mirror of
https://github.com/opencv/opencv.git
synced 2025-06-13 04:52:53 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
4001346a30
16
3rdparty/ffmpeg/ffmpeg-download.ps1.in
vendored
16
3rdparty/ffmpeg/ffmpeg-download.ps1.in
vendored
@ -12,6 +12,22 @@ Write-Output ("=" * 120)
|
|||||||
Write-Output ""
|
Write-Output ""
|
||||||
|
|
||||||
if(![System.IO.File]::Exists($output)) {
|
if(![System.IO.File]::Exists($output)) {
|
||||||
|
try {
|
||||||
|
[io.file]::OpenWrite($output).close()
|
||||||
|
} catch {
|
||||||
|
Write-Warning "Unable to write: $output"
|
||||||
|
if (!([Security.Principal.WindowsPrincipal][Security.Principal.WindowsIdentity]::GetCurrent()).IsInRole([Security.Principal.WindowsBuiltInRole] "Administrator")) {
|
||||||
|
Write-Warning "Launching with 'Administrator' elevated privileges..."
|
||||||
|
Pause
|
||||||
|
Start-Process powershell.exe "-NoProfile -ExecutionPolicy Bypass -File `"$PSCommandPath`"" -Verb RunAs
|
||||||
|
exit
|
||||||
|
} else {
|
||||||
|
Write-Output "FATAL: Unable to write with elevated privileges: $output"
|
||||||
|
Pause
|
||||||
|
exit 1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
Write-Output ("Downloading: " + $output)
|
Write-Output ("Downloading: " + $output)
|
||||||
Import-Module BitsTransfer
|
Import-Module BitsTransfer
|
||||||
|
2
3rdparty/libpng/CMakeLists.txt
vendored
2
3rdparty/libpng/CMakeLists.txt
vendored
@ -84,4 +84,4 @@ if(NOT BUILD_SHARED_LIBS)
|
|||||||
ocv_install_target(${PNG_LIBRARY} EXPORT OpenCVModules ARCHIVE DESTINATION ${OPENCV_3P_LIB_INSTALL_PATH} COMPONENT dev)
|
ocv_install_target(${PNG_LIBRARY} EXPORT OpenCVModules ARCHIVE DESTINATION ${OPENCV_3P_LIB_INSTALL_PATH} COMPONENT dev)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
ocv_install_3rdparty_licenses(libpng LICENSE README opencv-libpng.patch)
|
ocv_install_3rdparty_licenses(libpng LICENSE README)
|
||||||
|
@ -87,9 +87,9 @@ endif()
|
|||||||
|
|
||||||
if(INF_ENGINE_TARGET)
|
if(INF_ENGINE_TARGET)
|
||||||
if(NOT INF_ENGINE_RELEASE)
|
if(NOT INF_ENGINE_RELEASE)
|
||||||
message(WARNING "InferenceEngine version have not been set, 2018R5 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
message(WARNING "InferenceEngine version have not been set, 2019R1 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
||||||
endif()
|
endif()
|
||||||
set(INF_ENGINE_RELEASE "2018050000" CACHE STRING "Force IE version, should be in form YYYYAABBCC (e.g. 2018R2.0.2 -> 2018020002)")
|
set(INF_ENGINE_RELEASE "2019010000" CACHE STRING "Force IE version, should be in form YYYYAABBCC (e.g. 2018R2.0.2 -> 2018020002)")
|
||||||
set_target_properties(${INF_ENGINE_TARGET} PROPERTIES
|
set_target_properties(${INF_ENGINE_TARGET} PROPERTIES
|
||||||
INTERFACE_COMPILE_DEFINITIONS "HAVE_INF_ENGINE=1;INF_ENGINE_RELEASE=${INF_ENGINE_RELEASE}"
|
INTERFACE_COMPILE_DEFINITIONS "HAVE_INF_ENGINE=1;INF_ENGINE_RELEASE=${INF_ENGINE_RELEASE}"
|
||||||
)
|
)
|
||||||
|
@ -245,7 +245,12 @@ if(NOT DEFINED IPPROOT)
|
|||||||
return()
|
return()
|
||||||
endif()
|
endif()
|
||||||
set(IPPROOT "${ICV_PACKAGE_ROOT}/icv")
|
set(IPPROOT "${ICV_PACKAGE_ROOT}/icv")
|
||||||
ocv_install_3rdparty_licenses(ippicv "${IPPROOT}/readme.htm" "${ICV_PACKAGE_ROOT}/EULA.txt")
|
ocv_install_3rdparty_licenses(ippicv "${IPPROOT}/readme.htm")
|
||||||
|
if(WIN32)
|
||||||
|
ocv_install_3rdparty_licenses(ippicv "${ICV_PACKAGE_ROOT}/EULA.rtf")
|
||||||
|
else()
|
||||||
|
ocv_install_3rdparty_licenses(ippicv "${ICV_PACKAGE_ROOT}/EULA.txt")
|
||||||
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
file(TO_CMAKE_PATH "${IPPROOT}" __IPPROOT)
|
file(TO_CMAKE_PATH "${IPPROOT}" __IPPROOT)
|
||||||
|
@ -148,9 +148,13 @@ if(BUILD_IPP_IW)
|
|||||||
|
|
||||||
set(IPPIW_ROOT "${IPPROOT}/../iw")
|
set(IPPIW_ROOT "${IPPROOT}/../iw")
|
||||||
ocv_install_3rdparty_licenses(ippiw
|
ocv_install_3rdparty_licenses(ippiw
|
||||||
"${IPPIW_ROOT}/../EULA.txt"
|
|
||||||
"${IPPIW_ROOT}/../support.txt"
|
"${IPPIW_ROOT}/../support.txt"
|
||||||
"${IPPIW_ROOT}/../third-party-programs.txt")
|
"${IPPIW_ROOT}/../third-party-programs.txt")
|
||||||
|
if(WIN32)
|
||||||
|
ocv_install_3rdparty_licenses(ippiw "${IPPIW_ROOT}/../EULA.rtf")
|
||||||
|
else()
|
||||||
|
ocv_install_3rdparty_licenses(ippiw "${IPPIW_ROOT}/../EULA.txt")
|
||||||
|
endif()
|
||||||
|
|
||||||
# Package sources
|
# Package sources
|
||||||
get_filename_component(__PATH "${IPPROOT}/../iw/" ABSOLUTE)
|
get_filename_component(__PATH "${IPPROOT}/../iw/" ABSOLUTE)
|
||||||
|
@ -1200,13 +1200,17 @@ endfunction()
|
|||||||
# ocv_install_3rdparty_licenses(<library-name> <filename1> [<filename2> ..])
|
# ocv_install_3rdparty_licenses(<library-name> <filename1> [<filename2> ..])
|
||||||
function(ocv_install_3rdparty_licenses library)
|
function(ocv_install_3rdparty_licenses library)
|
||||||
foreach(filename ${ARGN})
|
foreach(filename ${ARGN})
|
||||||
|
set(filepath "${filename}")
|
||||||
|
if(NOT IS_ABSOLUTE "${filepath}")
|
||||||
|
set(filepath "${CMAKE_CURRENT_LIST_DIR}/${filepath}")
|
||||||
|
endif()
|
||||||
get_filename_component(name "${filename}" NAME)
|
get_filename_component(name "${filename}" NAME)
|
||||||
install(
|
install(
|
||||||
FILES "${filename}"
|
FILES "${filepath}"
|
||||||
DESTINATION "${OPENCV_LICENSES_INSTALL_PATH}"
|
DESTINATION "${OPENCV_LICENSES_INSTALL_PATH}"
|
||||||
COMPONENT licenses
|
COMPONENT licenses
|
||||||
RENAME "${library}-${name}"
|
RENAME "${library}-${name}"
|
||||||
OPTIONAL)
|
)
|
||||||
endforeach()
|
endforeach()
|
||||||
endfunction()
|
endfunction()
|
||||||
|
|
||||||
|
@ -222,6 +222,10 @@ PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
|
|||||||
|
|
||||||
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
|
||||||
{
|
{
|
||||||
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
||||||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
|
throw SkipTestException("Test is disabled in OpenVINO 2019R1");
|
||||||
|
#endif
|
||||||
if (backend == DNN_BACKEND_HALIDE ||
|
if (backend == DNN_BACKEND_HALIDE ||
|
||||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
|
||||||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
||||||
|
@ -253,7 +253,7 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
|
|||||||
std::vector<Mat> images;
|
std::vector<Mat> images;
|
||||||
images_.getMatVector(images);
|
images_.getMatVector(images);
|
||||||
CV_Assert(!images.empty());
|
CV_Assert(!images.empty());
|
||||||
for (int i = 0; i < images.size(); i++)
|
for (size_t i = 0; i < images.size(); i++)
|
||||||
{
|
{
|
||||||
Size imgSize = images[i].size();
|
Size imgSize = images[i].size();
|
||||||
if (size == Size())
|
if (size == Size())
|
||||||
@ -283,11 +283,10 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
|
|||||||
images[i] *= scalefactor;
|
images[i] *= scalefactor;
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t i, nimages = images.size();
|
size_t nimages = images.size();
|
||||||
Mat image0 = images[0];
|
Mat image0 = images[0];
|
||||||
int nch = image0.channels();
|
int nch = image0.channels();
|
||||||
CV_Assert(image0.dims == 2);
|
CV_Assert(image0.dims == 2);
|
||||||
Mat image;
|
|
||||||
if (nch == 3 || nch == 4)
|
if (nch == 3 || nch == 4)
|
||||||
{
|
{
|
||||||
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
|
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
|
||||||
@ -295,9 +294,9 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
|
|||||||
Mat blob = blob_.getMat();
|
Mat blob = blob_.getMat();
|
||||||
Mat ch[4];
|
Mat ch[4];
|
||||||
|
|
||||||
for( i = 0; i < nimages; i++ )
|
for(size_t i = 0; i < nimages; i++ )
|
||||||
{
|
{
|
||||||
image = images[i];
|
const Mat& image = images[i];
|
||||||
CV_Assert(image.depth() == blob_.depth());
|
CV_Assert(image.depth() == blob_.depth());
|
||||||
nch = image.channels();
|
nch = image.channels();
|
||||||
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
|
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
|
||||||
@ -317,9 +316,9 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
|
|||||||
blob_.create(4, sz, ddepth);
|
blob_.create(4, sz, ddepth);
|
||||||
Mat blob = blob_.getMat();
|
Mat blob = blob_.getMat();
|
||||||
|
|
||||||
for( i = 0; i < nimages; i++ )
|
for(size_t i = 0; i < nimages; i++ )
|
||||||
{
|
{
|
||||||
Mat image = images[i];
|
const Mat& image = images[i];
|
||||||
CV_Assert(image.depth() == blob_.depth());
|
CV_Assert(image.depth() == blob_.depth());
|
||||||
nch = image.channels();
|
nch = image.channels();
|
||||||
CV_Assert(image.dims == 2 && (nch == 1));
|
CV_Assert(image.dims == 2 && (nch == 1));
|
||||||
@ -1700,7 +1699,7 @@ struct Net::Impl
|
|||||||
preferableTarget == DNN_TARGET_MYRIAD ||
|
preferableTarget == DNN_TARGET_MYRIAD ||
|
||||||
preferableTarget == DNN_TARGET_FPGA) && !fused)
|
preferableTarget == DNN_TARGET_FPGA) && !fused)
|
||||||
{
|
{
|
||||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
|
||||||
for (const std::string& name : {"weights", "biases"})
|
for (const std::string& name : {"weights", "biases"})
|
||||||
{
|
{
|
||||||
auto it = ieNode->layer.getParameters().find(name);
|
auto it = ieNode->layer.getParameters().find(name);
|
||||||
|
@ -290,7 +290,7 @@ public:
|
|||||||
weights = wrapToInfEngineBlob(blobs[0], {(size_t)numChannels}, InferenceEngine::Layout::C);
|
weights = wrapToInfEngineBlob(blobs[0], {(size_t)numChannels}, InferenceEngine::Layout::C);
|
||||||
l.getParameters()["channel_shared"] = blobs[0].total() == 1;
|
l.getParameters()["channel_shared"] = blobs[0].total() == 1;
|
||||||
}
|
}
|
||||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
|
||||||
l.getParameters()["weights"] = weights;
|
l.getParameters()["weights"] = weights;
|
||||||
#else
|
#else
|
||||||
l.addConstantData("weights", weights);
|
l.addConstantData("weights", weights);
|
||||||
|
@ -130,7 +130,7 @@ void InfEngineBackendNet::init(int targetId)
|
|||||||
for (int id : unconnectedLayersIds)
|
for (int id : unconnectedLayersIds)
|
||||||
{
|
{
|
||||||
InferenceEngine::Builder::OutputLayer outLayer("myconv1");
|
InferenceEngine::Builder::OutputLayer outLayer("myconv1");
|
||||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
|
||||||
// Inference Engine determines network precision by ports.
|
// Inference Engine determines network precision by ports.
|
||||||
InferenceEngine::Precision p = (targetId == DNN_TARGET_MYRIAD ||
|
InferenceEngine::Precision p = (targetId == DNN_TARGET_MYRIAD ||
|
||||||
targetId == DNN_TARGET_OPENCL_FP16) ?
|
targetId == DNN_TARGET_OPENCL_FP16) ?
|
||||||
@ -188,7 +188,7 @@ void InfEngineBackendNet::init(int targetId)
|
|||||||
|
|
||||||
void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer)
|
void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer)
|
||||||
{
|
{
|
||||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
|
||||||
// Add weights to network and connect them after input blobs.
|
// Add weights to network and connect them after input blobs.
|
||||||
std::map<std::string, InferenceEngine::Parameter>& params = layer.getParameters();
|
std::map<std::string, InferenceEngine::Parameter>& params = layer.getParameters();
|
||||||
std::vector<int> blobsIds;
|
std::vector<int> blobsIds;
|
||||||
@ -229,7 +229,7 @@ void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer)
|
|||||||
CV_Assert(layers.insert({layerName, id}).second);
|
CV_Assert(layers.insert({layerName, id}).second);
|
||||||
unconnectedLayersIds.insert(id);
|
unconnectedLayersIds.insert(id);
|
||||||
|
|
||||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
|
||||||
// By default, all the weights are connected to last ports ids.
|
// By default, all the weights are connected to last ports ids.
|
||||||
for (int i = 0; i < blobsIds.size(); ++i)
|
for (int i = 0; i < blobsIds.size(); ++i)
|
||||||
{
|
{
|
||||||
@ -903,7 +903,7 @@ InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob)
|
|||||||
void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data,
|
void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data,
|
||||||
InferenceEngine::Builder::Layer& l)
|
InferenceEngine::Builder::Layer& l)
|
||||||
{
|
{
|
||||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R5)
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
|
||||||
l.getParameters()[name] = data;
|
l.getParameters()[name] = data;
|
||||||
#else
|
#else
|
||||||
l.addConstantData(name, data);
|
l.addConstantData(name, data);
|
||||||
|
@ -27,10 +27,11 @@
|
|||||||
#define INF_ENGINE_RELEASE_2018R3 2018030000
|
#define INF_ENGINE_RELEASE_2018R3 2018030000
|
||||||
#define INF_ENGINE_RELEASE_2018R4 2018040000
|
#define INF_ENGINE_RELEASE_2018R4 2018040000
|
||||||
#define INF_ENGINE_RELEASE_2018R5 2018050000
|
#define INF_ENGINE_RELEASE_2018R5 2018050000
|
||||||
|
#define INF_ENGINE_RELEASE_2019R1 2019010000
|
||||||
|
|
||||||
#ifndef INF_ENGINE_RELEASE
|
#ifndef INF_ENGINE_RELEASE
|
||||||
#warning("IE version have not been provided via command-line. Using 2018R5 by default")
|
#warning("IE version have not been provided via command-line. Using 2019R1 by default")
|
||||||
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2018R5
|
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2019R1
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
|
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
|
||||||
|
@ -289,7 +289,7 @@ TEST_P(DNNTestNetwork, OpenFace)
|
|||||||
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||||
throw SkipTestException("Test is disabled for Myriad targets");
|
throw SkipTestException("Test is disabled for Myriad targets");
|
||||||
#elif INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#elif INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
||||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
||||||
)
|
)
|
||||||
|
@ -267,7 +267,7 @@ public:
|
|||||||
|
|
||||||
TEST_P(Test_Darknet_nets, YoloVoc)
|
TEST_P(Test_Darknet_nets, YoloVoc)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
||||||
throw SkipTestException("Test is disabled");
|
throw SkipTestException("Test is disabled");
|
||||||
#endif
|
#endif
|
||||||
|
@ -169,7 +169,7 @@ TEST_P(Deconvolution, Accuracy)
|
|||||||
throw SkipTestException("Test is disabled for OpenVINO 2018R4");
|
throw SkipTestException("Test is disabled for OpenVINO 2018R4");
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD
|
||||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
||||||
&& inChannels == 6 && outChannels == 4 && group == 1
|
&& inChannels == 6 && outChannels == 4 && group == 1
|
||||||
@ -351,7 +351,7 @@ TEST_P(MaxPooling, Accuracy)
|
|||||||
throw SkipTestException("Problems with output dimension in OpenVINO 2018R5");
|
throw SkipTestException("Problems with output dimension in OpenVINO 2018R5");
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD
|
||||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
||||||
&& (stride == Size(1, 1) || stride == Size(2, 2))
|
&& (stride == Size(1, 1) || stride == Size(2, 2))
|
||||||
@ -561,7 +561,7 @@ TEST_P(ReLU, Accuracy)
|
|||||||
float negativeSlope = get<0>(GetParam());
|
float negativeSlope = get<0>(GetParam());
|
||||||
Backend backendId = get<0>(get<1>(GetParam()));
|
Backend backendId = get<0>(get<1>(GetParam()));
|
||||||
Target targetId = get<1>(get<1>(GetParam()));
|
Target targetId = get<1>(get<1>(GetParam()));
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE
|
||||||
&& negativeSlope < 0
|
&& negativeSlope < 0
|
||||||
)
|
)
|
||||||
@ -589,7 +589,7 @@ TEST_P(NoParamActivation, Accuracy)
|
|||||||
LayerParams lp;
|
LayerParams lp;
|
||||||
lp.type = get<0>(GetParam());
|
lp.type = get<0>(GetParam());
|
||||||
lp.name = "testLayer";
|
lp.name = "testLayer";
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE
|
||||||
&& lp.type == "AbsVal"
|
&& lp.type == "AbsVal"
|
||||||
)
|
)
|
||||||
@ -688,7 +688,7 @@ TEST_P(Concat, Accuracy)
|
|||||||
throw SkipTestException("Test is disabled for Myriad target"); // crash
|
throw SkipTestException("Test is disabled for Myriad target"); // crash
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_CPU
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_CPU
|
||||||
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
|
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2)
|
||||||
)
|
)
|
||||||
@ -769,7 +769,7 @@ TEST_P(Eltwise, Accuracy)
|
|||||||
throw SkipTestException("Test is disabled for Myriad target");
|
throw SkipTestException("Test is disabled for Myriad target");
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && numConv > 1)
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE && numConv > 1)
|
||||||
throw SkipTestException("Test is disabled for DLIE backend");
|
throw SkipTestException("Test is disabled for DLIE backend");
|
||||||
#endif
|
#endif
|
||||||
|
@ -21,9 +21,18 @@ static void initDLDTDataPath()
|
|||||||
static bool initialized = false;
|
static bool initialized = false;
|
||||||
if (!initialized)
|
if (!initialized)
|
||||||
{
|
{
|
||||||
|
#if INF_ENGINE_RELEASE <= 2018050000
|
||||||
const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR");
|
const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR");
|
||||||
if (dldtTestDataPath)
|
if (dldtTestDataPath)
|
||||||
cvtest::addDataSearchPath(cv::utils::fs::join(dldtTestDataPath, "deployment_tools"));
|
cvtest::addDataSearchPath(dldtTestDataPath);
|
||||||
|
#else
|
||||||
|
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH");
|
||||||
|
if (omzDataPath)
|
||||||
|
cvtest::addDataSearchPath(omzDataPath);
|
||||||
|
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH");
|
||||||
|
if (dnnDataPath)
|
||||||
|
cvtest::addDataSearchPath(std::string(dnnDataPath) + "/omz_intel_models");
|
||||||
|
#endif
|
||||||
initialized = true;
|
initialized = true;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
@ -33,6 +42,76 @@ using namespace cv;
|
|||||||
using namespace cv::dnn;
|
using namespace cv::dnn;
|
||||||
using namespace InferenceEngine;
|
using namespace InferenceEngine;
|
||||||
|
|
||||||
|
struct OpenVINOModelTestCaseInfo
|
||||||
|
{
|
||||||
|
const char* modelPathFP32;
|
||||||
|
const char* modelPathFP16;
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::map<std::string, OpenVINOModelTestCaseInfo>& getOpenVINOTestModels()
|
||||||
|
{
|
||||||
|
static std::map<std::string, OpenVINOModelTestCaseInfo> g_models {
|
||||||
|
#if INF_ENGINE_RELEASE <= 2018050000
|
||||||
|
{ "age-gender-recognition-retail-0013", {
|
||||||
|
"deployment_tools/intel_models/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013",
|
||||||
|
"deployment_tools/intel_models/age-gender-recognition-retail-0013/FP16/age-gender-recognition-retail-0013"
|
||||||
|
}},
|
||||||
|
{ "face-person-detection-retail-0002", {
|
||||||
|
"deployment_tools/intel_models/face-person-detection-retail-0002/FP32/face-person-detection-retail-0002",
|
||||||
|
"deployment_tools/intel_models/face-person-detection-retail-0002/FP16/face-person-detection-retail-0002"
|
||||||
|
}},
|
||||||
|
{ "head-pose-estimation-adas-0001", {
|
||||||
|
"deployment_tools/intel_models/head-pose-estimation-adas-0001/FP32/head-pose-estimation-adas-0001",
|
||||||
|
"deployment_tools/intel_models/head-pose-estimation-adas-0001/FP16/head-pose-estimation-adas-0001"
|
||||||
|
}},
|
||||||
|
{ "person-detection-retail-0002", {
|
||||||
|
"deployment_tools/intel_models/person-detection-retail-0002/FP32/person-detection-retail-0002",
|
||||||
|
"deployment_tools/intel_models/person-detection-retail-0002/FP16/person-detection-retail-0002"
|
||||||
|
}},
|
||||||
|
{ "vehicle-detection-adas-0002", {
|
||||||
|
"deployment_tools/intel_models/vehicle-detection-adas-0002/FP32/vehicle-detection-adas-0002",
|
||||||
|
"deployment_tools/intel_models/vehicle-detection-adas-0002/FP16/vehicle-detection-adas-0002"
|
||||||
|
}}
|
||||||
|
#else
|
||||||
|
// layout is defined by open_model_zoo/model_downloader
|
||||||
|
// Downloaded using these parameters for Open Model Zoo downloader (2019R1):
|
||||||
|
// ./downloader.py -o ${OPENCV_DNN_TEST_DATA_PATH}/omz_intel_models --cache_dir ${OPENCV_DNN_TEST_DATA_PATH}/.omz_cache/ \
|
||||||
|
// --name face-person-detection-retail-0002,face-person-detection-retail-0002-fp16,age-gender-recognition-retail-0013,age-gender-recognition-retail-0013-fp16,head-pose-estimation-adas-0001,head-pose-estimation-adas-0001-fp16,person-detection-retail-0002,person-detection-retail-0002-fp16,vehicle-detection-adas-0002,vehicle-detection-adas-0002-fp16
|
||||||
|
{ "age-gender-recognition-retail-0013", {
|
||||||
|
"Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013",
|
||||||
|
"Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013-fp16"
|
||||||
|
}},
|
||||||
|
{ "face-person-detection-retail-0002", {
|
||||||
|
"Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002",
|
||||||
|
"Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002-fp16"
|
||||||
|
}},
|
||||||
|
{ "head-pose-estimation-adas-0001", {
|
||||||
|
"Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001",
|
||||||
|
"Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001-fp16"
|
||||||
|
}},
|
||||||
|
{ "person-detection-retail-0002", {
|
||||||
|
"Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002",
|
||||||
|
"Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002-fp16"
|
||||||
|
}},
|
||||||
|
{ "vehicle-detection-adas-0002", {
|
||||||
|
"Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002",
|
||||||
|
"Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002-fp16"
|
||||||
|
}}
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
return g_models;
|
||||||
|
}
|
||||||
|
|
||||||
|
static const std::vector<std::string> getOpenVINOTestModelsList()
|
||||||
|
{
|
||||||
|
std::vector<std::string> result;
|
||||||
|
const std::map<std::string, OpenVINOModelTestCaseInfo>& models = getOpenVINOTestModels();
|
||||||
|
for (const auto& it : models)
|
||||||
|
result.push_back(it.first);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr)
|
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr)
|
||||||
{
|
{
|
||||||
std::vector<int> reversedDims(dims.begin(), dims.end());
|
std::vector<int> reversedDims(dims.begin(), dims.end());
|
||||||
@ -172,25 +251,23 @@ void runCV(Target target, const std::string& xmlPath, const std::string& binPath
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
typedef TestWithParam<tuple<Target, String> > DNNTestOpenVINO;
|
typedef TestWithParam<tuple<Target, std::string> > DNNTestOpenVINO;
|
||||||
TEST_P(DNNTestOpenVINO, models)
|
TEST_P(DNNTestOpenVINO, models)
|
||||||
{
|
{
|
||||||
|
initDLDTDataPath();
|
||||||
|
|
||||||
Target target = (dnn::Target)(int)get<0>(GetParam());
|
Target target = (dnn::Target)(int)get<0>(GetParam());
|
||||||
std::string modelName = get<1>(GetParam());
|
std::string modelName = get<1>(GetParam());
|
||||||
std::string precision = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "FP16" : "FP32";
|
bool isFP16 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD);
|
||||||
std::string prefix;
|
|
||||||
|
|
||||||
#ifdef INF_ENGINE_RELEASE
|
const std::map<std::string, OpenVINOModelTestCaseInfo>& models = getOpenVINOTestModels();
|
||||||
#if INF_ENGINE_RELEASE <= 2018050000
|
const auto it = models.find(modelName);
|
||||||
prefix = utils::fs::join("intel_models",
|
ASSERT_TRUE(it != models.end()) << modelName;
|
||||||
utils::fs::join(modelName,
|
OpenVINOModelTestCaseInfo modelInfo = it->second;
|
||||||
utils::fs::join(precision, modelName)));
|
std::string modelPath = isFP16 ? modelInfo.modelPathFP16 : modelInfo.modelPathFP32;
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
initDLDTDataPath();
|
std::string xmlPath = findDataFile(modelPath + ".xml");
|
||||||
std::string xmlPath = findDataFile(prefix + ".xml");
|
std::string binPath = findDataFile(modelPath + ".bin");
|
||||||
std::string binPath = findDataFile(prefix + ".bin");
|
|
||||||
|
|
||||||
std::map<std::string, cv::Mat> inputsMap;
|
std::map<std::string, cv::Mat> inputsMap;
|
||||||
std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap;
|
std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap;
|
||||||
@ -210,16 +287,12 @@ TEST_P(DNNTestOpenVINO, models)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
INSTANTIATE_TEST_CASE_P(/**/,
|
INSTANTIATE_TEST_CASE_P(/**/,
|
||||||
DNNTestOpenVINO,
|
DNNTestOpenVINO,
|
||||||
Combine(testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE)),
|
Combine(testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE)),
|
||||||
testing::Values(
|
testing::ValuesIn(getOpenVINOTestModelsList())
|
||||||
"age-gender-recognition-retail-0013",
|
)
|
||||||
"face-person-detection-retail-0002",
|
|
||||||
"head-pose-estimation-adas-0001",
|
|
||||||
"person-detection-retail-0002",
|
|
||||||
"vehicle-detection-adas-0002"
|
|
||||||
))
|
|
||||||
);
|
);
|
||||||
|
|
||||||
}}
|
}}
|
||||||
|
@ -236,7 +236,7 @@ TEST_P(Test_Caffe_layers, Dropout)
|
|||||||
|
|
||||||
TEST_P(Test_Caffe_layers, Concat)
|
TEST_P(Test_Caffe_layers, Concat)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||||
throw SkipTestException("Test is disabled for Myriad targets");
|
throw SkipTestException("Test is disabled for Myriad targets");
|
||||||
#endif
|
#endif
|
||||||
@ -247,7 +247,7 @@ TEST_P(Test_Caffe_layers, Concat)
|
|||||||
|
|
||||||
TEST_P(Test_Caffe_layers, Fused_Concat)
|
TEST_P(Test_Caffe_layers, Fused_Concat)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
throw SkipTestException("Test is disabled for DLIE due negative_slope parameter");
|
throw SkipTestException("Test is disabled for DLIE due negative_slope parameter");
|
||||||
#endif
|
#endif
|
||||||
|
@ -319,7 +319,7 @@ TEST_P(Test_ONNX_nets, ResNet50v1)
|
|||||||
|
|
||||||
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC)
|
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
throw SkipTestException("Test is disabled for DLIE targets");
|
throw SkipTestException("Test is disabled for DLIE targets");
|
||||||
#endif
|
#endif
|
||||||
|
@ -140,7 +140,7 @@ TEST_P(Test_TensorFlow_layers, padding)
|
|||||||
|
|
||||||
TEST_P(Test_TensorFlow_layers, padding_same)
|
TEST_P(Test_TensorFlow_layers, padding_same)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
throw SkipTestException("Test is disabled for DLIE");
|
throw SkipTestException("Test is disabled for DLIE");
|
||||||
#endif
|
#endif
|
||||||
@ -197,7 +197,7 @@ TEST_P(Test_TensorFlow_layers, pooling)
|
|||||||
TEST_P(Test_TensorFlow_layers, ave_pool_same)
|
TEST_P(Test_TensorFlow_layers, ave_pool_same)
|
||||||
{
|
{
|
||||||
// Reference output values are in range [-0.519531, 0.112976]
|
// Reference output values are in range [-0.519531, 0.112976]
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
||||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
||||||
)
|
)
|
||||||
@ -241,7 +241,7 @@ TEST_P(Test_TensorFlow_layers, reshape)
|
|||||||
|
|
||||||
TEST_P(Test_TensorFlow_layers, flatten)
|
TEST_P(Test_TensorFlow_layers, flatten)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
throw SkipTestException("Test is disabled for DLIE");
|
throw SkipTestException("Test is disabled for DLIE");
|
||||||
#endif
|
#endif
|
||||||
@ -257,7 +257,7 @@ TEST_P(Test_TensorFlow_layers, flatten)
|
|||||||
|
|
||||||
TEST_P(Test_TensorFlow_layers, unfused_flatten)
|
TEST_P(Test_TensorFlow_layers, unfused_flatten)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
throw SkipTestException("Test is disabled for DLIE");
|
throw SkipTestException("Test is disabled for DLIE");
|
||||||
#endif
|
#endif
|
||||||
@ -279,7 +279,7 @@ TEST_P(Test_TensorFlow_layers, leaky_relu)
|
|||||||
|
|
||||||
TEST_P(Test_TensorFlow_layers, l2_normalize)
|
TEST_P(Test_TensorFlow_layers, l2_normalize)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
|
||||||
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
|
||||||
)
|
)
|
||||||
@ -587,7 +587,7 @@ TEST_P(Test_TensorFlow_layers, fp16_weights)
|
|||||||
|
|
||||||
TEST_P(Test_TensorFlow_layers, fp16_padding_same)
|
TEST_P(Test_TensorFlow_layers, fp16_padding_same)
|
||||||
{
|
{
|
||||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2018050000)
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
throw SkipTestException("Test is disabled for DLIE");
|
throw SkipTestException("Test is disabled for DLIE");
|
||||||
#endif
|
#endif
|
||||||
|
Loading…
Reference in New Issue
Block a user