mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 22:00:25 +08:00
GPU version becomes algorithm
This commit is contained in:
parent
e6eb1b99e1
commit
40600fa504
@ -1534,10 +1534,12 @@ public:
|
||||
|
||||
// ======================== GPU version for soft cascade ===================== //
|
||||
|
||||
class CV_EXPORTS SoftCascade
|
||||
// Implementation of soft (stageless) cascaded detector.
|
||||
class CV_EXPORTS SCascade : public Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
// Representation of detectors result.
|
||||
struct CV_EXPORTS Detection
|
||||
{
|
||||
ushort x;
|
||||
@ -1549,47 +1551,44 @@ public:
|
||||
|
||||
enum {PEDESTRIAN = 0};
|
||||
};
|
||||
//! An empty cascade will be created.
|
||||
SoftCascade();
|
||||
|
||||
//! Cascade will be created from file for scales from minScale to maxScale.
|
||||
//! Param filename is a path to xml-serialized cascade.
|
||||
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
SoftCascade( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f);
|
||||
// An empty cascade will be created.
|
||||
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
// Param scales is a number of scales from minScale to maxScale.
|
||||
// Param rejfactor is used for NMS.
|
||||
SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejfactor = 1);
|
||||
|
||||
//! cascade will be loaded from file "filename". The previous cascade will be destroyed.
|
||||
//! Param filename is a path to xml-serialized cascade.
|
||||
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
bool load( const string& filename, const float minScale = 0.4f, const float maxScale = 5.f);
|
||||
virtual ~SCascade();
|
||||
|
||||
virtual ~SoftCascade();
|
||||
cv::AlgorithmInfo* info() const;
|
||||
|
||||
//! detect specific objects on in the input frame for all scales computed flom minScale and maxscale values
|
||||
//! Param image is input frame for detector. Cascade will be applied to it.
|
||||
//! Param rois is a mask
|
||||
//! Param objects 4-channel matrix thet contain detected rectangles
|
||||
//! Param rejectfactor used for final object box computing
|
||||
virtual void detectMultiScale(const GpuMat& image, const GpuMat& rois, GpuMat& objects,
|
||||
int rejectfactor = 1, int specificScale = -1) const;
|
||||
// Load cascade from FileNode.
|
||||
// Param fn is a root node for cascade. Should be <cascade>.
|
||||
virtual bool load(const FileNode& fn);
|
||||
|
||||
//! detect specific objects on in the input frame for all scales computed flom minScale and maxscale values.
|
||||
//! asynchronous version.
|
||||
//! Param image is input frame for detector. Cascade will be applied to it.
|
||||
//! Param rois is a mask
|
||||
//! Param objects 4-channel matrix thet contain detected rectangles
|
||||
//! Param rejectfactor used for final object box computing
|
||||
//! Param ndet retrieves number of detections
|
||||
//! Param stream wrapper for CUDA stream
|
||||
virtual void detectMultiScale(const GpuMat& image, const GpuMat& rois, GpuMat& objects,
|
||||
int rejectfactor, GpuMat& ndet, Stream stream) const;
|
||||
// Load cascade config.
|
||||
virtual void read(const FileNode& fn);
|
||||
|
||||
cv::Size getRoiSize() const;
|
||||
// Return the vector of Decection objcts.
|
||||
// Param image is a frame on which detector will be applied.
|
||||
// Param rois is a vector of regions of interest. Only the objects that fall into one of the regions will be returned.
|
||||
// Param objects is an output array of Detections
|
||||
virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const;
|
||||
virtual void detect(InputArray image, InputArray rois, OutputArray objects, const int level, Stream& stream = Stream::Null()) const;
|
||||
|
||||
void genRoi(InputArray roi, OutputArray mask) const;
|
||||
|
||||
private:
|
||||
struct Filds;
|
||||
Filds* filds;
|
||||
|
||||
struct Fields;
|
||||
Fields* fields;
|
||||
|
||||
double minScale;
|
||||
double maxScale;
|
||||
|
||||
int scales;
|
||||
int rejfactor;
|
||||
};
|
||||
|
||||
////////////////////////////////// SURF //////////////////////////////////////////
|
||||
|
@ -25,8 +25,8 @@ void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy";
|
||||
namespace {
|
||||
struct DetectionLess
|
||||
{
|
||||
bool operator()(const cv::gpu::SoftCascade::Detection& a,
|
||||
const cv::gpu::SoftCascade::Detection& b) const
|
||||
bool operator()(const cv::gpu::SCascade::Detection& a,
|
||||
const cv::gpu::SCascade::Detection& b) const
|
||||
{
|
||||
if (a.x != b.x) return a.x < b.x;
|
||||
else if (a.y != b.y) return a.y < b.y;
|
||||
@ -51,7 +51,7 @@ namespace {
|
||||
{
|
||||
cv::Mat detections(objects);
|
||||
|
||||
typedef cv::gpu::SoftCascade::Detection Detection;
|
||||
typedef cv::gpu::SCascade::Detection Detection;
|
||||
Detection* begin = (Detection*)(detections.ptr<char>(0));
|
||||
Detection* end = (Detection*)(detections.ptr<char>(0) + detections.cols);
|
||||
std::sort(begin, end, DetectionLess());
|
||||
@ -62,52 +62,54 @@ namespace {
|
||||
|
||||
|
||||
typedef std::tr1::tuple<std::string, std::string> fixture_t;
|
||||
typedef perf::TestBaseWithParam<fixture_t> SoftCascadeTest;
|
||||
typedef perf::TestBaseWithParam<fixture_t> SCascadeTest;
|
||||
|
||||
GPU_PERF_TEST_P(SoftCascadeTest, detect,
|
||||
GPU_PERF_TEST_P(SCascadeTest, detect,
|
||||
testing::Combine(
|
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png"))))
|
||||
{ }
|
||||
|
||||
RUN_GPU(SoftCascadeTest, detect)
|
||||
RUN_GPU(SCascadeTest, detect)
|
||||
{
|
||||
cv::Mat cpu = readImage (GET_PARAM(1));
|
||||
ASSERT_FALSE(cpu.empty());
|
||||
cv::gpu::GpuMat colored(cpu);
|
||||
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1), trois;
|
||||
rois.setTo(1);
|
||||
cv::gpu::transpose(rois, trois);
|
||||
cascade.genRoi(rois, trois);
|
||||
|
||||
cv::gpu::GpuMat curr = objectBoxes;
|
||||
cascade.detectMultiScale(colored, trois, curr);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
curr = objectBoxes;
|
||||
cascade.detectMultiScale(colored, trois, curr);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
}
|
||||
|
||||
SANITY_CHECK(sortDetections(curr));
|
||||
SANITY_CHECK(sortDetections(objectBoxes));
|
||||
}
|
||||
|
||||
NO_CPU(SoftCascadeTest, detect)
|
||||
NO_CPU(SCascadeTest, detect)
|
||||
|
||||
// RUN_CPU(SoftCascadeTest, detect)
|
||||
// RUN_CPU(SCascadeTest, detect)
|
||||
// {
|
||||
// cv::Mat colored = readImage(GET_PARAM(1));
|
||||
// ASSERT_FALSE(colored.empty());
|
||||
|
||||
// cv::SoftCascade cascade;
|
||||
// cv::SCascade cascade;
|
||||
// ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0))));
|
||||
|
||||
// std::vector<cv::Rect> rois;
|
||||
|
||||
// typedef cv::SoftCascade::Detection Detection;
|
||||
// typedef cv::SCascade::Detection Detection;
|
||||
// std::vector<Detection>objects;
|
||||
// cascade.detectMultiScale(colored, rois, objects);
|
||||
|
||||
@ -124,42 +126,46 @@ static cv::Rect getFromTable(int idx)
|
||||
{
|
||||
static const cv::Rect rois[] =
|
||||
{
|
||||
cv::Rect( 65, 20, 35, 80),
|
||||
cv::Rect( 95, 35, 45, 40),
|
||||
cv::Rect( 45, 35, 45, 40),
|
||||
cv::Rect( 25, 27, 50, 45),
|
||||
cv::Rect(100, 50, 45, 40),
|
||||
cv::Rect( 65 * 4, 20 * 4, 35 * 4, 80 * 4),
|
||||
cv::Rect( 95 * 4, 35 * 4, 45 * 4, 40 * 4),
|
||||
cv::Rect( 45 * 4, 35 * 4, 45 * 4, 40 * 4),
|
||||
cv::Rect( 25 * 4, 27 * 4, 50 * 4, 45 * 4),
|
||||
cv::Rect(100 * 4, 50 * 4, 45 * 4, 40 * 4),
|
||||
|
||||
cv::Rect( 60, 30, 45, 40),
|
||||
cv::Rect( 40, 55, 50, 40),
|
||||
cv::Rect( 48, 37, 72, 80),
|
||||
cv::Rect( 48, 32, 85, 58),
|
||||
cv::Rect( 48, 0, 32, 27)
|
||||
cv::Rect( 60 * 4, 30 * 4, 45 * 4, 40 * 4),
|
||||
cv::Rect( 40 * 4, 55 * 4, 50 * 4, 40 * 4),
|
||||
cv::Rect( 48 * 4, 37 * 4, 72 * 4, 80 * 4),
|
||||
cv::Rect( 48 * 4, 32 * 4, 85 * 4, 58 * 4),
|
||||
cv::Rect( 48 * 4, 0 * 4, 32 * 4, 27 * 4)
|
||||
};
|
||||
|
||||
return rois[idx];
|
||||
}
|
||||
|
||||
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t;
|
||||
typedef perf::TestBaseWithParam<roi_fixture_t> SoftCascadeTestRoi;
|
||||
typedef perf::TestBaseWithParam<roi_fixture_t> SCascadeTestRoi;
|
||||
|
||||
GPU_PERF_TEST_P(SoftCascadeTestRoi, detectInRoi,
|
||||
GPU_PERF_TEST_P(SCascadeTestRoi, detectInRoi,
|
||||
testing::Combine(
|
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 5)))
|
||||
{}
|
||||
|
||||
RUN_GPU(SoftCascadeTestRoi, detectInRoi)
|
||||
RUN_GPU(SCascadeTestRoi, detectInRoi)
|
||||
{
|
||||
cv::Mat cpu = readImage (GET_PARAM(1));
|
||||
ASSERT_FALSE(cpu.empty());
|
||||
cv::gpu::GpuMat colored(cpu);
|
||||
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
rois.setTo(0);
|
||||
|
||||
int nroi = GET_PARAM(2);
|
||||
@ -172,40 +178,42 @@ RUN_GPU(SoftCascadeTestRoi, detectInRoi)
|
||||
}
|
||||
|
||||
cv::gpu::GpuMat trois;
|
||||
cv::gpu::transpose(rois, trois);
|
||||
cascade.genRoi(rois, trois);
|
||||
|
||||
cv::gpu::GpuMat curr = objectBoxes;
|
||||
cascade.detectMultiScale(colored, trois, curr);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
curr = objectBoxes;
|
||||
cascade.detectMultiScale(colored, trois, curr);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
}
|
||||
|
||||
SANITY_CHECK(sortDetections(curr));
|
||||
SANITY_CHECK(sortDetections(objectBoxes));
|
||||
}
|
||||
|
||||
NO_CPU(SoftCascadeTestRoi, detectInRoi)
|
||||
NO_CPU(SCascadeTestRoi, detectInRoi)
|
||||
|
||||
|
||||
GPU_PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi,
|
||||
GPU_PERF_TEST_P(SCascadeTestRoi, detectEachRoi,
|
||||
testing::Combine(
|
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 10)))
|
||||
{}
|
||||
|
||||
RUN_GPU(SoftCascadeTestRoi, detectEachRoi)
|
||||
RUN_GPU(SCascadeTestRoi, detectEachRoi)
|
||||
{
|
||||
cv::Mat cpu = readImage (GET_PARAM(1));
|
||||
ASSERT_FALSE(cpu.empty());
|
||||
cv::gpu::GpuMat colored(cpu);
|
||||
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
rois.setTo(0);
|
||||
|
||||
int idx = GET_PARAM(2);
|
||||
@ -213,24 +221,22 @@ RUN_GPU(SoftCascadeTestRoi, detectEachRoi)
|
||||
cv::gpu::GpuMat sub(rois, r);
|
||||
sub.setTo(1);
|
||||
|
||||
cv::gpu::GpuMat curr = objectBoxes;
|
||||
cv::gpu::GpuMat trois;
|
||||
cv::gpu::transpose(rois, trois);
|
||||
cascade.genRoi(rois, trois);
|
||||
|
||||
cascade.detectMultiScale(colored, trois, curr);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
curr = objectBoxes;
|
||||
cascade.detectMultiScale(colored, trois, curr);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
}
|
||||
|
||||
SANITY_CHECK(sortDetections(curr));
|
||||
SANITY_CHECK(sortDetections(objectBoxes));
|
||||
}
|
||||
|
||||
NO_CPU(SoftCascadeTestRoi, detectEachRoi)
|
||||
NO_CPU(SCascadeTestRoi, detectEachRoi)
|
||||
|
||||
GPU_PERF_TEST_P(SoftCascadeTest, detectOnIntegral,
|
||||
GPU_PERF_TEST_P(SCascadeTest, detectOnIntegral,
|
||||
testing::Combine(
|
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("cv/cascadeandhog/integrals.xml"))))
|
||||
@ -243,37 +249,39 @@ GPU_PERF_TEST_P(SoftCascadeTest, detectOnIntegral,
|
||||
return std::string(s);
|
||||
}
|
||||
|
||||
RUN_GPU(SoftCascadeTest, detectOnIntegral)
|
||||
RUN_GPU(SCascadeTest, detectOnIntegral)
|
||||
{
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
cv::FileStorage fsi(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fsi.isOpened());
|
||||
|
||||
cv::gpu::GpuMat hogluv(121 * 10, 161, CV_32SC1);
|
||||
for (int i = 0; i < 10; ++i)
|
||||
{
|
||||
cv::Mat channel;
|
||||
fs[std::string("channel") + itoa(i)] >> channel;
|
||||
fsi[std::string("channel") + itoa(i)] >> channel;
|
||||
cv::gpu::GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121));
|
||||
gchannel.upload(channel);
|
||||
}
|
||||
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(cv::Size(640, 480), CV_8UC1), trois;
|
||||
rois.setTo(1);
|
||||
cv::gpu::transpose(rois, trois);
|
||||
cascade.genRoi(rois, trois);
|
||||
|
||||
cv::gpu::GpuMat curr = objectBoxes;
|
||||
cascade.detectMultiScale(hogluv, trois, curr);
|
||||
cascade.detect(hogluv, trois, objectBoxes);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
curr = objectBoxes;
|
||||
cascade.detectMultiScale(hogluv, trois, curr);
|
||||
cascade.detect(hogluv, trois, objectBoxes);
|
||||
}
|
||||
|
||||
SANITY_CHECK(sortDetections(curr));
|
||||
SANITY_CHECK(sortDetections(objectBoxes));
|
||||
}
|
||||
|
||||
NO_CPU(SoftCascadeTest, detectOnIntegral)
|
||||
NO_CPU(SCascadeTest, detectOnIntegral)
|
60
modules/gpu/src/gpu_init.cpp
Normal file
60
modules/gpu/src/gpu_init.cpp
Normal file
@ -0,0 +1,60 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <precomp.hpp>
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
|
||||
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade",
|
||||
obj.info()->addParam(obj, "minScale", obj.minScale);
|
||||
obj.info()->addParam(obj, "maxScale", obj.maxScale);
|
||||
obj.info()->addParam(obj, "scales", obj.scales);
|
||||
obj.info()->addParam(obj, "rejfactor", obj.rejfactor));
|
||||
|
||||
bool initModule_gpu(void)
|
||||
{
|
||||
Ptr<Algorithm> sc = createSCascade();
|
||||
return sc->info() != 0;
|
||||
}
|
||||
|
||||
} }
|
@ -45,21 +45,18 @@
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade() : filds(0) { throw_nogpu(); }
|
||||
cv::gpu::SoftCascade::SoftCascade( const string&, const float, const float) : filds(0) { throw_nogpu(); }
|
||||
cv::gpu::SoftCascade::~SoftCascade() { throw_nogpu(); }
|
||||
bool cv::gpu::SoftCascade::load( const string&, const float, const float) { throw_nogpu(); return false; }
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, const int, int) const
|
||||
{
|
||||
throw_nogpu();
|
||||
}
|
||||
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, int, GpuMat&, Stream) const
|
||||
{
|
||||
throw_nogpu();
|
||||
}
|
||||
cv::gpu::SCascade::~SCascade() { throw_nogpu(); }
|
||||
|
||||
cv::Size cv::gpu::SoftCascade::getRoiSize() const { throw_nogpu(); return cv::Size();}
|
||||
bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;}
|
||||
|
||||
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); }
|
||||
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, const int, Stream&) const { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::SCascade::genRoi(InputArray, OutputArray) const { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
|
||||
|
||||
#else
|
||||
|
||||
@ -92,7 +89,7 @@ namespace imgproc {
|
||||
|
||||
}}}
|
||||
|
||||
struct cv::gpu::SoftCascade::Filds
|
||||
struct cv::gpu::SCascade::Fields
|
||||
{
|
||||
struct CascadeIntrinsics
|
||||
{
|
||||
@ -126,7 +123,7 @@ struct cv::gpu::SoftCascade::Filds
|
||||
}
|
||||
};
|
||||
|
||||
static Filds* parseCascade(const FileNode &root, const float mins, const float maxs)
|
||||
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs)
|
||||
{
|
||||
static const char *const SC_STAGE_TYPE = "stageType";
|
||||
static const char *const SC_BOOST = "BOOST";
|
||||
@ -312,13 +309,13 @@ struct cv::gpu::SoftCascade::Filds
|
||||
cv::Mat hlevels(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) );
|
||||
CV_Assert(!hlevels.empty());
|
||||
|
||||
Filds* filds = new Filds(mins, maxs, origWidth, origHeight, shrinkage, downscales,
|
||||
Fields* fields = new Fields(mins, maxs, origWidth, origHeight, shrinkage, downscales,
|
||||
hoctaves, hstages, hnodes, hleaves, hlevels);
|
||||
|
||||
return filds;
|
||||
return fields;
|
||||
}
|
||||
|
||||
Filds( const float mins, const float maxs, const int ow, const int oh, const int shr, const int ds,
|
||||
Fields( const float mins, const float maxs, const int ow, const int oh, const int shr, const int ds,
|
||||
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, cv::Mat hlevels)
|
||||
: minScale(mins), maxScale(maxs), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
|
||||
{
|
||||
@ -332,7 +329,7 @@ struct cv::gpu::SoftCascade::Filds
|
||||
hogluv.create((FRAME_HEIGHT / shr) * HOG_LUV_BINS + 1, FRAME_WIDTH / shr + 1, CV_32SC1);
|
||||
hogluv.setTo(cv::Scalar::all(0));
|
||||
|
||||
detCounter.create(1,1, CV_32SC1);
|
||||
detCounter.create(sizeof(Detection) / sizeof(int),1, CV_32SC1);
|
||||
|
||||
octaves.upload(hoctaves);
|
||||
stages.upload(hstages);
|
||||
@ -344,20 +341,21 @@ struct cv::gpu::SoftCascade::Filds
|
||||
|
||||
}
|
||||
|
||||
void detect(int scale, const cv::gpu::GpuMat& roi, cv::gpu::GpuMat& objects, cudaStream_t stream) const
|
||||
void detect(int scale, const cv::gpu::GpuMat& roi, const cv::gpu::GpuMat& count, cv::gpu::GpuMat& objects, cudaStream_t stream) const
|
||||
{
|
||||
cudaMemset(detCounter.data, 0, detCounter.step * detCounter.rows * sizeof(int));
|
||||
invoker(roi, hogluv, objects, detCounter, downscales, scale);
|
||||
cudaMemset(count.data, 0, sizeof(Detection));
|
||||
cudaSafeCall( cudaGetLastError());
|
||||
invoker(roi, hogluv, objects, count, downscales, scale);
|
||||
}
|
||||
|
||||
void preprocess(const cv::gpu::GpuMat& colored)
|
||||
{
|
||||
cudaMemset(plane.data, 0, plane.step * plane.rows);
|
||||
|
||||
static const int fw = Filds::FRAME_WIDTH;
|
||||
static const int fh = Filds::FRAME_HEIGHT;
|
||||
static const int fw = Fields::FRAME_WIDTH;
|
||||
static const int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
GpuMat gray(plane, cv::Rect(0, fh * Filds::HOG_LUV_BINS, fw, fh));
|
||||
GpuMat gray(plane, cv::Rect(0, fh * Fields::HOG_LUV_BINS, fw, fh));
|
||||
cv::gpu::cvtColor(colored, gray, CV_BGR2GRAY);
|
||||
createHogBins(gray);
|
||||
|
||||
@ -390,8 +388,8 @@ private:
|
||||
|
||||
void createHogBins(const cv::gpu::GpuMat& gray)
|
||||
{
|
||||
static const int fw = Filds::FRAME_WIDTH;
|
||||
static const int fh = Filds::FRAME_HEIGHT;
|
||||
static const int fw = Fields::FRAME_WIDTH;
|
||||
static const int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
|
||||
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
|
||||
@ -413,21 +411,21 @@ private:
|
||||
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang);
|
||||
|
||||
//create uchar magnitude
|
||||
GpuMat cmag(plane, cv::Rect(0, fh * Filds::HOG_BINS, fw, fh));
|
||||
GpuMat cmag(plane, cv::Rect(0, fh * Fields::HOG_BINS, fw, fh));
|
||||
nmag.convertTo(cmag, CV_8UC1);
|
||||
|
||||
device::icf::fillBins(plane, nang, fw, fh, Filds::HOG_BINS);
|
||||
device::icf::fillBins(plane, nang, fw, fh, Fields::HOG_BINS);
|
||||
}
|
||||
|
||||
void createLuvBins(const cv::gpu::GpuMat& colored)
|
||||
{
|
||||
static const int fw = Filds::FRAME_WIDTH;
|
||||
static const int fh = Filds::FRAME_HEIGHT;
|
||||
static const int fw = Fields::FRAME_WIDTH;
|
||||
static const int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv);
|
||||
|
||||
std::vector<GpuMat> splited;
|
||||
for(int i = 0; i < Filds::LUV_BINS; ++i)
|
||||
for(int i = 0; i < Fields::LUV_BINS; ++i)
|
||||
{
|
||||
splited.push_back(GpuMat(plane, cv::Rect(0, fh * (7 + i), fw, fh)));
|
||||
}
|
||||
@ -437,10 +435,10 @@ private:
|
||||
|
||||
void integrate()
|
||||
{
|
||||
int fw = Filds::FRAME_WIDTH;
|
||||
int fh = Filds::FRAME_HEIGHT;
|
||||
int fw = Fields::FRAME_WIDTH;
|
||||
int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Filds::HOG_LUV_BINS));
|
||||
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Fields::HOG_LUV_BINS));
|
||||
cv::gpu::resize(channels, shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
|
||||
device::imgproc::shfl_integral_gpu_buffered(shrunk, integralBuffer, hogluv, 12, 0);
|
||||
}
|
||||
@ -500,45 +498,33 @@ public:
|
||||
};
|
||||
};
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade() : filds(0) {}
|
||||
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int rjf)
|
||||
: fields(0), minScale(mins), maxScale(maxs), scales(sc), rejfactor(rjf) {}
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade( const string& filename, const float minScale, const float maxScale) : filds(0)
|
||||
cv::gpu::SCascade::~SCascade() { delete fields; }
|
||||
|
||||
bool cv::gpu::SCascade::load(const FileNode& fn)
|
||||
{
|
||||
load(filename, minScale, maxScale);
|
||||
if (fields) delete fields;
|
||||
fields = Fields::parseCascade(fn, minScale, maxScale);
|
||||
return fields != 0;
|
||||
}
|
||||
|
||||
cv::gpu::SoftCascade::~SoftCascade()
|
||||
{
|
||||
delete filds;
|
||||
}
|
||||
|
||||
bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, const float maxScale)
|
||||
{
|
||||
if (filds) delete filds;
|
||||
|
||||
cv::FileStorage fs(filename, FileStorage::READ);
|
||||
if (!fs.isOpened()) return false;
|
||||
|
||||
filds = Filds::parseCascade(fs.getFirstTopLevelNode(), minScale, maxScale);
|
||||
return filds != 0;
|
||||
}
|
||||
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& rois,
|
||||
GpuMat& objects, const int /*rejectfactor*/, int specificScale) const
|
||||
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, Stream& s) const
|
||||
{
|
||||
const GpuMat colored = image.getGpuMat();
|
||||
// only color images are supperted
|
||||
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1);
|
||||
|
||||
// we guess user knows about shrincage
|
||||
CV_Assert((rois.size().width == getRoiSize().height) && (rois.type() == CV_8UC1));
|
||||
// CV_Assert((rois.size().width == getRoiSize().height) && (rois.type() == CV_8UC1));
|
||||
|
||||
|
||||
Filds& flds = *filds;
|
||||
Fields& flds = *fields;
|
||||
|
||||
if (colored.type() == CV_8UC3)
|
||||
{
|
||||
// only this window size allowed
|
||||
CV_Assert(colored.cols == Filds::FRAME_WIDTH && colored.rows == Filds::FRAME_HEIGHT);
|
||||
CV_Assert(colored.cols == Fields::FRAME_WIDTH && colored.rows == Fields::FRAME_HEIGHT);
|
||||
flds.preprocess(colored);
|
||||
}
|
||||
else
|
||||
@ -546,25 +532,60 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat&
|
||||
colored.copyTo(flds.hogluv);
|
||||
}
|
||||
|
||||
flds.detect(specificScale, rois, objects, 0);
|
||||
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
|
||||
|
||||
cv::Mat out(flds.detCounter);
|
||||
int ndetections = *(out.ptr<int>(0));
|
||||
GpuMat tmp = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
|
||||
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1));
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
if (! ndetections)
|
||||
objects = GpuMat();
|
||||
flds.detect(-1, rois, tmp, objects, stream);
|
||||
}
|
||||
|
||||
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, const int level, Stream& s) const
|
||||
{
|
||||
const GpuMat colored = image.getGpuMat();
|
||||
// only color images are supperted
|
||||
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1);
|
||||
|
||||
// we guess user knows about shrincage
|
||||
// CV_Assert((rois.size().width == getRoiSize().height) && (rois.type() == CV_8UC1));
|
||||
|
||||
Fields& flds = *fields;
|
||||
|
||||
if (colored.type() == CV_8UC3)
|
||||
{
|
||||
// only this window size allowed
|
||||
CV_Assert(colored.cols == Fields::FRAME_WIDTH && colored.rows == Fields::FRAME_HEIGHT);
|
||||
flds.preprocess(colored);
|
||||
}
|
||||
else
|
||||
objects = GpuMat(objects, cv::Rect(0, 0, ndetections * sizeof(Detection), 1));
|
||||
{
|
||||
colored.copyTo(flds.hogluv);
|
||||
}
|
||||
|
||||
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
|
||||
|
||||
GpuMat tmp = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
|
||||
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1));
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
flds.detect(level, rois, tmp, objects, stream);
|
||||
}
|
||||
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, int, GpuMat&, Stream) const
|
||||
void cv::gpu::SCascade::genRoi(InputArray _roi, OutputArray _mask) const
|
||||
{
|
||||
// cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
const GpuMat roi = _roi.getGpuMat();
|
||||
_mask.create( roi.cols / 4, roi.rows / 4, roi.type() );
|
||||
GpuMat mask = _mask.getGpuMat();
|
||||
cv::gpu::GpuMat tmp;
|
||||
|
||||
cv::gpu::resize(roi, tmp, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
|
||||
cv::gpu::transpose(tmp, mask);
|
||||
}
|
||||
|
||||
cv::Size cv::gpu::SoftCascade::getRoiSize() const
|
||||
void cv::gpu::SCascade::read(const FileNode& fn)
|
||||
{
|
||||
return cv::Size(Filds::FRAME_WIDTH / (*filds).shrinkage, Filds::FRAME_HEIGHT / (*filds).shrinkage);
|
||||
Algorithm::read(fn);
|
||||
}
|
||||
|
||||
#endif
|
@ -70,23 +70,23 @@ using cv::gpu::GpuMat;
|
||||
|
||||
namespace {
|
||||
|
||||
typedef cv::gpu::SoftCascade::Detection Detection;
|
||||
typedef cv::gpu::SCascade::Detection Detection;
|
||||
|
||||
static cv::Rect getFromTable(int idx)
|
||||
{
|
||||
static const cv::Rect rois[] =
|
||||
{
|
||||
cv::Rect( 65, 20, 35, 80),
|
||||
cv::Rect( 95, 35, 45, 40),
|
||||
cv::Rect( 45, 35, 45, 40),
|
||||
cv::Rect( 25, 27, 50, 45),
|
||||
cv::Rect(100, 50, 45, 40),
|
||||
cv::Rect( 65 * 4, 20 * 4, 35 * 4, 80 * 4),
|
||||
cv::Rect( 95 * 4, 35 * 4, 45 * 4, 40 * 4),
|
||||
cv::Rect( 45 * 4, 35 * 4, 45 * 4, 40 * 4),
|
||||
cv::Rect( 25 * 4, 27 * 4, 50 * 4, 45 * 4),
|
||||
cv::Rect(100 * 4, 50 * 4, 45 * 4, 40 * 4),
|
||||
|
||||
cv::Rect( 60, 30, 45, 40),
|
||||
cv::Rect( 40, 55, 50, 40),
|
||||
cv::Rect( 48, 37, 72, 80),
|
||||
cv::Rect( 48, 32, 85, 58),
|
||||
cv::Rect( 48, 0, 32, 27)
|
||||
cv::Rect( 60 * 4, 30 * 4, 45 * 4, 40 * 4),
|
||||
cv::Rect( 40 * 4, 55 * 4, 50 * 4, 40 * 4),
|
||||
cv::Rect( 48 * 4, 37 * 4, 72 * 4, 80 * 4),
|
||||
cv::Rect( 48 * 4, 32 * 4, 85 * 4, 58 * 4),
|
||||
cv::Rect( 48 * 4, 0 * 4, 32 * 4, 27 * 4)
|
||||
};
|
||||
|
||||
return rois[idx];
|
||||
@ -140,11 +140,11 @@ namespace {
|
||||
}
|
||||
}
|
||||
|
||||
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SoftCascadeTestRoi;
|
||||
GPU_TEST_P(SoftCascadeTestRoi, detect,
|
||||
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestRoi;
|
||||
GPU_TEST_P(SCascadeTestRoi, detect,
|
||||
testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 5)))
|
||||
{
|
||||
@ -152,10 +152,14 @@ GPU_TEST_P(SoftCascadeTestRoi, detect,
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
|
||||
ASSERT_FALSE(coloredCpu.empty());
|
||||
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1)));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(colored.size(), CV_8UC1), trois;
|
||||
rois.setTo(0);
|
||||
|
||||
int nroi = GET_PARAM(3);
|
||||
@ -166,21 +170,21 @@ GPU_TEST_P(SoftCascadeTestRoi, detect,
|
||||
cv::Rect r = getFromTable(rng(10));
|
||||
GpuMat sub(rois, r);
|
||||
sub.setTo(1);
|
||||
r.x *= 4; r.y *= 4; r.width *= 4; r.height *= 4;
|
||||
cv::rectangle(result, r, cv::Scalar(0, 0, 255, 255), 1);
|
||||
}
|
||||
|
||||
cv::gpu::transpose(rois, trois);
|
||||
|
||||
cascade.detectMultiScale(colored, trois, objectBoxes);
|
||||
cascade.genRoi(rois, trois);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
|
||||
cv::Mat dt(objectBoxes);
|
||||
typedef cv::gpu::SoftCascade::Detection Detection;
|
||||
typedef cv::gpu::SCascade::Detection Detection;
|
||||
|
||||
Detection* dts = (Detection*)dt.data;
|
||||
Detection* dts = ((Detection*)dt.data) + 1;
|
||||
int* count = dt.ptr<int>(0);
|
||||
|
||||
printTotal(std::cout, dt.cols);
|
||||
for (int i = 0; i < (int)(dt.cols / sizeof(Detection)); ++i)
|
||||
printTotal(std::cout, *count);
|
||||
|
||||
for (int i = 0; i < *count; ++i)
|
||||
{
|
||||
Detection d = dts[i];
|
||||
print(std::cout, d);
|
||||
@ -188,43 +192,49 @@ GPU_TEST_P(SoftCascadeTestRoi, detect,
|
||||
}
|
||||
|
||||
SHOW(result);
|
||||
|
||||
}
|
||||
|
||||
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SoftCascadeTestLevel;
|
||||
GPU_TEST_P(SoftCascadeTestLevel, detect,
|
||||
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestLevel;
|
||||
GPU_TEST_P(SCascadeTestLevel, detect,
|
||||
testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 47)
|
||||
))
|
||||
{
|
||||
cv::gpu::setDevice(GET_PARAM(0).deviceID());
|
||||
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + GET_PARAM(1);
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
|
||||
ASSERT_FALSE(coloredCpu.empty());
|
||||
|
||||
typedef cv::gpu::SoftCascade::Detection Detection;
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
typedef cv::gpu::SCascade::Detection Detection;
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
rois.setTo(1);
|
||||
|
||||
cv::gpu::GpuMat trois;
|
||||
cv::gpu::transpose(rois, trois);
|
||||
cascade.genRoi(rois, trois);
|
||||
|
||||
int level = GET_PARAM(3);
|
||||
cascade.detectMultiScale(colored, trois, objectBoxes, 1, level);
|
||||
cascade.detect(colored, trois, objectBoxes, level);
|
||||
|
||||
cv::Mat dt(objectBoxes);
|
||||
|
||||
Detection* dts = (Detection*)dt.data;
|
||||
Detection* dts = ((Detection*)dt.data) + 1;
|
||||
int* count = dt.ptr<int>(0);
|
||||
|
||||
cv::Mat result(coloredCpu);
|
||||
|
||||
printTotal(std::cout, dt.cols);
|
||||
for (int i = 0; i < (int)(dt.cols / sizeof(Detection)); ++i)
|
||||
printTotal(std::cout, *count);
|
||||
for (int i = 0; i < *count; ++i)
|
||||
{
|
||||
Detection d = dts[i];
|
||||
print(std::cout, d);
|
||||
@ -235,76 +245,89 @@ GPU_TEST_P(SoftCascadeTestLevel, detect,
|
||||
SHOW(result);
|
||||
}
|
||||
|
||||
TEST(SoftCascadeTest, readCascade)
|
||||
TEST(SCascadeTest, readCascade)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
}
|
||||
|
||||
typedef ::testing::TestWithParam<cv::gpu::DeviceInfo > SoftCascadeTestAll;
|
||||
GPU_TEST_P(SoftCascadeTestAll, detect,
|
||||
typedef ::testing::TestWithParam<cv::gpu::DeviceInfo > SCascadeTestAll;
|
||||
GPU_TEST_P(SCascadeTestAll, detect,
|
||||
ALL_DEVICES
|
||||
)
|
||||
{
|
||||
cv::gpu::setDevice(GetParam().deviceID());
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path()
|
||||
+ "../cv/cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
ASSERT_FALSE(coloredCpu.empty());
|
||||
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
rois.setTo(0);
|
||||
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2));
|
||||
sub.setTo(cv::Scalar::all(1));
|
||||
|
||||
cv::gpu::GpuMat trois;
|
||||
cv::gpu::transpose(rois, trois);
|
||||
cascade.genRoi(rois, trois);
|
||||
|
||||
cascade.detectMultiScale(colored, trois, objectBoxes);
|
||||
cascade.detect(colored, trois, objectBoxes);
|
||||
|
||||
typedef cv::gpu::SoftCascade::Detection Detection;
|
||||
typedef cv::gpu::SCascade::Detection Detection;
|
||||
cv::Mat detections(objectBoxes);
|
||||
ASSERT_EQ(detections.cols / sizeof(Detection) ,3670U);
|
||||
int a = *(detections.ptr<int>(0));
|
||||
ASSERT_EQ(a ,2460);
|
||||
}
|
||||
|
||||
//ToDo: fix me
|
||||
GPU_TEST_P(SoftCascadeTestAll, detectOnIntegral,
|
||||
GPU_TEST_P(SCascadeTestAll, detectOnIntegral,
|
||||
ALL_DEVICES
|
||||
)
|
||||
{
|
||||
cv::gpu::setDevice(GetParam().deviceID());
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::gpu::SoftCascade cascade;
|
||||
ASSERT_TRUE(cascade.load(xml));
|
||||
cv::gpu::SCascade cascade;
|
||||
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
std::string intPath = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/integrals.xml";
|
||||
cv::FileStorage fs(intPath, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
cv::FileStorage fsi(intPath, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fsi.isOpened());
|
||||
|
||||
GpuMat hogluv(121 * 10, 161, CV_32SC1);
|
||||
for (int i = 0; i < 10; ++i)
|
||||
{
|
||||
cv::Mat channel;
|
||||
fs[std::string("channel") + itoa(i)] >> channel;
|
||||
fsi[std::string("channel") + itoa(i)] >> channel;
|
||||
GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121));
|
||||
gchannel.upload(channel);
|
||||
}
|
||||
|
||||
GpuMat objectBoxes(1, 100000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
||||
GpuMat objectBoxes(1, 100000, CV_8UC1), rois(cv::Size(640, 480), CV_8UC1);
|
||||
rois.setTo(1);
|
||||
|
||||
cv::gpu::GpuMat trois;
|
||||
cv::gpu::transpose(rois, trois);
|
||||
cascade.genRoi(rois, trois);
|
||||
|
||||
cascade.detectMultiScale(hogluv, trois, objectBoxes);
|
||||
cascade.detect(hogluv, trois, objectBoxes);
|
||||
|
||||
typedef cv::gpu::SoftCascade::Detection Detection;
|
||||
typedef cv::gpu::SCascade::Detection Detection;
|
||||
cv::Mat detections(objectBoxes);
|
||||
int a = *(detections.ptr<int>(0));
|
||||
|
||||
ASSERT_EQ(detections.cols / sizeof(Detection) ,2042U);
|
||||
ASSERT_EQ( a ,1024);
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user