mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
refactored HoughCircles (converted it into Algorithm)
This commit is contained in:
parent
1652540a1f
commit
4087a45e73
@ -297,17 +297,46 @@ inline void HoughLinesP(InputArray src, OutputArray lines, float rho, float thet
|
||||
//////////////////////////////////////
|
||||
// HoughCircles
|
||||
|
||||
struct HoughCirclesBuf
|
||||
class CV_EXPORTS HoughCirclesDetector : public Algorithm
|
||||
{
|
||||
GpuMat edges;
|
||||
GpuMat accum;
|
||||
GpuMat list;
|
||||
Ptr<CannyEdgeDetector> canny;
|
||||
public:
|
||||
virtual void detect(InputArray src, OutputArray circles) = 0;
|
||||
|
||||
virtual void setDp(float dp) = 0;
|
||||
virtual float getDp() const = 0;
|
||||
|
||||
virtual void setMinDist(float minDist) = 0;
|
||||
virtual float getMinDist() const = 0;
|
||||
|
||||
virtual void setCannyThreshold(int cannyThreshold) = 0;
|
||||
virtual int getCannyThreshold() const = 0;
|
||||
|
||||
virtual void setVotesThreshold(int votesThreshold) = 0;
|
||||
virtual int getVotesThreshold() const = 0;
|
||||
|
||||
virtual void setMinRadius(int minRadius) = 0;
|
||||
virtual int getMinRadius() const = 0;
|
||||
|
||||
virtual void setMaxRadius(int maxRadius) = 0;
|
||||
virtual int getMaxRadius() const = 0;
|
||||
|
||||
virtual void setMaxCircles(int maxCircles) = 0;
|
||||
virtual int getMaxCircles() const = 0;
|
||||
};
|
||||
|
||||
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
|
||||
CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
|
||||
// obsolete
|
||||
|
||||
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughCircles(InputArray src, OutputArray circles,
|
||||
int method, float dp, float minDist, int cannyThreshold, int votesThreshold,
|
||||
int minRadius, int maxRadius, int maxCircles = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
|
||||
|
||||
inline void HoughCircles(InputArray src, OutputArray circles, int /*method*/, float dp, float minDist,
|
||||
int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
{
|
||||
gpu::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles)->detect(src, circles);
|
||||
}
|
||||
|
||||
//////////////////////////////////////
|
||||
// GeneralizedHough
|
||||
|
@ -203,9 +203,10 @@ PERF_TEST_P(Sz_Dp_MinDist, HoughCircles,
|
||||
{
|
||||
const cv::gpu::GpuMat d_src(src);
|
||||
cv::gpu::GpuMat d_circles;
|
||||
cv::gpu::HoughCirclesBuf d_buf;
|
||||
|
||||
TEST_CYCLE() cv::gpu::HoughCircles(d_src, d_circles, d_buf, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
|
||||
cv::Ptr<cv::gpu::HoughCirclesDetector> houghCircles = cv::gpu::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
|
||||
|
||||
TEST_CYCLE() houghCircles->detect(d_src, d_circles);
|
||||
|
||||
cv::Mat gpu_circles(d_circles);
|
||||
cv::Vec3f* begin = gpu_circles.ptr<cv::Vec3f>(0);
|
||||
|
@ -170,6 +170,9 @@ namespace
|
||||
CV_Assert( dy.type() == dx.type() && dy.size() == dx.size() );
|
||||
CV_Assert( deviceSupports(SHARED_ATOMICS) );
|
||||
|
||||
dx.copyTo(dx_);
|
||||
dy.copyTo(dy_);
|
||||
|
||||
if (low_thresh_ > high_thresh_)
|
||||
std::swap(low_thresh_, high_thresh_);
|
||||
|
||||
|
@ -51,9 +51,7 @@ Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int
|
||||
|
||||
Ptr<gpu::HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); }
|
||||
|
||||
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
|
||||
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
|
||||
void cv::gpu::HoughCirclesDownload(const GpuMat&, OutputArray) { throw_no_cuda(); }
|
||||
Ptr<HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float, float, int, int, int, int, int) { throw_no_cuda(); return Ptr<HoughCirclesDetector>(); }
|
||||
|
||||
Ptr<GeneralizedHough_GPU> cv::gpu::GeneralizedHough_GPU::create(int) { throw_no_cuda(); return Ptr<GeneralizedHough_GPU>(); }
|
||||
cv::gpu::GeneralizedHough_GPU::~GeneralizedHough_GPU() {}
|
||||
@ -355,158 +353,230 @@ namespace cv { namespace gpu { namespace cudev
|
||||
}
|
||||
}}}
|
||||
|
||||
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
namespace
|
||||
{
|
||||
HoughCirclesBuf buf;
|
||||
HoughCircles(src, circles, buf, method, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
|
||||
}
|
||||
|
||||
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method,
|
||||
float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
|
||||
CV_Assert(src.type() == CV_8UC1);
|
||||
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
|
||||
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
|
||||
CV_Assert(method == cv::HOUGH_GRADIENT);
|
||||
CV_Assert(dp > 0);
|
||||
CV_Assert(minRadius > 0 && maxRadius > minRadius);
|
||||
CV_Assert(cannyThreshold > 0);
|
||||
CV_Assert(votesThreshold > 0);
|
||||
CV_Assert(maxCircles > 0);
|
||||
|
||||
const float idp = 1.0f / dp;
|
||||
|
||||
buf.canny = gpu::createCannyEdgeDetector(std::max(cannyThreshold / 2, 1), cannyThreshold);
|
||||
buf.canny->detect(src, buf.edges);
|
||||
|
||||
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, buf.list);
|
||||
unsigned int* srcPoints = buf.list.ptr<unsigned int>(0);
|
||||
unsigned int* centers = buf.list.ptr<unsigned int>(1);
|
||||
|
||||
const int pointsCount = buildPointList_gpu(buf.edges, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
class HoughCirclesDetectorImpl : public HoughCirclesDetector
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
public:
|
||||
HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles);
|
||||
|
||||
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, buf.accum);
|
||||
buf.accum.setTo(Scalar::all(0));
|
||||
void detect(InputArray src, OutputArray circles);
|
||||
|
||||
Ptr<gpu::Filter> filterDX = gpu::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
|
||||
Ptr<gpu::Filter> filterDY = gpu::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
|
||||
GpuMat dx, dy;
|
||||
filterDX->apply(src, dx);
|
||||
filterDY->apply(src, dy);
|
||||
void setDp(float dp) { dp_ = dp; }
|
||||
float getDp() const { return dp_; }
|
||||
|
||||
circlesAccumCenters_gpu(srcPoints, pointsCount, dx, dy, buf.accum, minRadius, maxRadius, idp);
|
||||
void setMinDist(float minDist) { minDist_ = minDist; }
|
||||
float getMinDist() const { return minDist_; }
|
||||
|
||||
int centersCount = buildCentersList_gpu(buf.accum, centers, votesThreshold);
|
||||
if (centersCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
void setCannyThreshold(int cannyThreshold) { cannyThreshold_ = cannyThreshold; }
|
||||
int getCannyThreshold() const { return cannyThreshold_; }
|
||||
|
||||
if (minDist > 1)
|
||||
{
|
||||
cv::AutoBuffer<ushort2> oldBuf_(centersCount);
|
||||
cv::AutoBuffer<ushort2> newBuf_(centersCount);
|
||||
int newCount = 0;
|
||||
void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
|
||||
int getVotesThreshold() const { return votesThreshold_; }
|
||||
|
||||
ushort2* oldBuf = oldBuf_;
|
||||
ushort2* newBuf = newBuf_;
|
||||
void setMinRadius(int minRadius) { minRadius_ = minRadius; }
|
||||
int getMinRadius() const { return minRadius_; }
|
||||
|
||||
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );
|
||||
void setMaxRadius(int maxRadius) { maxRadius_ = maxRadius; }
|
||||
int getMaxRadius() const { return maxRadius_; }
|
||||
|
||||
const int cellSize = cvRound(minDist);
|
||||
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
|
||||
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
|
||||
void setMaxCircles(int maxCircles) { maxCircles_ = maxCircles; }
|
||||
int getMaxCircles() const { return maxCircles_; }
|
||||
|
||||
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
|
||||
|
||||
const float minDist2 = minDist * minDist;
|
||||
|
||||
for (int i = 0; i < centersCount; ++i)
|
||||
void write(FileStorage& fs) const
|
||||
{
|
||||
ushort2 p = oldBuf[i];
|
||||
fs << "name" << "HoughCirclesDetector_GPU"
|
||||
<< "dp" << dp_
|
||||
<< "minDist" << minDist_
|
||||
<< "cannyThreshold" << cannyThreshold_
|
||||
<< "votesThreshold" << votesThreshold_
|
||||
<< "minRadius" << minRadius_
|
||||
<< "maxRadius" << maxRadius_
|
||||
<< "maxCircles" << maxCircles_;
|
||||
}
|
||||
|
||||
bool good = true;
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( String(fn["name"]) == "HoughCirclesDetector_GPU" );
|
||||
dp_ = (float)fn["dp"];
|
||||
minDist_ = (float)fn["minDist"];
|
||||
cannyThreshold_ = (int)fn["cannyThreshold"];
|
||||
votesThreshold_ = (int)fn["votesThreshold"];
|
||||
minRadius_ = (int)fn["minRadius"];
|
||||
maxRadius_ = (int)fn["maxRadius"];
|
||||
maxCircles_ = (int)fn["maxCircles"];
|
||||
}
|
||||
|
||||
int xCell = static_cast<int>(p.x / cellSize);
|
||||
int yCell = static_cast<int>(p.y / cellSize);
|
||||
private:
|
||||
float dp_;
|
||||
float minDist_;
|
||||
int cannyThreshold_;
|
||||
int votesThreshold_;
|
||||
int minRadius_;
|
||||
int maxRadius_;
|
||||
int maxCircles_;
|
||||
|
||||
int x1 = xCell - 1;
|
||||
int y1 = yCell - 1;
|
||||
int x2 = xCell + 1;
|
||||
int y2 = yCell + 1;
|
||||
GpuMat dx_, dy_;
|
||||
GpuMat edges_;
|
||||
GpuMat accum_;
|
||||
GpuMat list_;
|
||||
GpuMat result_;
|
||||
Ptr<gpu::Filter> filterDx_;
|
||||
Ptr<gpu::Filter> filterDy_;
|
||||
Ptr<gpu::CannyEdgeDetector> canny_;
|
||||
};
|
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1);
|
||||
y1 = std::max(0, y1);
|
||||
x2 = std::min(gridWidth - 1, x2);
|
||||
y2 = std::min(gridHeight - 1, y2);
|
||||
HoughCirclesDetectorImpl::HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold,
|
||||
int minRadius, int maxRadius, int maxCircles) :
|
||||
dp_(dp), minDist_(minDist), cannyThreshold_(cannyThreshold), votesThreshold_(votesThreshold),
|
||||
minRadius_(minRadius), maxRadius_(maxRadius), maxCircles_(maxCircles)
|
||||
{
|
||||
canny_ = gpu::createCannyEdgeDetector(std::max(cannyThreshold_ / 2, 1), cannyThreshold_);
|
||||
|
||||
for (int yy = y1; yy <= y2; ++yy)
|
||||
filterDx_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
|
||||
filterDy_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
|
||||
}
|
||||
|
||||
void HoughCirclesDetectorImpl::detect(InputArray _src, OutputArray circles)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( dp_ > 0 );
|
||||
CV_Assert( minRadius_ > 0 && maxRadius_ > minRadius_ );
|
||||
CV_Assert( cannyThreshold_ > 0 );
|
||||
CV_Assert( votesThreshold_ > 0 );
|
||||
CV_Assert( maxCircles_ > 0 );
|
||||
|
||||
const float idp = 1.0f / dp_;
|
||||
|
||||
filterDx_->apply(src, dx_);
|
||||
filterDy_->apply(src, dy_);
|
||||
|
||||
canny_->setLowThreshold(std::max(cannyThreshold_ / 2, 1));
|
||||
canny_->setHighThreshold(cannyThreshold_);
|
||||
|
||||
canny_->detect(dx_, dy_, edges_);
|
||||
|
||||
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, list_);
|
||||
unsigned int* srcPoints = list_.ptr<unsigned int>(0);
|
||||
unsigned int* centers = list_.ptr<unsigned int>(1);
|
||||
|
||||
const int pointsCount = buildPointList_gpu(edges_, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, accum_);
|
||||
accum_.setTo(Scalar::all(0));
|
||||
|
||||
circlesAccumCenters_gpu(srcPoints, pointsCount, dx_, dy_, accum_, minRadius_, maxRadius_, idp);
|
||||
|
||||
int centersCount = buildCentersList_gpu(accum_, centers, votesThreshold_);
|
||||
if (centersCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
if (minDist_ > 1)
|
||||
{
|
||||
AutoBuffer<ushort2> oldBuf_(centersCount);
|
||||
AutoBuffer<ushort2> newBuf_(centersCount);
|
||||
int newCount = 0;
|
||||
|
||||
ushort2* oldBuf = oldBuf_;
|
||||
ushort2* newBuf = newBuf_;
|
||||
|
||||
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );
|
||||
|
||||
const int cellSize = cvRound(minDist_);
|
||||
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
|
||||
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
|
||||
|
||||
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
|
||||
|
||||
const float minDist2 = minDist_ * minDist_;
|
||||
|
||||
for (int i = 0; i < centersCount; ++i)
|
||||
{
|
||||
for (int xx = x1; xx <= x2; ++xx)
|
||||
ushort2 p = oldBuf[i];
|
||||
|
||||
bool good = true;
|
||||
|
||||
int xCell = static_cast<int>(p.x / cellSize);
|
||||
int yCell = static_cast<int>(p.y / cellSize);
|
||||
|
||||
int x1 = xCell - 1;
|
||||
int y1 = yCell - 1;
|
||||
int x2 = xCell + 1;
|
||||
int y2 = yCell + 1;
|
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1);
|
||||
y1 = std::max(0, y1);
|
||||
x2 = std::min(gridWidth - 1, x2);
|
||||
y2 = std::min(gridHeight - 1, y2);
|
||||
|
||||
for (int yy = y1; yy <= y2; ++yy)
|
||||
{
|
||||
std::vector<ushort2>& m = grid[yy * gridWidth + xx];
|
||||
|
||||
for(size_t j = 0; j < m.size(); ++j)
|
||||
for (int xx = x1; xx <= x2; ++xx)
|
||||
{
|
||||
float dx = (float)(p.x - m[j].x);
|
||||
float dy = (float)(p.y - m[j].y);
|
||||
std::vector<ushort2>& m = grid[yy * gridWidth + xx];
|
||||
|
||||
if (dx * dx + dy * dy < minDist2)
|
||||
for(size_t j = 0; j < m.size(); ++j)
|
||||
{
|
||||
good = false;
|
||||
goto break_out;
|
||||
float dx = (float)(p.x - m[j].x);
|
||||
float dy = (float)(p.y - m[j].y);
|
||||
|
||||
if (dx * dx + dy * dy < minDist2)
|
||||
{
|
||||
good = false;
|
||||
goto break_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break_out:
|
||||
|
||||
if(good)
|
||||
{
|
||||
grid[yCell * gridWidth + xCell].push_back(p);
|
||||
|
||||
newBuf[newCount++] = p;
|
||||
}
|
||||
}
|
||||
|
||||
break_out:
|
||||
|
||||
if(good)
|
||||
{
|
||||
grid[yCell * gridWidth + xCell].push_back(p);
|
||||
|
||||
newBuf[newCount++] = p;
|
||||
}
|
||||
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
|
||||
centersCount = newCount;
|
||||
}
|
||||
|
||||
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
|
||||
centersCount = newCount;
|
||||
ensureSizeIsEnough(1, maxCircles_, CV_32FC3, result_);
|
||||
|
||||
int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, result_.ptr<float3>(), maxCircles_,
|
||||
dp_, minRadius_, maxRadius_, votesThreshold_, deviceSupports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
if (circlesCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
result_.cols = circlesCount;
|
||||
result_.copyTo(circles);
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(1, maxCircles, CV_32FC3, circles);
|
||||
|
||||
const int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, circles.ptr<float3>(), maxCircles,
|
||||
dp, minRadius, maxRadius, votesThreshold, deviceSupports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
if (circlesCount > 0)
|
||||
circles.cols = circlesCount;
|
||||
else
|
||||
circles.release();
|
||||
}
|
||||
|
||||
void cv::gpu::HoughCirclesDownload(const GpuMat& d_circles, cv::OutputArray h_circles_)
|
||||
Ptr<HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
{
|
||||
if (d_circles.empty())
|
||||
{
|
||||
h_circles_.release();
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Assert(d_circles.rows == 1 && d_circles.type() == CV_32FC3);
|
||||
|
||||
h_circles_.create(1, d_circles.cols, CV_32FC3);
|
||||
Mat h_circles = h_circles_.getMat();
|
||||
d_circles.download(h_circles);
|
||||
return new HoughCirclesDetectorImpl(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
|
@ -150,11 +150,13 @@ GPU_TEST_P(HoughCircles, Accuracy)
|
||||
cv::Mat src(size, CV_8UC1);
|
||||
drawCircles(src, circles_gold, true);
|
||||
|
||||
cv::Ptr<cv::gpu::HoughCirclesDetector> houghCircles = cv::gpu::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
|
||||
|
||||
cv::gpu::GpuMat d_circles;
|
||||
cv::gpu::HoughCircles(loadMat(src, useRoi), d_circles, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
|
||||
houghCircles->detect(loadMat(src, useRoi), d_circles);
|
||||
|
||||
std::vector<cv::Vec3f> circles;
|
||||
cv::gpu::HoughCirclesDownload(d_circles, circles);
|
||||
d_circles.download(circles);
|
||||
|
||||
ASSERT_FALSE(circles.empty());
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user