mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 14:36:36 +08:00
Merge pull request #14886 from alalek:fix_grabcut_kmeans_call_14879
This commit is contained in:
commit
4112866821
@ -238,7 +238,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
|
||||
attempts = std::max(attempts, 1);
|
||||
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 );
|
||||
CV_Assert( N >= K );
|
||||
CV_CheckGE(N, K, "Number of clusters should be more than number of elements");
|
||||
|
||||
Mat data(N, dims, CV_32F, data0.ptr(), isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step));
|
||||
|
||||
|
@ -45,6 +45,8 @@
|
||||
|
||||
using namespace cv;
|
||||
|
||||
namespace {
|
||||
|
||||
/*
|
||||
This is implementation of image segmentation algorithm GrabCut described in
|
||||
"GrabCut - Interactive Foreground Extraction using Iterated Graph Cuts".
|
||||
@ -228,6 +230,8 @@ void GMM::calcInverseCovAndDeterm(int ci, const double singularFix)
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
/*
|
||||
Calculate beta - parameter of GrabCut algorithm.
|
||||
beta = 1/(2*avg(sqr(||color[i] - color[j]||)))
|
||||
@ -379,12 +383,20 @@ static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM
|
||||
}
|
||||
}
|
||||
CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() );
|
||||
Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
|
||||
kmeans( _bgdSamples, GMM::componentsCount, bgdLabels,
|
||||
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
|
||||
Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
|
||||
kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,
|
||||
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
|
||||
{
|
||||
Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
|
||||
int num_clusters = GMM::componentsCount;
|
||||
num_clusters = std::min(num_clusters, (int)bgdSamples.size());
|
||||
kmeans( _bgdSamples, num_clusters, bgdLabels,
|
||||
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
|
||||
}
|
||||
{
|
||||
Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
|
||||
int num_clusters = GMM::componentsCount;
|
||||
num_clusters = std::min(num_clusters, (int)fgdSamples.size());
|
||||
kmeans( _fgdSamples, num_clusters, fgdLabels,
|
||||
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
|
||||
}
|
||||
|
||||
bgdGMM.initLearning();
|
||||
for( int i = 0; i < (int)bgdSamples.size(); i++ )
|
||||
|
Loading…
Reference in New Issue
Block a user