mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 04:36:36 +08:00
Merge pull request #16069 from YashasSamaga:cuda4dnn-crop_and_resize
add CropAndResize layer for CUDA backend * add CropAndResize layer * process multiple channels per iteration
This commit is contained in:
parent
b505cf84de
commit
3fddd3bf93
168
modules/dnn/src/cuda/crop_and_resize.cu
Normal file
168
modules/dnn/src/cuda/crop_and_resize.cu
Normal file
@ -0,0 +1,168 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp16.h>
|
||||
|
||||
#include "math.hpp"
|
||||
#include "types.hpp"
|
||||
#include "grid_stride_range.hpp"
|
||||
#include "execution.hpp"
|
||||
|
||||
#include "../cuda4dnn/csl/stream.hpp"
|
||||
#include "../cuda4dnn/csl/tensor.hpp"
|
||||
#include "../cuda4dnn/csl/span.hpp"
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
using namespace cv::dnn::cuda4dnn::csl;
|
||||
using namespace cv::dnn::cuda4dnn::csl::device;
|
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
|
||||
namespace raw {
|
||||
|
||||
template <class T, std::size_t CHANNELS_PER_ITER>
|
||||
__global__ void crop_and_resize(
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
View<T> boxes,
|
||||
size_type num_channels)
|
||||
{
|
||||
// input [1, num_channels, in_height, in_width]
|
||||
// output [boxes, num_channels, out_height, out_width]
|
||||
|
||||
const auto in_image_size = in_height * in_width;
|
||||
const auto out_image_size = out_height * out_width;
|
||||
const auto out_box_size = num_channels * out_image_size;
|
||||
|
||||
/* we have to compute the output value for every combination of (box, c, y, x) in the output
|
||||
*
|
||||
* the computation involving (y, x) are identical for all non-spatial dimensions
|
||||
* the computation and memory requests involving the box are identical for remaining three axes
|
||||
*
|
||||
* we process multiple channels every iteration to reuse the identical computation
|
||||
* and memory requests involved with the box and spatial dimensions
|
||||
*/
|
||||
|
||||
/*
|
||||
* if we are processing `CHANNELS_PER_ITER` channels per iteration, we will need
|
||||
* (num_channels / CHANNELS_PER_ITER) iterations per (box, x, y)
|
||||
*/
|
||||
auto num_channel_iters_per_box_xy = num_channels / CHANNELS_PER_ITER;
|
||||
|
||||
/* we need `num_channel_iters_per_box_xy` iterations per (box, x, y) and there are
|
||||
* `num_boxes` boxes and `out_image_size` combinations of (x, y)
|
||||
*/
|
||||
auto num_boxes = boxes.size() / 7; /* 7 values per box */
|
||||
auto iters_per_box = num_channel_iters_per_box_xy * out_image_size;
|
||||
auto iters_required = num_boxes * iters_per_box;
|
||||
|
||||
for (auto iter : grid_stride_range(iters_required)) {
|
||||
const index_type box_no = iter / iters_per_box;
|
||||
const index_type c_start = ((iter % iters_per_box) / out_image_size) * CHANNELS_PER_ITER;
|
||||
|
||||
/* note here that consecutive `iter` values will often have consecutive `x` values
|
||||
* => stores into output will be coalesced across threads
|
||||
*/
|
||||
const index_type y = (iter % out_image_size) / out_width;
|
||||
const index_type x = iter % out_width;
|
||||
|
||||
const index_type box_offset = box_no * 7;
|
||||
const auto left = boxes[box_offset + 3],
|
||||
top = boxes[box_offset + 4],
|
||||
right = boxes[box_offset + 5],
|
||||
bottom = boxes[box_offset + 6];
|
||||
|
||||
const auto box_width = right - left;
|
||||
const auto box_height = bottom - top;
|
||||
|
||||
const auto o2i_fy = static_cast<T>(in_height - 1) / static_cast<T>(out_height - 1);
|
||||
const auto o2i_fx = static_cast<T>(in_width - 1) / static_cast<T>(out_width - 1);
|
||||
|
||||
const auto height_scale = box_height * o2i_fy;
|
||||
const auto width_scale = box_width * o2i_fx;
|
||||
|
||||
const auto in_y = top * static_cast<T>(in_height - 1) + static_cast<T>(y) * height_scale;
|
||||
const auto in_x = left * static_cast<T>(in_width - 1) + static_cast<T>(x) * width_scale;
|
||||
|
||||
const auto in_y0 = static_cast<index_type>(in_y);
|
||||
const auto in_x0 = static_cast<index_type>(in_x);
|
||||
|
||||
using device::min;
|
||||
const auto in_x1 = min<index_type>(in_x0 + 1, in_width - 1);
|
||||
const auto in_y1 = min<index_type>(in_y0 + 1, in_height - 1);
|
||||
|
||||
index_type in_offset_r0 = c_start * in_image_size + in_y0 * in_width;
|
||||
index_type in_offset_r1 = c_start * in_image_size + in_y1 * in_width;
|
||||
index_type out_idx = box_no * out_box_size + c_start * out_image_size + y * out_width + x;
|
||||
|
||||
#pragma unroll 1 /* disable unrolling */
|
||||
for (int i = 0; i < CHANNELS_PER_ITER; i++) {
|
||||
auto v_00 = input[in_offset_r0 + in_x0],
|
||||
v_01 = input[in_offset_r0 + in_x1],
|
||||
v_10 = input[in_offset_r1 + in_x0],
|
||||
v_11 = input[in_offset_r1 + in_x1];
|
||||
|
||||
output[out_idx] =
|
||||
v_00 +
|
||||
T(in_y - T(in_y0)) * T(v_10 - v_00) +
|
||||
T(in_x - T(in_x0)) * T(v_01 - v_00) +
|
||||
T(in_y - T(in_y0)) * T(in_x - T(in_x0)) * T(v_11 - v_01 - v_10 + v_00);
|
||||
|
||||
in_offset_r0 += in_image_size;
|
||||
in_offset_r1 += in_image_size;
|
||||
out_idx += out_image_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, std::size_t CHANNELS_PER_ITER> static
|
||||
void launch_multichannel_crop_and_resize(const Stream& stream,
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
View<T> boxes, size_type num_channels)
|
||||
{
|
||||
auto kernel = raw::crop_and_resize<T, CHANNELS_PER_ITER>;
|
||||
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void crop_and_resize(const Stream& stream, TensorSpan<T> output, TensorView<T> input, View<T> boxes) {
|
||||
CV_Assert(input.get_axis_size(0) == 1); /* batch not supported */
|
||||
CV_Assert(input.get_axis_size(1) == output.get_axis_size(1));
|
||||
|
||||
auto out_height = output.get_axis_size(-2);
|
||||
auto out_width = output.get_axis_size(-1);
|
||||
|
||||
auto in_height = input.get_axis_size(-2);
|
||||
auto in_width = input.get_axis_size(-1);
|
||||
|
||||
auto num_channels = input.get_axis_size(1);
|
||||
|
||||
if (num_channels % 64 == 0) {
|
||||
launch_multichannel_crop_and_resize<T, 64>(stream, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
} else if (num_channels % 32 == 0) {
|
||||
launch_multichannel_crop_and_resize<T, 32>(stream, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
} else if (num_channels % 16 == 0) {
|
||||
launch_multichannel_crop_and_resize<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
} else if (num_channels % 8 == 0) {
|
||||
launch_multichannel_crop_and_resize<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
} else if (num_channels % 4 == 0) {
|
||||
launch_multichannel_crop_and_resize<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
} else if (num_channels % 2 == 0) {
|
||||
launch_multichannel_crop_and_resize<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
} else {
|
||||
launch_multichannel_crop_and_resize<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, boxes, num_channels);
|
||||
}
|
||||
}
|
||||
|
||||
template void crop_and_resize<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, View<__half> boxes);
|
||||
template void crop_and_resize<float>(const Stream&, TensorSpan<float>, TensorView<float>, View<float> boxes);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
19
modules/dnn/src/cuda4dnn/kernels/crop_and_resize.hpp
Normal file
19
modules/dnn/src/cuda4dnn/kernels/crop_and_resize.hpp
Normal file
@ -0,0 +1,19 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CROP_AND_RESIZE_HPP
|
||||
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CROP_AND_RESIZE_HPP
|
||||
|
||||
#include "../csl/stream.hpp"
|
||||
#include "../csl/tensor.hpp"
|
||||
#include "../csl/span.hpp"
|
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
|
||||
template <class T>
|
||||
void crop_and_resize(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, csl::View<T> boxes);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
||||
|
||||
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CROP_AND_RESIZE_HPP */
|
@ -8,8 +8,6 @@
|
||||
#include "../csl/stream.hpp"
|
||||
#include "../csl/tensor.hpp"
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
|
||||
template <class T>
|
||||
|
51
modules/dnn/src/cuda4dnn/primitives/crop_and_resize.hpp
Normal file
51
modules/dnn/src/cuda4dnn/primitives/crop_and_resize.hpp
Normal file
@ -0,0 +1,51 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CROP_AND_RESIZE_HPP
|
||||
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CROP_AND_RESIZE_HPP
|
||||
|
||||
#include "../../op_cuda.hpp"
|
||||
|
||||
#include "../csl/stream.hpp"
|
||||
#include "../csl/span.hpp"
|
||||
|
||||
#include "../kernels/crop_and_resize.hpp"
|
||||
|
||||
#include <utility>
|
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
|
||||
template <class T>
|
||||
class CropAndResizeOp final : public CUDABackendNode {
|
||||
public:
|
||||
using wrapper_type = GetCUDABackendWrapperType<T>;
|
||||
|
||||
CropAndResizeOp(csl::Stream stream_) : stream(std::move(stream_)) { }
|
||||
|
||||
void forward(
|
||||
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
|
||||
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
|
||||
csl::Workspace& workspace) override
|
||||
{
|
||||
CV_Assert(inputs.size() == 2 && outputs.size() == 1);
|
||||
|
||||
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
|
||||
auto input = input_wrapper->getView();
|
||||
|
||||
auto box_wrapper = inputs[1].dynamicCast<wrapper_type>();
|
||||
auto boxes = box_wrapper->getView();
|
||||
|
||||
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
|
||||
auto output = output_wrapper->getSpan();
|
||||
|
||||
kernels::crop_and_resize(stream, output, input, static_cast<csl::View<T>>(boxes));
|
||||
}
|
||||
|
||||
private:
|
||||
csl::Stream stream;
|
||||
};
|
||||
|
||||
}}} /* namespace cv::dnn::cuda4dnn */
|
||||
|
||||
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CROP_AND_RESIZE_HPP */
|
@ -7,6 +7,11 @@
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
#include "../cuda4dnn/primitives/crop_and_resize.hpp"
|
||||
using namespace cv::dnn::cuda4dnn;
|
||||
#endif
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
class CropAndResizeLayerImpl CV_FINAL : public CropAndResizeLayer
|
||||
@ -36,6 +41,11 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
@ -111,6 +121,18 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
Ptr<BackendNode> initCUDA(
|
||||
void *context_,
|
||||
const std::vector<Ptr<BackendWrapper>>& inputs,
|
||||
const std::vector<Ptr<BackendWrapper>>& outputs
|
||||
) override
|
||||
{
|
||||
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
||||
return make_cuda_node<cuda4dnn::CropAndResizeOp>(preferableTarget, std::move(context->stream));
|
||||
}
|
||||
#endif
|
||||
|
||||
private:
|
||||
int outWidth, outHeight;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user