].size[3]; // out_w
|
||||
std::vector<Mat> teng_in, teng_out;
|
||||
inputs_arr.getMatVector(teng_in);
|
||||
outputs_arr.getMatVector(teng_out);
|
||||
|
||||
float *input_ = inputs[0].ptr<float>();
|
||||
float *output_ = outputs[0].ptr<float>();
|
||||
int inch = teng_in[0].size[1]; // inch
|
||||
int in_h = teng_in[0].size[2]; // in_h
|
||||
int in_w = teng_in[0].size[3]; // in_w
|
||||
|
||||
int out_b = teng_out[0].size[0]; // out batch size
|
||||
int outch = teng_out[0].size[1]; // outch
|
||||
int out_h = teng_out[0].size[2]; // out_h
|
||||
int out_w = teng_out[0].size[3]; // out_w
|
||||
|
||||
float *input_ = teng_in[0].ptr<float>();
|
||||
float *output_ = teng_out[0].ptr<float>();
|
||||
float *kernel_ = weightsMat.ptr<float>();
|
||||
float *teg_bias = &biasvec[0];
|
||||
|
||||
bool tengine_ret = tengine_forward(input_, inch, ngroups, in_h, in_w,
|
||||
int nstripes = std::max(getNumThreads(), 1);
|
||||
|
||||
/* tengine_init will run when first time. */
|
||||
if(NULL == tengine_graph)
|
||||
{
|
||||
tengine_graph = tengine_init(name.c_str(), input_, inch, ngroups, in_h, in_w,
|
||||
output_, out_b, outch, out_h, out_w,
|
||||
kernel_, kernel_size.size(), kernel.height, kernel.width,
|
||||
teg_bias, stride.height, stride.width,
|
||||
pad.height, pad.width, dilation.height, dilation.width,
|
||||
weightsMat.step1(), padMode);
|
||||
weightsMat.step1(), padMode, tengine_graph, nstripes);
|
||||
/*printf("Init(%s): input=%p(%d %d %d %d ),output=%p(%d %d %d %d ),kernel=%p(%ld %d %d ), bias=%p ,"
|
||||
"stride(%d %d), pad(%d %d), dilation(%d %d) ,weightsMat=%ld, padMode=%s ,tengine_graph = %p \n",
|
||||
name.c_str(),input_, inch, ngroups, in_h, in_w,
|
||||
output_, out_b, outch, out_h, out_w,
|
||||
kernel_, kernel_size.size(), kernel.height, kernel.width,
|
||||
teg_bias, stride.height, stride.width,
|
||||
pad.height, pad.width, dilation.height, dilation.width,
|
||||
weightsMat.step1(), padMode.c_str() ,tengine_graph);*/
|
||||
}
|
||||
if(NULL != tengine_graph)
|
||||
{
|
||||
tengine_ret = tengine_forward(tengine_graph);
|
||||
}
|
||||
/* activation */
|
||||
if((true == tengine_ret) && activ )
|
||||
{
|
||||
|
@ -26,17 +26,24 @@
|
||||
#define TENGINE_GRAPH_CONVOLUTION_HPP
|
||||
|
||||
#define FLOAT_TO_REALSIZE (4)
|
||||
#ifdef HAVE_TENGINE
|
||||
|
||||
#include "tengine_c_api.h"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace dnn
|
||||
{
|
||||
bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
|
||||
teng_graph_t tengine_init(const char* name , float* input_, int inch, int group, int in_h, int in_w,
|
||||
float *output_, int out_b, int outch, int out_h, int out_w,
|
||||
float *kernel_,int kernel_s , int kernel_h, int kernel_w,
|
||||
float *teg_bias, int stride_h,int stride_w,
|
||||
int pad_h, int pad_w, int dilation_h, int dilation_w,
|
||||
size_t wstep, const std::string padMode) ;
|
||||
size_t wstep, const std::string padMode , teng_graph_t& graph, int nstripes) ;
|
||||
|
||||
bool tengine_forward(teng_graph_t& graph) ;
|
||||
bool tengine_release(teng_graph_t& graph) ;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif /* TENGINE_GRAPH_CONVOLUTION_HPP */
|
@ -34,35 +34,33 @@
|
||||
#ifdef HAVE_TENGINE
|
||||
|
||||
#include "tengine_c_api.h"
|
||||
#include "tengine_c_compat.h"
|
||||
#include "tengine_operations.h"
|
||||
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace dnn
|
||||
{
|
||||
|
||||
int create_input_node(graph_t graph, const char* node_name, int inch, int in_h, int in_w)
|
||||
static int create_input_node(teng_graph_t graph, const char* node_name, int inch, int in_h, int in_w)
|
||||
{
|
||||
node_t node = create_graph_node(graph, node_name, "InputOp");
|
||||
tensor_t tensor = create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
|
||||
set_node_output_tensor(node, 0, tensor, TENSOR_TYPE_INPUT);
|
||||
node_t node = teng_create_graph_node(graph, node_name, "InputOp");
|
||||
tensor_t tensor = teng_create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
|
||||
teng_set_node_output_tensor(node, 0, tensor, TENSOR_TYPE_INPUT);
|
||||
|
||||
int dims[4] = {1, inch, in_h, in_w};
|
||||
set_tensor_shape(tensor, dims, 4);
|
||||
teng_set_tensor_shape(tensor, dims, 4);
|
||||
|
||||
release_graph_tensor(tensor);
|
||||
release_graph_node(node);
|
||||
teng_release_graph_tensor(tensor);
|
||||
teng_release_graph_node(node);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int create_conv_node(graph_t graph, const char* node_name, const char* input_name, int in_h, int in_w, int out_h, int out_w,
|
||||
static int create_conv_node(teng_graph_t graph, const char* node_name, const char* input_name, int in_h, int in_w, int out_h, int out_w,
|
||||
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, int pad_w, int inch, int outch, int group,
|
||||
int dilation_h, int dilation_w, int activation, std::string padMode)
|
||||
{
|
||||
node_t conv_node = create_graph_node(graph, node_name, "Convolution");
|
||||
tensor_t input_tensor = get_graph_tensor(graph, input_name);
|
||||
node_t conv_node = teng_create_graph_node(graph, node_name, "Convolution");
|
||||
tensor_t input_tensor = teng_get_graph_tensor(graph, input_name);
|
||||
|
||||
if (input_tensor == NULL)
|
||||
{
|
||||
@ -70,44 +68,44 @@ int create_conv_node(graph_t graph, const char* node_name, const char* input_nam
|
||||
return -1;
|
||||
}
|
||||
|
||||
set_node_input_tensor(conv_node, 0, input_tensor);
|
||||
release_graph_tensor(input_tensor);
|
||||
teng_set_node_input_tensor(conv_node, 0, input_tensor);
|
||||
teng_release_graph_tensor(input_tensor);
|
||||
|
||||
/* output */
|
||||
tensor_t output_tensor = create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
|
||||
tensor_t output_tensor = teng_create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
|
||||
|
||||
set_node_output_tensor(conv_node, 0, output_tensor, TENSOR_TYPE_VAR);
|
||||
release_graph_tensor(output_tensor);
|
||||
teng_set_node_output_tensor(conv_node, 0, output_tensor, TENSOR_TYPE_VAR);
|
||||
teng_release_graph_tensor(output_tensor);
|
||||
|
||||
/* weight */
|
||||
std::string weight_name(node_name);
|
||||
weight_name += "/weight";
|
||||
|
||||
node_t w_node = create_graph_node(graph, weight_name.c_str(), "Const");
|
||||
tensor_t w_tensor = create_graph_tensor(graph, weight_name.c_str(), TENGINE_DT_FP32);
|
||||
set_node_output_tensor(w_node, 0, w_tensor, TENSOR_TYPE_CONST);
|
||||
set_node_input_tensor(conv_node, 1, w_tensor);
|
||||
node_t w_node = teng_create_graph_node(graph, weight_name.c_str(), "Const");
|
||||
tensor_t w_tensor = teng_create_graph_tensor(graph, weight_name.c_str(), TENGINE_DT_FP32);
|
||||
teng_set_node_output_tensor(w_node, 0, w_tensor, TENSOR_TYPE_CONST);
|
||||
teng_set_node_input_tensor(conv_node, 1, w_tensor);
|
||||
int w_dims[] = {outch, inch / group, kernel_h, kernel_w};
|
||||
|
||||
set_tensor_shape(w_tensor, w_dims, 4);
|
||||
teng_set_tensor_shape(w_tensor, w_dims, 4);
|
||||
|
||||
release_graph_node(w_node);
|
||||
release_graph_tensor(w_tensor);
|
||||
teng_release_graph_node(w_node);
|
||||
teng_release_graph_tensor(w_tensor);
|
||||
|
||||
/* bias */
|
||||
std::string bias_name(node_name);
|
||||
bias_name += "/bias";
|
||||
|
||||
node_t b_node = create_graph_node(graph, bias_name.c_str(), "Const");
|
||||
tensor_t b_tensor = create_graph_tensor(graph, bias_name.c_str(), TENGINE_DT_FP32);
|
||||
set_node_output_tensor(b_node, 0, b_tensor, TENSOR_TYPE_CONST);
|
||||
node_t b_node = teng_create_graph_node(graph, bias_name.c_str(), "Const");
|
||||
tensor_t b_tensor = teng_create_graph_tensor(graph, bias_name.c_str(), TENGINE_DT_FP32);
|
||||
teng_set_node_output_tensor(b_node, 0, b_tensor, TENSOR_TYPE_CONST);
|
||||
int b_dims[] = {outch};
|
||||
|
||||
set_tensor_shape(b_tensor, b_dims, 1);
|
||||
teng_set_tensor_shape(b_tensor, b_dims, 1);
|
||||
|
||||
set_node_input_tensor(conv_node, 2, b_tensor);
|
||||
release_graph_node(b_node);
|
||||
release_graph_tensor(b_tensor);
|
||||
teng_set_node_input_tensor(conv_node, 2, b_tensor);
|
||||
teng_release_graph_node(b_node);
|
||||
teng_release_graph_tensor(b_tensor);
|
||||
|
||||
int pad_h1 = pad_h;
|
||||
int pad_w1 = pad_w;
|
||||
@ -127,31 +125,32 @@ int create_conv_node(graph_t graph, const char* node_name, const char* input_nam
|
||||
}
|
||||
|
||||
/* attr */
|
||||
set_node_attr_int(conv_node, "kernel_h", &kernel_h);
|
||||
set_node_attr_int(conv_node, "kernel_w", &kernel_w);
|
||||
set_node_attr_int(conv_node, "stride_h", &stride_h);
|
||||
set_node_attr_int(conv_node, "stride_w", &stride_w);
|
||||
set_node_attr_int(conv_node, "pad_h0", &pad_h);
|
||||
set_node_attr_int(conv_node, "pad_w0", &pad_w);
|
||||
set_node_attr_int(conv_node, "pad_h1", &pad_h1);
|
||||
set_node_attr_int(conv_node, "pad_w1", &pad_w1);
|
||||
set_node_attr_int(conv_node, "output_channel", &outch);
|
||||
set_node_attr_int(conv_node, "group", &group);
|
||||
set_node_attr_int(conv_node, "dilation_h", &dilation_h);
|
||||
set_node_attr_int(conv_node, "dilation_w", &dilation_w);
|
||||
set_node_attr_int(conv_node, "activation", &activation);
|
||||
teng_set_node_attr_int(conv_node, "kernel_h", &kernel_h);
|
||||
teng_set_node_attr_int(conv_node, "kernel_w", &kernel_w);
|
||||
teng_set_node_attr_int(conv_node, "stride_h", &stride_h);
|
||||
teng_set_node_attr_int(conv_node, "stride_w", &stride_w);
|
||||
teng_set_node_attr_int(conv_node, "pad_h0", &pad_h);
|
||||
teng_set_node_attr_int(conv_node, "pad_w0", &pad_w);
|
||||
teng_set_node_attr_int(conv_node, "pad_h1", &pad_h1);
|
||||
teng_set_node_attr_int(conv_node, "pad_w1", &pad_w1);
|
||||
teng_set_node_attr_int(conv_node, "output_channel", &outch);
|
||||
teng_set_node_attr_int(conv_node, "input_channel", &inch);
|
||||
teng_set_node_attr_int(conv_node, "group", &group);
|
||||
teng_set_node_attr_int(conv_node, "dilation_h", &dilation_h);
|
||||
teng_set_node_attr_int(conv_node, "dilation_w", &dilation_w);
|
||||
// set_node_attr_int(conv_node, "activation", &activation);
|
||||
|
||||
release_graph_node(conv_node);
|
||||
teng_release_graph_node(conv_node);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int in_w,
|
||||
static teng_graph_t create_conv_graph(const char* layer_name, float* input_data, int inch, int group, int in_h, int in_w,
|
||||
float* output_data, int outch, int out_h, int out_w,
|
||||
int kernel_h, int kernel_w,
|
||||
int stride_h,int stride_w,
|
||||
int pad_h, int pad_w, int dilation_h, int dilation_w, int activation,
|
||||
float * teg_weight , float * teg_bias , std::string padMode)
|
||||
float* teg_weight, float* teg_bias, std::string padMode, int nstripes)
|
||||
{
|
||||
node_t conv_node = NULL;
|
||||
|
||||
@ -170,7 +169,7 @@ graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int
|
||||
int input_num = 0;
|
||||
|
||||
/* create graph */
|
||||
graph_t graph = create_graph(NULL, NULL, NULL);
|
||||
teng_graph_t graph = teng_create_graph(NULL, NULL, NULL);
|
||||
bool ok = true;
|
||||
|
||||
if(graph == NULL)
|
||||
@ -180,7 +179,7 @@ graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int
|
||||
}
|
||||
|
||||
const char* input_name = "data";
|
||||
const char* conv_name = "conv";
|
||||
const char* conv_name = layer_name;
|
||||
|
||||
if (ok && create_input_node(graph, input_name, inch, in_h, in_w) < 0)
|
||||
{
|
||||
@ -199,13 +198,13 @@ graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int
|
||||
const char* inputs_name[] = {input_name};
|
||||
const char* outputs_name[] = {conv_name};
|
||||
|
||||
if (ok && set_graph_input_node(graph, inputs_name, sizeof(inputs_name) / sizeof(char*)) < 0)
|
||||
if (ok && teng_set_graph_input_node(graph, inputs_name, sizeof(inputs_name) / sizeof(char*)) < 0)
|
||||
{
|
||||
CV_LOG_WARNING(NULL,"Tengine: set inputs failed." );
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (ok && set_graph_output_node(graph, outputs_name, sizeof(outputs_name) / sizeof(char*)) < 0)
|
||||
if (ok && teng_set_graph_output_node(graph, outputs_name, sizeof(outputs_name) / sizeof(char*)) < 0)
|
||||
{
|
||||
CV_LOG_WARNING(NULL,"Tengine: set outputs failed." );
|
||||
ok = false;
|
||||
@ -214,8 +213,8 @@ graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int
|
||||
/* set input data */
|
||||
if (ok)
|
||||
{
|
||||
input_tensor = get_graph_input_tensor(graph, 0, 0);
|
||||
buf_size = get_tensor_buffer_size(input_tensor);
|
||||
input_tensor = teng_get_graph_input_tensor(graph, 0, 0);
|
||||
buf_size = teng_get_tensor_buffer_size(input_tensor);
|
||||
if (buf_size != in_size * FLOAT_TO_REALSIZE)
|
||||
{
|
||||
CV_LOG_WARNING(NULL,"Tengine: Input data size check failed.");
|
||||
@ -225,68 +224,75 @@ graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int
|
||||
|
||||
if (ok)
|
||||
{
|
||||
set_tensor_buffer(input_tensor, (float *)input_data, buf_size);
|
||||
release_graph_tensor(input_tensor);
|
||||
teng_set_tensor_buffer(input_tensor, (float *)input_data, buf_size);
|
||||
teng_release_graph_tensor(input_tensor);
|
||||
|
||||
/* create convolution node */
|
||||
/* set weight node */
|
||||
conv_node = get_graph_node(graph, "conv");
|
||||
weight_tensor = get_node_input_tensor(conv_node, 1);
|
||||
buf_size = get_tensor_buffer_size(weight_tensor);
|
||||
conv_node = teng_get_graph_node(graph, conv_name);
|
||||
weight_tensor = teng_get_node_input_tensor(conv_node, 1);
|
||||
buf_size = teng_get_tensor_buffer_size(weight_tensor);
|
||||
|
||||
if (buf_size != weight_size * FLOAT_TO_REALSIZE)
|
||||
{
|
||||
CV_LOG_WARNING(NULL,"Input weight size check failed . ");
|
||||
CV_LOG_WARNING(NULL,"Tengine: Input weight size check failed.");
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (ok)
|
||||
{
|
||||
set_tensor_buffer(weight_tensor, teg_weight, buf_size);
|
||||
teng_set_tensor_buffer(weight_tensor, teg_weight, buf_size);
|
||||
|
||||
/* set bias node */
|
||||
input_num = get_node_input_number(conv_node);
|
||||
input_num = teng_get_node_input_number(conv_node);
|
||||
if (input_num > 2)
|
||||
{
|
||||
bias_tensor = get_node_input_tensor(conv_node, 2);
|
||||
buf_size = get_tensor_buffer_size(bias_tensor);
|
||||
bias_tensor = teng_get_node_input_tensor(conv_node, 2);
|
||||
buf_size = teng_get_tensor_buffer_size(bias_tensor);
|
||||
if (buf_size != bias_size * FLOAT_TO_REALSIZE)
|
||||
{
|
||||
CV_LOG_WARNING(NULL,"Tengine: Input bias size check failed.");
|
||||
ok = false;
|
||||
}
|
||||
else set_tensor_buffer(bias_tensor, teg_bias, buf_size);
|
||||
else teng_set_tensor_buffer(bias_tensor, teg_bias, buf_size);
|
||||
}
|
||||
}
|
||||
|
||||
/* prerun */
|
||||
if (ok && teng_prerun_graph_multithread(graph, TENGINE_CLUSTER_BIG, nstripes) < 0)
|
||||
{
|
||||
CV_LOG_WARNING(NULL, "Tengine: prerun_graph failed.");
|
||||
ok = false;
|
||||
}
|
||||
|
||||
if (ok)
|
||||
{
|
||||
/* set output data */
|
||||
output_tensor = get_node_output_tensor(conv_node, 0);
|
||||
int ret = set_tensor_buffer(output_tensor, output_data, out_size * FLOAT_TO_REALSIZE);
|
||||
output_tensor = teng_get_node_output_tensor(conv_node, 0);
|
||||
int ret = teng_set_tensor_buffer(output_tensor, output_data, out_size * FLOAT_TO_REALSIZE);
|
||||
if(ret)
|
||||
{
|
||||
CV_LOG_WARNING(NULL,"Tengine :Set output tensor buffer failed . " );
|
||||
CV_LOG_WARNING(NULL,"Tengine: Set output tensor buffer failed." );
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ok)
|
||||
if (false == ok)
|
||||
{
|
||||
destroy_graph(graph);
|
||||
teng_destroy_graph(graph) ;
|
||||
return NULL ;
|
||||
}
|
||||
return graph;
|
||||
}
|
||||
|
||||
bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
|
||||
static bool tengine_init_flag = false;
|
||||
teng_graph_t tengine_init(const char* layer_name, float* input_, int inch, int group, int in_h, int in_w,
|
||||
float *output_, int out_b, int outch, int out_h, int out_w,
|
||||
float *kernel_, int kernel_s ,int kernel_h, int kernel_w,
|
||||
float *teg_bias, int stride_h,int stride_w,
|
||||
int pad_h, int pad_w, int dilation_h, int dilation_w,
|
||||
size_t wstep,const std::string padMode)
|
||||
size_t wstep, const std::string padMode, teng_graph_t &graph, int nstripes)
|
||||
{
|
||||
graph_t graph = NULL;
|
||||
std::vector<float> teg_weight_vec;
|
||||
float *teg_weight = NULL;
|
||||
int kernel_inwh = (inch / group) * kernel_w * kernel_h;
|
||||
@ -296,17 +302,20 @@ bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
|
||||
if (!(kernel_s == 2 && kernel_h == kernel_w && pad_h == pad_w
|
||||
&& dilation_h == dilation_w && stride_h == stride_w
|
||||
&& out_b == 1 && pad_h < 10)) // just for Conv2D
|
||||
return false;
|
||||
{
|
||||
// printf("return : just for Conv2D\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
{
|
||||
/*printf("Tengine: input (1 x %d x %d x %d),output (%d x %d x %d x %d), kernel (%d x %d), stride (%d x %d), dilation (%d x %d), pad (%d x %d).\n",
|
||||
inch, in_h, in_w,
|
||||
/* printf("Tengine(%s): input (1 x %d x %d x %d),output (%d x %d x %d x %d), kernel (%d x %d), stride (%d x %d), dilation (%d x %d), pad (%d x %d).\n",
|
||||
layer_name, inch, in_h, in_w,
|
||||
out_b, outch, out_h, out_w,
|
||||
kernel_w, kernel_h,
|
||||
stride_w, stride_h,
|
||||
dilation_w, dilation_h,
|
||||
pad_w,pad_h);*/
|
||||
|
||||
pad_w, pad_h);
|
||||
*/
|
||||
// weight
|
||||
if (kernel_inwh != wstep)
|
||||
{
|
||||
@ -323,35 +332,42 @@ bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
|
||||
}
|
||||
|
||||
/* initial the resoruce of tengine */
|
||||
if(false == tengine_init_flag)
|
||||
{
|
||||
init_tengine();
|
||||
tengine_init_flag = true;
|
||||
}
|
||||
|
||||
/* create the convolution graph */
|
||||
graph = create_conv_graph( input_, inch, group, in_h, in_w,
|
||||
graph = create_conv_graph(layer_name, input_, inch, group, in_h, in_w,
|
||||
output_, outch, out_h, out_w,
|
||||
kernel_h, kernel_w, stride_h,stride_w,
|
||||
pad_h, pad_w, dilation_h, dilation_w, activation,
|
||||
teg_weight , teg_bias , padMode);
|
||||
|
||||
/* prerun */
|
||||
if(prerun_graph(graph) < 0)
|
||||
teg_weight, teg_bias, padMode, nstripes);
|
||||
if(NULL == graph )
|
||||
{
|
||||
CV_LOG_WARNING(NULL, "Tengine :prerun_graph failed .");
|
||||
return false ;
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
return graph ;
|
||||
}
|
||||
|
||||
bool tengine_forward(teng_graph_t &graph)
|
||||
{
|
||||
/* run */
|
||||
if(run_graph(graph, 1) < 0)
|
||||
if(teng_run_graph(graph, 1) < 0)
|
||||
{
|
||||
CV_LOG_WARNING(NULL,"Tengine: run_graph failed.");
|
||||
return false ;
|
||||
}
|
||||
|
||||
postrun_graph(graph);
|
||||
destroy_graph(graph);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool tengine_release(teng_graph_t &graph)
|
||||
{
|
||||
teng_postrun_graph(graph);
|
||||
teng_destroy_graph(graph);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user