Merge pull request #11968 from allnes:detect_qr_code

This commit is contained in:
Alexander Alekhin 2018-07-17 15:38:46 +00:00
commit 40b8ca2eed

View File

@ -35,13 +35,13 @@ protected:
Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2);
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
bool testBypassRoute(vector<Point2f> hull, int start, int finish);
double getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d);
double getTriangleArea(Point2f a, Point2f b, Point2f c);
double getPolygonArea(vector<Point2f> points);
double getCosVectors(Point2f a, Point2f b, Point2f c);
Mat barcode, bin_barcode, straight_barcode;
vector<Point2f> localization_points, transformation_points;
double experimental_area, eps_vertical, eps_horizontal, coeff_expansion;
double eps_vertical, eps_horizontal, coeff_expansion;
};
@ -113,8 +113,8 @@ vector<Vec3d> QRDecode::searchVerticalLines()
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i == 2) { weight += abs((test_lines[i] / length) - 3.0/7.0); }
else { weight += abs((test_lines[i] / length) - 1.0/7.0); }
if (i == 2) { weight += fabs((test_lines[i] / length) - 3.0/7.0); }
else { weight += fabs((test_lines[i] / length) - 1.0/7.0); }
}
if (weight < eps_vertical)
@ -184,8 +184,8 @@ vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines)
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i % 3 == 0) { weight += abs((test_lines[i] / length) - 3.0/14.0); }
else { weight += abs((test_lines[i] / length) - 1.0/ 7.0); }
if (i % 3 == 0) { weight += fabs((test_lines[i] / length) - 3.0/14.0); }
else { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); }
}
if(weight < eps_horizontal)
@ -245,6 +245,7 @@ bool QRDecode::localization()
vector<Point2f> centers;
Mat labels;
if (list_lines_y.size() < 3) { return false; }
kmeans(list_lines_y, 3, labels,
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
3, KMEANS_PP_CENTERS, localization_points);
@ -390,13 +391,6 @@ bool QRDecode::computeTransformationPoints()
intersectionLines(down_left_edge_point, down_max_delta_point,
up_right_edge_point, up_max_delta_point));
experimental_area = getQuadrilateralArea(transformation_points[0],
transformation_points[1],
transformation_points[2],
transformation_points[3]);
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points);
transformation_points = quadrilateral;
@ -489,6 +483,8 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
hull[i] = Point2f(x, y);
}
const double experimental_area = getPolygonArea(hull);
vector<Point2f> result_hull_point(angle_size);
double min_norm;
for (size_t i = 0; i < angle_size; i++)
@ -600,8 +596,11 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
extra_bypass_orientation = testBypassRoute(hull, finish_line[1], unstable_pnt);
vector<Point2f> result_angle_list(4), test_result_angle_list(4);
double min_area = std::numeric_limits<double>::max(), test_area;
double min_diff_area = std::numeric_limits<double>::max(), test_diff_area;
index_hull = start_line[0];
double standart_norm = std::max(
norm(result_side_begin[0] - result_side_end[0]),
norm(result_side_begin[1] - result_side_end[1]));
do
{
if (bypass_orientation) { next_index_hull = index_hull + 1; }
@ -610,6 +609,9 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm / 10.0)
{ index_hull = next_index_hull; continue; }
extra_index_hull = finish_line[1];
do
{
@ -619,6 +621,9 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm / 10.0)
{ extra_index_hull = extra_next_index_hull; continue; }
test_result_angle_list[0]
= intersectionLines(result_side_begin[0], result_side_end[0],
result_side_begin[1], result_side_end[1]);
@ -632,13 +637,10 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
= intersectionLines(hull[index_hull], hull[next_index_hull],
result_side_begin[0], result_side_end[0]);
test_area = getQuadrilateralArea(test_result_angle_list[0],
test_result_angle_list[1],
test_result_angle_list[2],
test_result_angle_list[3]);
if (min_area > test_area)
test_diff_area = fabs(getPolygonArea(test_result_angle_list) - experimental_area);
if (min_diff_area > test_diff_area)
{
min_area = test_area;
min_diff_area = test_diff_area;
for (size_t i = 0; i < test_result_angle_list.size(); i++)
{
result_angle_list[i] = test_result_angle_list[i];
@ -652,48 +654,9 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
index_hull = next_index_hull;
}
while(index_hull != unstable_pnt);
if (norm(result_angle_list[0] - angle_list[2]) >
norm(angle_list[2] - angle_list[1]) / 3) { result_angle_list[0] = angle_list[2]; }
if (norm(result_angle_list[1] - angle_list[1]) >
norm(angle_list[1] - angle_list[0]) / 3) { result_angle_list[1] = angle_list[1]; }
if (norm(result_angle_list[2] - angle_list[0]) >
norm(angle_list[0] - angle_list[3]) / 3) { result_angle_list[2] = angle_list[0]; }
if (norm(result_angle_list[3] - angle_list[3]) >
norm(angle_list[3] - angle_list[2]) / 3) { result_angle_list[3] = angle_list[3]; }
return result_angle_list;
}
// b __________ c
// / |
// / |
// / S |
// / |
// a --------------- d
double QRDecode::getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d)
{
double length_sides[4], perimeter = 0.0, result_area = 1.0;
length_sides[0] = norm(a - b); length_sides[1] = norm(b - c);
length_sides[2] = norm(c - d); length_sides[3] = norm(d - a);
for (size_t i = 0; i < 4; i++) { perimeter += length_sides[i]; }
perimeter /= 2;
for (size_t i = 0; i < 4; i++)
{
result_area *= (perimeter - length_sides[i]);
}
result_area = sqrt(result_area);
return result_area;
}
// b
// / |
// / |
@ -704,21 +667,31 @@ double QRDecode::getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d
double QRDecode::getTriangleArea(Point2f a, Point2f b, Point2f c)
{
double length_sides[3], perimeter = 0.0, triangle_area = 1.0;
length_sides[0] = norm(a - b);
length_sides[1] = norm(b - c);
length_sides[2] = norm(c - a);
for (size_t i = 0; i < 3; i++) { perimeter += length_sides[i]; }
perimeter /= 2;
for (size_t i = 0; i < 3; i++)
{
triangle_area *= (perimeter - length_sides[i]);
}
triangle_area += sqrt(triangle_area);
double norm_sides[] = { norm(a - b), norm(b - c), norm(c - a) };
double half_perimeter = (norm_sides[0] + norm_sides[1] + norm_sides[2]) / 2.0;
double triangle_area = sqrt(half_perimeter *
(half_perimeter - norm_sides[0]) *
(half_perimeter - norm_sides[1]) *
(half_perimeter - norm_sides[2]));
return triangle_area;
}
double QRDecode::getPolygonArea(vector<Point2f> points)
{
CV_Assert(points.size() >= 3);
if (points.size() == 3)
{ return getTriangleArea(points[0], points[1], points[2]); }
else
{
double result_area = 0.0;
for (size_t i = 1; i < points.size() - 1; i++)
{
result_area += getTriangleArea(points[0], points[i], points[i + 1]);
}
return result_area;
}
}
// / | b
// / |
// / |
@ -739,7 +712,7 @@ bool QRDecode::transformation()
for (size_t i = 0; i < transform_size; i++)
{
double len_norm = norm(transformation_points[i % transform_size] -
transformation_points[(i + 1) % transform_size]);
transformation_points[(i + 1) % transform_size]);
max_length_norm = std::max(max_length_norm, len_norm);
}