mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 01:13:28 +08:00
Add Robot-World/Hand-Eye calibration function.
This commit is contained in:
parent
ba147d2be2
commit
417d7a38de
@ -217,7 +217,7 @@
|
||||
hal_id = {inria-00350283},
|
||||
hal_version = {v1},
|
||||
}
|
||||
@article{Collins14
|
||||
@article{Collins14,
|
||||
year = {2014},
|
||||
issn = {0920-5691},
|
||||
journal = {International Journal of Computer Vision},
|
||||
@ -612,6 +612,14 @@
|
||||
number = {8},
|
||||
publisher = {IOP Publishing Ltd}
|
||||
}
|
||||
@article{Li2010SimultaneousRA,
|
||||
title = {Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product},
|
||||
author = {Aiguo Li and Lin Wang and Defeng Wu},
|
||||
journal = {International Journal of Physical Sciences},
|
||||
year = {2010},
|
||||
volume = {5},
|
||||
pages = {1530-1536}
|
||||
}
|
||||
@article{LibSVM,
|
||||
author = {Chang, Chih-Chung and Lin, Chih-Jen},
|
||||
title = {LIBSVM: a library for support vector machines},
|
||||
@ -922,6 +930,14 @@
|
||||
number = {2},
|
||||
publisher = {Springer}
|
||||
}
|
||||
@article{Shah2013SolvingTR,
|
||||
title = {Solving the Robot-World/Hand-Eye Calibration Problem Using the Kronecker Product},
|
||||
author = {Mili Shah},
|
||||
journal = {Journal of Mechanisms and Robotics},
|
||||
year = {2013},
|
||||
volume = {5},
|
||||
pages = {031007}
|
||||
}
|
||||
@inproceedings{Shi94,
|
||||
author = {Shi, Jianbo and Tomasi, Carlo},
|
||||
title = {Good features to track},
|
||||
|
BIN
modules/calib3d/doc/pics/robot-world_hand-eye_figure.png
Normal file
BIN
modules/calib3d/doc/pics/robot-world_hand-eye_figure.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 23 KiB |
@ -535,6 +535,12 @@ enum HandEyeCalibrationMethod
|
||||
CALIB_HAND_EYE_DANIILIDIS = 4 //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
|
||||
};
|
||||
|
||||
enum RobotWorldHandEyeCalibrationMethod
|
||||
{
|
||||
CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0, //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR
|
||||
CALIB_ROBOT_WORLD_HAND_EYE_LI = 1 //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA
|
||||
};
|
||||
|
||||
enum SamplingMethod { SAMPLING_UNIFORM, SAMPLING_PROGRESSIVE_NAPSAC, SAMPLING_NAPSAC,
|
||||
SAMPLING_PROSAC };
|
||||
enum LocalOptimMethod {LOCAL_OPTIM_NULL, LOCAL_OPTIM_INNER_LO, LOCAL_OPTIM_INNER_AND_ITER_LO,
|
||||
@ -2288,12 +2294,16 @@ rotation then the translation (separable solutions) and the following methods ar
|
||||
- R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
|
||||
|
||||
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
|
||||
with the following implemented method:
|
||||
with the following implemented methods:
|
||||
- N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
|
||||
- K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
|
||||
|
||||
The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
|
||||
mounted on a robot gripper ("hand") has to be estimated.
|
||||
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
|
||||
|
||||
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
|
||||
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
|
||||
the suitable transformations to the function, see below.
|
||||
|
||||

|
||||
|
||||
@ -2366,6 +2376,7 @@ The Hand-Eye calibration procedure returns the following homogeneous transformat
|
||||
\f]
|
||||
|
||||
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
|
||||
- for an eye-in-hand configuration
|
||||
\f[
|
||||
\begin{align*}
|
||||
^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
|
||||
@ -2378,6 +2389,19 @@ This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mat
|
||||
\end{align*}
|
||||
\f]
|
||||
|
||||
- for an eye-to-hand configuration
|
||||
\f[
|
||||
\begin{align*}
|
||||
^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
|
||||
\hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
|
||||
|
||||
(^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
|
||||
\hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
|
||||
|
||||
\textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
|
||||
\end{align*}
|
||||
\f]
|
||||
|
||||
\note
|
||||
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
|
||||
\note
|
||||
@ -2390,6 +2414,150 @@ CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArra
|
||||
OutputArray R_cam2gripper, OutputArray t_cam2gripper,
|
||||
HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );
|
||||
|
||||
/** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
|
||||
|
||||
@param[in] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
|
||||
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
|
||||
for all the transformations from world frame to the camera frame.
|
||||
@param[in] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
|
||||
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
|
||||
from world frame to the camera frame.
|
||||
@param[in] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
|
||||
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
|
||||
for all the transformations from robot base frame to the gripper frame.
|
||||
@param[in] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
|
||||
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
|
||||
from robot base frame to the gripper frame.
|
||||
@param[out] R_base2world Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
|
||||
@param[out] t_base2world Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
|
||||
@param[out] R_gripper2cam Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
|
||||
@param[out] t_gripper2cam Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
|
||||
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
|
||||
@param[in] method One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
|
||||
|
||||
The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
|
||||
rotation then the translation (separable solutions):
|
||||
- M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
|
||||
|
||||
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
|
||||
with the following implemented method:
|
||||
- A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
|
||||
|
||||
The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
|
||||
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
|
||||
|
||||

|
||||
|
||||
The calibration procedure is the following:
|
||||
- a static calibration pattern is used to estimate the transformation between the target frame
|
||||
and the camera frame
|
||||
- the robot gripper is moved in order to acquire several poses
|
||||
- for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
|
||||
instance the robot kinematics
|
||||
\f[
|
||||
\begin{bmatrix}
|
||||
X_g\\
|
||||
Y_g\\
|
||||
Z_g\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
_{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
|
||||
0_{1 \times 3} & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_b\\
|
||||
Y_b\\
|
||||
Z_b\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\f]
|
||||
- for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
|
||||
for instance a pose estimation method (PnP) from 2D-3D point correspondences
|
||||
\f[
|
||||
\begin{bmatrix}
|
||||
X_c\\
|
||||
Y_c\\
|
||||
Z_c\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
_{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
|
||||
0_{1 \times 3} & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_w\\
|
||||
Y_w\\
|
||||
Z_w\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\f]
|
||||
|
||||
The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
|
||||
\f[
|
||||
\begin{bmatrix}
|
||||
X_w\\
|
||||
Y_w\\
|
||||
Z_w\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
_{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
|
||||
0_{1 \times 3} & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_b\\
|
||||
Y_b\\
|
||||
Z_b\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\f]
|
||||
\f[
|
||||
\begin{bmatrix}
|
||||
X_c\\
|
||||
Y_c\\
|
||||
Z_c\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
_{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
|
||||
0_{1 \times 3} & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_g\\
|
||||
Y_g\\
|
||||
Z_g\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\f]
|
||||
|
||||
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
|
||||
- \f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
|
||||
- \f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
|
||||
- \f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
|
||||
- \f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$
|
||||
|
||||
\note
|
||||
At least 3 measurements are required (input vectors size must be greater or equal to 3).
|
||||
|
||||
*/
|
||||
CV_EXPORTS_W void calibrateRobotWorldHandEye( InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam,
|
||||
InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper,
|
||||
OutputArray R_base2world, OutputArray t_base2world,
|
||||
OutputArray R_gripper2cam, OutputArray t_gripper2cam,
|
||||
RobotWorldHandEyeCalibrationMethod method=CALIB_ROBOT_WORLD_HAND_EYE_SHAH );
|
||||
|
||||
/** @brief Converts points from Euclidean to homogeneous space.
|
||||
|
||||
@param src Input vector of N-dimensional points.
|
||||
|
@ -514,10 +514,32 @@ static void calibrateHandEyeHoraud(const std::vector<Mat>& Hg, const std::vector
|
||||
t_cam2gripper = t;
|
||||
}
|
||||
|
||||
// sign function, return -1 if negative values, +1 otherwise
|
||||
static int sign_double(double val)
|
||||
static Mat_<double> normalizeRotation(const Mat_<double>& R_)
|
||||
{
|
||||
return (0 < val) - (val < 0);
|
||||
// Make R unit determinant
|
||||
Mat_<double> R = R_.clone();
|
||||
double det = determinant(R);
|
||||
if (std::fabs(det) < FLT_EPSILON)
|
||||
{
|
||||
CV_Error(Error::StsNoConv, "Rotation normalization issue: determinant(R) is null");
|
||||
}
|
||||
R = std::cbrt(std::copysign(1, det) / std::fabs(det)) * R;
|
||||
|
||||
// Make R orthogonal
|
||||
Mat w, u, vt;
|
||||
SVDecomp(R, w, u, vt);
|
||||
R = u*vt;
|
||||
|
||||
// Handle reflection case
|
||||
if (determinant(R) < 0)
|
||||
{
|
||||
Matx33d diag(1.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0,
|
||||
0.0, 0.0, -1.0);
|
||||
R = u*diag*vt;
|
||||
}
|
||||
|
||||
return R;
|
||||
}
|
||||
|
||||
//Reference:
|
||||
@ -573,29 +595,8 @@ static void calibrateHandEyeAndreff(const std::vector<Mat>& Hg, const std::vecto
|
||||
int newSize[] = {3, 3};
|
||||
R = R.reshape(1, 2, newSize);
|
||||
//Eq 15
|
||||
double det = determinant(R);
|
||||
if (std::fabs(det) < FLT_EPSILON)
|
||||
{
|
||||
CV_Error(Error::StsNoConv, "calibrateHandEye() with CALIB_HAND_EYE_ANDREFF method: determinant(R) is null");
|
||||
}
|
||||
R = cubeRoot(static_cast<float>(sign_double(det) / abs(det))) * R;
|
||||
|
||||
Mat w, u, vt;
|
||||
SVDecomp(R, w, u, vt);
|
||||
R = u*vt;
|
||||
|
||||
if (determinant(R) < 0)
|
||||
{
|
||||
Mat diag = (Mat_<double>(3,3) << 1.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0,
|
||||
0.0, 0.0, -1.0);
|
||||
R = u*diag*vt;
|
||||
}
|
||||
|
||||
R_cam2gripper = R;
|
||||
|
||||
Mat t = X(Rect(0, 9, 1, 3));
|
||||
t_cam2gripper = t;
|
||||
R_cam2gripper = normalizeRotation(R);
|
||||
t_cam2gripper = X(Rect(0, 9, 1, 3));
|
||||
}
|
||||
|
||||
//Reference:
|
||||
@ -708,7 +709,7 @@ void calibrateHandEye(InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gr
|
||||
CV_Assert(R_gripper2base_.size() == t_gripper2base_.size() &&
|
||||
R_target2cam_.size() == t_target2cam_.size() &&
|
||||
R_gripper2base_.size() == R_target2cam_.size());
|
||||
CV_Assert(R_gripper2base_.size() >= 3);
|
||||
CV_Check(R_gripper2base_.size(), R_gripper2base_.size() >= 3, "At least 3 measurements are needed");
|
||||
|
||||
//Notation used in Tsai paper
|
||||
//Defines coordinate transformation from G (gripper) to RW (robot base)
|
||||
@ -779,4 +780,195 @@ void calibrateHandEye(InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gr
|
||||
Rcg.copyTo(R_cam2gripper);
|
||||
Tcg.copyTo(t_cam2gripper);
|
||||
}
|
||||
|
||||
//Reference:
|
||||
//M. Shah, "Solving the robot-world/hand-eye calibration problem using the kronecker product"
|
||||
//Journal of Mechanisms and Robotics, vol. 5, p. 031007, 2013.
|
||||
//Matlab code: http://math.loyola.edu/~mili/Calibration/
|
||||
static void calibrateRobotWorldHandEyeShah(const std::vector<Mat_<double>>& cRw, const std::vector<Mat_<double>>& ctw,
|
||||
const std::vector<Mat_<double>>& gRb, const std::vector<Mat_<double>>& gtb,
|
||||
Matx33d& wRb, Matx31d& wtb, Matx33d& cRg, Matx31d& ctg)
|
||||
{
|
||||
Mat_<double> T = Mat_<double>::zeros(9, 9);
|
||||
for (size_t i = 0; i < cRw.size(); i++)
|
||||
{
|
||||
T += kron(gRb[i], cRw[i]);
|
||||
}
|
||||
|
||||
Mat_<double> w, u, vt;
|
||||
SVDecomp(T, w, u, vt);
|
||||
|
||||
Mat_<double> RX(3,3), RZ(3,3);
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
RX(j,i) = vt(0, i*3+j);
|
||||
RZ(j,i) = u(i*3+j, 0);
|
||||
}
|
||||
}
|
||||
|
||||
wRb = normalizeRotation(RX);
|
||||
cRg = normalizeRotation(RZ);
|
||||
Mat_<double> Z = Mat(cRg.t()).reshape(1, 9);
|
||||
|
||||
const int n = static_cast<int>(cRw.size());
|
||||
Mat_<double> A = Mat_<double>::zeros(3*n, 6);
|
||||
Mat_<double> b = Mat_<double>::zeros(3*n, 1);
|
||||
Mat_<double> I3 = Mat_<double>::eye(3,3);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
Mat cRw_ = -cRw[i];
|
||||
cRw_.copyTo(A(Range(i*3, (i+1)*3), Range(0,3)));
|
||||
I3.copyTo(A(Range(i*3, (i+1)*3), Range(3,6)));
|
||||
|
||||
Mat ctw_ = ctw[i] - kron(gtb[i].t(), I3) * Z;
|
||||
ctw_.copyTo(b(Range(i*3, (i+1)*3), Range::all()));
|
||||
}
|
||||
|
||||
Mat_<double> t;
|
||||
solve(A, b, t, DECOMP_SVD);
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
wtb(i) = t(i);
|
||||
ctg(i) = t(i+3);
|
||||
}
|
||||
}
|
||||
|
||||
//Reference:
|
||||
//A. Li, L. Wang, and D. Wu, "Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product"
|
||||
//International Journal of Physical Sciences, vol. 5, pp. 1530–1536, 2010.
|
||||
//Matlab code: http://math.loyola.edu/~mili/Calibration/
|
||||
static void calibrateRobotWorldHandEyeLi(const std::vector<Mat_<double>>& cRw, const std::vector<Mat_<double>>& ctw,
|
||||
const std::vector<Mat_<double>>& gRb, const std::vector<Mat_<double>>& gtb,
|
||||
Matx33d& wRb, Matx31d& wtb, Matx33d& cRg, Matx31d& ctg)
|
||||
{
|
||||
const int n = static_cast<int>(cRw.size());
|
||||
Mat_<double> A = Mat_<double>::zeros(12*n, 24);
|
||||
Mat_<double> b = Mat_<double>::zeros(12*n, 1);
|
||||
Mat_<double> I3 = Mat_<double>::eye(3,3);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
//Eq 19
|
||||
kron(cRw[i], I3).copyTo(A(Range(i*12, i*12 + 9), Range(0, 9)));
|
||||
kron(-I3, gRb[i].t()).copyTo(A(Range(i*12, i*12 + 9), Range(9, 18)));
|
||||
|
||||
kron(I3, gtb[i].t()).copyTo(A(Range(i*12 + 9, (i+1)*12), Range(9, 18)));
|
||||
Mat cRw_ = -cRw[i];
|
||||
cRw_.copyTo(A(Range(i*12 + 9, (i+1)*12), Range(18, 21)));
|
||||
I3.copyTo(A(Range(i*12 + 9, (i+1)*12), Range(21, 24)));
|
||||
|
||||
ctw[i].copyTo(b(Range(i*12 + 9, i*12+12), Range::all()));
|
||||
}
|
||||
|
||||
Mat_<double> x;
|
||||
solve(A, b, x, DECOMP_SVD);
|
||||
|
||||
Mat_<double> RX = x(Range(0,9), Range::all()).reshape(3, 3);
|
||||
wRb = normalizeRotation(RX);
|
||||
x(Range(18,21), Range::all()).copyTo(wtb);
|
||||
|
||||
Mat_<double> RZ = x(Range(9,18), Range::all()).reshape(3, 3);
|
||||
cRg = normalizeRotation(RZ);
|
||||
x(Range(21,24), Range::all()).copyTo(ctg);
|
||||
}
|
||||
|
||||
void calibrateRobotWorldHandEye(InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam,
|
||||
InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper,
|
||||
OutputArray R_base2world, OutputArray t_base2world,
|
||||
OutputArray R_gripper2cam, OutputArray t_gripper2cam,
|
||||
RobotWorldHandEyeCalibrationMethod method)
|
||||
{
|
||||
CV_Assert(R_base2gripper.isMatVector() && t_base2gripper.isMatVector() &&
|
||||
R_world2cam.isMatVector() && t_world2cam.isMatVector());
|
||||
|
||||
std::vector<Mat> R_base2gripper_tmp, t_base2gripper_tmp;
|
||||
R_base2gripper.getMatVector(R_base2gripper_tmp);
|
||||
t_base2gripper.getMatVector(t_base2gripper_tmp);
|
||||
|
||||
std::vector<Mat> R_world2cam_tmp, t_world2cam_tmp;
|
||||
R_world2cam.getMatVector(R_world2cam_tmp);
|
||||
t_world2cam.getMatVector(t_world2cam_tmp);
|
||||
|
||||
CV_Assert(R_base2gripper_tmp.size() == t_base2gripper_tmp.size() &&
|
||||
R_world2cam_tmp.size() == t_world2cam_tmp.size() &&
|
||||
R_base2gripper_tmp.size() == R_world2cam_tmp.size());
|
||||
CV_Check(R_base2gripper_tmp.size(), R_base2gripper_tmp.size() >= 3, "At least 3 measurements are needed");
|
||||
|
||||
// Convert to double
|
||||
std::vector<Mat_<double>> R_base2gripper_, t_base2gripper_;
|
||||
std::vector<Mat_<double>> R_world2cam_, t_world2cam_;
|
||||
|
||||
R_base2gripper_.reserve(R_base2gripper_tmp.size());
|
||||
t_base2gripper_.reserve(R_base2gripper_tmp.size());
|
||||
R_world2cam_.reserve(R_world2cam_tmp.size());
|
||||
t_world2cam_.reserve(R_base2gripper_tmp.size());
|
||||
|
||||
// Convert to rotation matrix if needed
|
||||
for (size_t i = 0; i < R_base2gripper_tmp.size(); i++)
|
||||
{
|
||||
{
|
||||
Mat rot = R_base2gripper_tmp[i];
|
||||
Mat R(3, 3, CV_64FC1);
|
||||
if (rot.size() == Size(3,3))
|
||||
{
|
||||
rot.convertTo(R, CV_64F);
|
||||
R_base2gripper_.push_back(R);
|
||||
}
|
||||
else
|
||||
{
|
||||
Rodrigues(rot, R);
|
||||
R_base2gripper_.push_back(R);
|
||||
}
|
||||
Mat tvec = t_base2gripper_tmp[i];
|
||||
Mat t;
|
||||
tvec.convertTo(t, CV_64F);
|
||||
t_base2gripper_.push_back(t);
|
||||
}
|
||||
{
|
||||
Mat rot = R_world2cam_tmp[i];
|
||||
Mat R(3, 3, CV_64FC1);
|
||||
if (rot.size() == Size(3,3))
|
||||
{
|
||||
rot.convertTo(R, CV_64F);
|
||||
R_world2cam_.push_back(R);
|
||||
}
|
||||
else
|
||||
{
|
||||
Rodrigues(rot, R);
|
||||
R_world2cam_.push_back(R);
|
||||
}
|
||||
Mat tvec = t_world2cam_tmp[i];
|
||||
Mat t;
|
||||
tvec.convertTo(t, CV_64F);
|
||||
t_world2cam_.push_back(t);
|
||||
}
|
||||
}
|
||||
|
||||
CV_Assert(R_world2cam_.size() == t_world2cam_.size() &&
|
||||
R_base2gripper_.size() == t_base2gripper_.size() &&
|
||||
R_world2cam_.size() == R_base2gripper_.size());
|
||||
|
||||
Matx33d wRb, cRg;
|
||||
Matx31d wtb, ctg;
|
||||
switch (method)
|
||||
{
|
||||
case CALIB_ROBOT_WORLD_HAND_EYE_SHAH:
|
||||
calibrateRobotWorldHandEyeShah(R_world2cam_, t_world2cam_, R_base2gripper_, t_base2gripper_, wRb, wtb, cRg, ctg);
|
||||
break;
|
||||
|
||||
case CALIB_ROBOT_WORLD_HAND_EYE_LI:
|
||||
calibrateRobotWorldHandEyeLi(R_world2cam_, t_world2cam_, R_base2gripper_, t_base2gripper_, wRb, wtb, cRg, ctg);
|
||||
break;
|
||||
}
|
||||
|
||||
Mat(wRb).copyTo(R_base2world);
|
||||
Mat(wtb).copyTo(t_base2world);
|
||||
|
||||
Mat(cRg).copyTo(R_gripper2cam);
|
||||
Mat(ctg).copyTo(t_gripper2cam);
|
||||
}
|
||||
}
|
||||
|
@ -7,241 +7,12 @@
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
static std::string getMethodName(HandEyeCalibrationMethod method)
|
||||
{
|
||||
std::string method_name = "";
|
||||
switch (method)
|
||||
{
|
||||
case CALIB_HAND_EYE_TSAI:
|
||||
method_name = "Tsai";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_PARK:
|
||||
method_name = "Park";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_HORAUD:
|
||||
method_name = "Horaud";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_ANDREFF:
|
||||
method_name = "Andreff";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_DANIILIDIS:
|
||||
method_name = "Daniilidis";
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return method_name;
|
||||
}
|
||||
|
||||
class CV_CalibrateHandEyeTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_CalibrateHandEyeTest() {
|
||||
eps_rvec[CALIB_HAND_EYE_TSAI] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_PARK] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8;
|
||||
|
||||
eps_tvec[CALIB_HAND_EYE_TSAI] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_PARK] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8;
|
||||
|
||||
eps_rvec_noise[CALIB_HAND_EYE_TSAI] = 2.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_PARK] = 2.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_HORAUD] = 2.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_ANDREFF] = 1.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-2;
|
||||
|
||||
eps_tvec_noise[CALIB_HAND_EYE_TSAI] = 5.0e-2;
|
||||
eps_tvec_noise[CALIB_HAND_EYE_PARK] = 5.0e-2;
|
||||
eps_tvec_noise[CALIB_HAND_EYE_HORAUD] = 5.0e-2;
|
||||
eps_tvec_noise[CALIB_HAND_EYE_ANDREFF] = 5.0e-2;
|
||||
eps_tvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 5.0e-2;
|
||||
}
|
||||
protected:
|
||||
virtual void run(int);
|
||||
void generatePose(RNG& rng, double min_theta, double max_theta,
|
||||
double min_tx, double max_tx,
|
||||
double min_ty, double max_ty,
|
||||
double min_tz, double max_tz,
|
||||
Mat& R, Mat& tvec,
|
||||
bool randSign=false);
|
||||
void simulateData(RNG& rng, int nPoses,
|
||||
std::vector<Mat> &R_gripper2base, std::vector<Mat> &t_gripper2base,
|
||||
std::vector<Mat> &R_target2cam, std::vector<Mat> &t_target2cam,
|
||||
bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper);
|
||||
Mat homogeneousInverse(const Mat& T);
|
||||
double sign_double(double val);
|
||||
|
||||
double eps_rvec[5];
|
||||
double eps_tvec[5];
|
||||
double eps_rvec_noise[5];
|
||||
double eps_tvec_noise[5];
|
||||
};
|
||||
|
||||
void CV_CalibrateHandEyeTest::run(int)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
std::vector<std::vector<double> > vec_rvec_diff(5);
|
||||
std::vector<std::vector<double> > vec_tvec_diff(5);
|
||||
std::vector<std::vector<double> > vec_rvec_diff_noise(5);
|
||||
std::vector<std::vector<double> > vec_tvec_diff_noise(5);
|
||||
|
||||
std::vector<HandEyeCalibrationMethod> methods;
|
||||
methods.push_back(CALIB_HAND_EYE_TSAI);
|
||||
methods.push_back(CALIB_HAND_EYE_PARK);
|
||||
methods.push_back(CALIB_HAND_EYE_HORAUD);
|
||||
methods.push_back(CALIB_HAND_EYE_ANDREFF);
|
||||
methods.push_back(CALIB_HAND_EYE_DANIILIDIS);
|
||||
|
||||
const int nTests = 100;
|
||||
for (int i = 0; i < nTests; i++)
|
||||
{
|
||||
const int nPoses = 10;
|
||||
{
|
||||
//No noise
|
||||
std::vector<Mat> R_gripper2base, t_gripper2base;
|
||||
std::vector<Mat> R_target2cam, t_target2cam;
|
||||
Mat R_cam2gripper_true, t_cam2gripper_true;
|
||||
|
||||
const bool noise = false;
|
||||
simulateData(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true);
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
Mat rvec_cam2gripper_true;
|
||||
cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true);
|
||||
|
||||
Mat R_cam2gripper_est, t_cam2gripper_est;
|
||||
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]);
|
||||
|
||||
Mat rvec_cam2gripper_est;
|
||||
cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est);
|
||||
|
||||
double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2);
|
||||
double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2);
|
||||
|
||||
vec_rvec_diff[idx].push_back(rvecDiff);
|
||||
vec_tvec_diff[idx].push_back(tvecDiff);
|
||||
|
||||
const double epsilon_rvec = eps_rvec[idx];
|
||||
const double epsilon_tvec = eps_tvec[idx];
|
||||
|
||||
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds?
|
||||
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Invalid accuracy (no noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n",
|
||||
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
//Gaussian noise on transformations between calibration target frame and camera frame and between gripper and robot base frames
|
||||
std::vector<Mat> R_gripper2base, t_gripper2base;
|
||||
std::vector<Mat> R_target2cam, t_target2cam;
|
||||
Mat R_cam2gripper_true, t_cam2gripper_true;
|
||||
|
||||
const bool noise = true;
|
||||
simulateData(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true);
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
Mat rvec_cam2gripper_true;
|
||||
cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true);
|
||||
|
||||
Mat R_cam2gripper_est, t_cam2gripper_est;
|
||||
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]);
|
||||
|
||||
Mat rvec_cam2gripper_est;
|
||||
cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est);
|
||||
|
||||
double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2);
|
||||
double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2);
|
||||
|
||||
vec_rvec_diff_noise[idx].push_back(rvecDiff);
|
||||
vec_tvec_diff_noise[idx].push_back(tvecDiff);
|
||||
|
||||
const double epsilon_rvec = eps_rvec_noise[idx];
|
||||
const double epsilon_tvec = eps_tvec_noise[idx];
|
||||
|
||||
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds?
|
||||
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Invalid accuracy (noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n",
|
||||
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
{
|
||||
double max_rvec_diff = *std::max_element(vec_rvec_diff[idx].begin(), vec_rvec_diff[idx].end());
|
||||
double mean_rvec_diff = std::accumulate(vec_rvec_diff[idx].begin(),
|
||||
vec_rvec_diff[idx].end(), 0.0) / vec_rvec_diff[idx].size();
|
||||
double sq_sum_rvec_diff = std::inner_product(vec_rvec_diff[idx].begin(), vec_rvec_diff[idx].end(),
|
||||
vec_rvec_diff[idx].begin(), 0.0);
|
||||
double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / vec_rvec_diff[idx].size() - mean_rvec_diff * mean_rvec_diff);
|
||||
|
||||
double max_tvec_diff = *std::max_element(vec_tvec_diff[idx].begin(), vec_tvec_diff[idx].end());
|
||||
double mean_tvec_diff = std::accumulate(vec_tvec_diff[idx].begin(),
|
||||
vec_tvec_diff[idx].end(), 0.0) / vec_tvec_diff[idx].size();
|
||||
double sq_sum_tvec_diff = std::inner_product(vec_tvec_diff[idx].begin(), vec_tvec_diff[idx].end(),
|
||||
vec_tvec_diff[idx].begin(), 0.0);
|
||||
double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / vec_tvec_diff[idx].size() - mean_tvec_diff * mean_tvec_diff);
|
||||
|
||||
std::cout << "\nMethod " << getMethodName(methods[idx]) << ":\n"
|
||||
<< "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff
|
||||
<< ", Std rvec error: " << std_rvec_diff << "\n"
|
||||
<< "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff
|
||||
<< ", Std tvec error: " << std_tvec_diff << std::endl;
|
||||
}
|
||||
{
|
||||
double max_rvec_diff = *std::max_element(vec_rvec_diff_noise[idx].begin(), vec_rvec_diff_noise[idx].end());
|
||||
double mean_rvec_diff = std::accumulate(vec_rvec_diff_noise[idx].begin(),
|
||||
vec_rvec_diff_noise[idx].end(), 0.0) / vec_rvec_diff_noise[idx].size();
|
||||
double sq_sum_rvec_diff = std::inner_product(vec_rvec_diff_noise[idx].begin(), vec_rvec_diff_noise[idx].end(),
|
||||
vec_rvec_diff_noise[idx].begin(), 0.0);
|
||||
double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / vec_rvec_diff_noise[idx].size() - mean_rvec_diff * mean_rvec_diff);
|
||||
|
||||
double max_tvec_diff = *std::max_element(vec_tvec_diff_noise[idx].begin(), vec_tvec_diff_noise[idx].end());
|
||||
double mean_tvec_diff = std::accumulate(vec_tvec_diff_noise[idx].begin(),
|
||||
vec_tvec_diff_noise[idx].end(), 0.0) / vec_tvec_diff_noise[idx].size();
|
||||
double sq_sum_tvec_diff = std::inner_product(vec_tvec_diff_noise[idx].begin(), vec_tvec_diff_noise[idx].end(),
|
||||
vec_tvec_diff_noise[idx].begin(), 0.0);
|
||||
double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / vec_tvec_diff_noise[idx].size() - mean_tvec_diff * mean_tvec_diff);
|
||||
|
||||
std::cout << "Method (noise) " << getMethodName(methods[idx]) << ":\n"
|
||||
<< "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff
|
||||
<< ", Std rvec error: " << std_rvec_diff << "\n"
|
||||
<< "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff
|
||||
<< ", Std tvec error: " << std_tvec_diff << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_CalibrateHandEyeTest::generatePose(RNG& rng, double min_theta, double max_theta,
|
||||
double min_tx, double max_tx,
|
||||
double min_ty, double max_ty,
|
||||
double min_tz, double max_tz,
|
||||
Mat& R, Mat& tvec,
|
||||
bool random_sign)
|
||||
static void generatePose(RNG& rng, double min_theta, double max_theta,
|
||||
double min_tx, double max_tx,
|
||||
double min_ty, double max_ty,
|
||||
double min_tz, double max_tz,
|
||||
Mat& R, Mat& tvec,
|
||||
bool random_sign)
|
||||
{
|
||||
Mat axis(3, 1, CV_64FC1);
|
||||
for (int i = 0; i < 3; i++)
|
||||
@ -251,7 +22,7 @@ void CV_CalibrateHandEyeTest::generatePose(RNG& rng, double min_theta, double ma
|
||||
double theta = rng.uniform(min_theta, max_theta);
|
||||
if (random_sign)
|
||||
{
|
||||
theta *= sign_double(rng.uniform(-1.0, 1.0));
|
||||
theta *= std::copysign(1.0, rng.uniform(-1.0, 1.0));
|
||||
}
|
||||
|
||||
Mat rvec(3, 1, CV_64FC1);
|
||||
@ -266,18 +37,33 @@ void CV_CalibrateHandEyeTest::generatePose(RNG& rng, double min_theta, double ma
|
||||
|
||||
if (random_sign)
|
||||
{
|
||||
tvec.at<double>(0,0) *= sign_double(rng.uniform(-1.0, 1.0));
|
||||
tvec.at<double>(1,0) *= sign_double(rng.uniform(-1.0, 1.0));
|
||||
tvec.at<double>(2,0) *= sign_double(rng.uniform(-1.0, 1.0));
|
||||
tvec.at<double>(0,0) *= std::copysign(1.0, rng.uniform(-1.0, 1.0));
|
||||
tvec.at<double>(1,0) *= std::copysign(1.0, rng.uniform(-1.0, 1.0));
|
||||
tvec.at<double>(2,0) *= std::copysign(1.0, rng.uniform(-1.0, 1.0));
|
||||
}
|
||||
|
||||
cv::Rodrigues(rvec, R);
|
||||
}
|
||||
|
||||
void CV_CalibrateHandEyeTest::simulateData(RNG& rng, int nPoses,
|
||||
std::vector<Mat> &R_gripper2base, std::vector<Mat> &t_gripper2base,
|
||||
std::vector<Mat> &R_target2cam, std::vector<Mat> &t_target2cam,
|
||||
bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper)
|
||||
static Mat homogeneousInverse(const Mat& T)
|
||||
{
|
||||
CV_Assert( T.rows == 4 && T.cols == 4 );
|
||||
|
||||
Mat R = T(Rect(0, 0, 3, 3));
|
||||
Mat t = T(Rect(3, 0, 1, 3));
|
||||
Mat Rt = R.t();
|
||||
Mat tinv = -Rt * t;
|
||||
Mat Tinv = Mat::eye(4, 4, T.type());
|
||||
Rt.copyTo(Tinv(Rect(0, 0, 3, 3)));
|
||||
tinv.copyTo(Tinv(Rect(3, 0, 1, 3)));
|
||||
|
||||
return Tinv;
|
||||
}
|
||||
|
||||
static void simulateDataEyeInHand(RNG& rng, int nPoses,
|
||||
std::vector<Mat> &R_gripper2base, std::vector<Mat> &t_gripper2base,
|
||||
std::vector<Mat> &R_target2cam, std::vector<Mat> &t_target2cam,
|
||||
bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper)
|
||||
{
|
||||
//to avoid generating values close to zero,
|
||||
//we use positive range values and randomize the sign
|
||||
@ -348,7 +134,7 @@ void CV_CalibrateHandEyeTest::simulateData(RNG& rng, int nPoses,
|
||||
t_gripper2base_noise.at<double>(2,0) += rng.gaussian(0.001);
|
||||
}
|
||||
|
||||
// test rvec represenation
|
||||
//Test rvec representation
|
||||
Mat rvec_target2cam;
|
||||
cv::Rodrigues(T_target2cam(Rect(0, 0, 3, 3)), rvec_target2cam);
|
||||
R_target2cam.push_back(rvec_target2cam);
|
||||
@ -356,40 +142,173 @@ void CV_CalibrateHandEyeTest::simulateData(RNG& rng, int nPoses,
|
||||
}
|
||||
}
|
||||
|
||||
Mat CV_CalibrateHandEyeTest::homogeneousInverse(const Mat& T)
|
||||
static void simulateDataEyeToHand(RNG& rng, int nPoses,
|
||||
std::vector<Mat> &R_base2gripper, std::vector<Mat> &t_base2gripper,
|
||||
std::vector<Mat> &R_target2cam, std::vector<Mat> &t_target2cam,
|
||||
bool noise, Mat& R_cam2base, Mat& t_cam2base)
|
||||
{
|
||||
CV_Assert( T.rows == 4 && T.cols == 4 );
|
||||
//to avoid generating values close to zero,
|
||||
//we use positive range values and randomize the sign
|
||||
const bool random_sign = true;
|
||||
generatePose(rng, 10.0*CV_PI/180.0, 50.0*CV_PI/180.0,
|
||||
0.5, 3.5, 0.5, 3.5, 0.5, 3.5,
|
||||
R_cam2base, t_cam2base, random_sign);
|
||||
|
||||
Mat R = T(Rect(0, 0, 3, 3));
|
||||
Mat t = T(Rect(3, 0, 1, 3));
|
||||
Mat Rt = R.t();
|
||||
Mat tinv = -Rt * t;
|
||||
Mat Tinv = Mat::eye(4, 4, T.type());
|
||||
Rt.copyTo(Tinv(Rect(0, 0, 3, 3)));
|
||||
tinv.copyTo(Tinv(Rect(3, 0, 1, 3)));
|
||||
Mat R_target2gripper, t_target2gripper;
|
||||
generatePose(rng, 5.0*CV_PI/180.0, 85.0*CV_PI/180.0,
|
||||
0.05, 0.5, 0.05, 0.5, 0.05, 0.5,
|
||||
R_target2gripper, t_target2gripper, random_sign);
|
||||
|
||||
return Tinv;
|
||||
}
|
||||
Mat T_target2gripper = Mat::eye(4, 4, CV_64FC1);
|
||||
R_target2gripper.copyTo(T_target2gripper(Rect(0, 0, 3, 3)));
|
||||
t_target2gripper.copyTo(T_target2gripper(Rect(3, 0, 1, 3)));
|
||||
|
||||
double CV_CalibrateHandEyeTest::sign_double(double val)
|
||||
{
|
||||
return (0 < val) - (val < 0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(Calib3d_CalibrateHandEye, regression) { CV_CalibrateHandEyeTest test; test.safe_run(); }
|
||||
|
||||
TEST(Calib3d_CalibrateHandEye, regression_17986)
|
||||
{
|
||||
const std::string camera_poses_filename = findDataFile("cv/hand_eye_calibration/cali.txt");
|
||||
const std::string end_effector_poses = findDataFile("cv/hand_eye_calibration/robot_cali.txt");
|
||||
|
||||
std::vector<Mat> R_target2cam;
|
||||
std::vector<Mat> t_target2cam;
|
||||
// Parse camera poses
|
||||
for (int i = 0; i < nPoses; i++)
|
||||
{
|
||||
std::ifstream file(camera_poses_filename.c_str());
|
||||
Mat R_gripper2base_, t_gripper2base_;
|
||||
generatePose(rng, 5.0*CV_PI/180.0, 45.0*CV_PI/180.0,
|
||||
0.5, 1.5, 0.5, 1.5, 0.5, 1.5,
|
||||
R_gripper2base_, t_gripper2base_, random_sign);
|
||||
|
||||
Mat R_base2gripper_ = R_gripper2base_.t();
|
||||
Mat t_base2gripper_ = -R_base2gripper_ * t_gripper2base_;
|
||||
|
||||
Mat T_gripper2base = Mat::eye(4, 4, CV_64FC1);
|
||||
R_gripper2base_.copyTo(T_gripper2base(Rect(0, 0, 3, 3)));
|
||||
t_gripper2base_.copyTo(T_gripper2base(Rect(3, 0, 1, 3)));
|
||||
|
||||
Mat T_cam2base = Mat::eye(4, 4, CV_64FC1);
|
||||
R_cam2base.copyTo(T_cam2base(Rect(0, 0, 3, 3)));
|
||||
t_cam2base.copyTo(T_cam2base(Rect(3, 0, 1, 3)));
|
||||
|
||||
Mat T_target2cam = homogeneousInverse(T_cam2base) * T_gripper2base * T_target2gripper;
|
||||
|
||||
if (noise)
|
||||
{
|
||||
//Add some noise for the transformation between the target and the camera
|
||||
Mat R_target2cam_noise = T_target2cam(Rect(0, 0, 3, 3));
|
||||
Mat rvec_target2cam_noise;
|
||||
cv::Rodrigues(R_target2cam_noise, rvec_target2cam_noise);
|
||||
rvec_target2cam_noise.at<double>(0,0) += rng.gaussian(0.002);
|
||||
rvec_target2cam_noise.at<double>(1,0) += rng.gaussian(0.002);
|
||||
rvec_target2cam_noise.at<double>(2,0) += rng.gaussian(0.002);
|
||||
|
||||
cv::Rodrigues(rvec_target2cam_noise, R_target2cam_noise);
|
||||
|
||||
Mat t_target2cam_noise = T_target2cam(Rect(3, 0, 1, 3));
|
||||
t_target2cam_noise.at<double>(0,0) += rng.gaussian(0.005);
|
||||
t_target2cam_noise.at<double>(1,0) += rng.gaussian(0.005);
|
||||
t_target2cam_noise.at<double>(2,0) += rng.gaussian(0.005);
|
||||
|
||||
//Add some noise for the transformation between the robot base and the gripper
|
||||
Mat rvec_base2gripper_noise;
|
||||
cv::Rodrigues(R_base2gripper_, rvec_base2gripper_noise);
|
||||
rvec_base2gripper_noise.at<double>(0,0) += rng.gaussian(0.001);
|
||||
rvec_base2gripper_noise.at<double>(1,0) += rng.gaussian(0.001);
|
||||
rvec_base2gripper_noise.at<double>(2,0) += rng.gaussian(0.001);
|
||||
|
||||
cv::Rodrigues(rvec_base2gripper_noise, R_base2gripper_);
|
||||
|
||||
t_base2gripper_.at<double>(0,0) += rng.gaussian(0.001);
|
||||
t_base2gripper_.at<double>(1,0) += rng.gaussian(0.001);
|
||||
t_base2gripper_.at<double>(2,0) += rng.gaussian(0.001);
|
||||
}
|
||||
|
||||
R_base2gripper.push_back(R_base2gripper_);
|
||||
t_base2gripper.push_back(t_base2gripper_);
|
||||
|
||||
//Test rvec representation
|
||||
Mat rvec_target2cam;
|
||||
cv::Rodrigues(T_target2cam(Rect(0, 0, 3, 3)), rvec_target2cam);
|
||||
R_target2cam.push_back(rvec_target2cam);
|
||||
t_target2cam.push_back(T_target2cam(Rect(3, 0, 1, 3)));
|
||||
}
|
||||
}
|
||||
|
||||
static std::string getMethodName(HandEyeCalibrationMethod method)
|
||||
{
|
||||
std::string method_name = "";
|
||||
switch (method)
|
||||
{
|
||||
case CALIB_HAND_EYE_TSAI:
|
||||
method_name = "Tsai";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_PARK:
|
||||
method_name = "Park";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_HORAUD:
|
||||
method_name = "Horaud";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_ANDREFF:
|
||||
method_name = "Andreff";
|
||||
break;
|
||||
|
||||
case CALIB_HAND_EYE_DANIILIDIS:
|
||||
method_name = "Daniilidis";
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return method_name;
|
||||
}
|
||||
|
||||
static std::string getMethodName(RobotWorldHandEyeCalibrationMethod method)
|
||||
{
|
||||
std::string method_name = "";
|
||||
switch (method)
|
||||
{
|
||||
case CALIB_ROBOT_WORLD_HAND_EYE_SHAH:
|
||||
method_name = "Shah";
|
||||
break;
|
||||
|
||||
case CALIB_ROBOT_WORLD_HAND_EYE_LI:
|
||||
method_name = "Li";
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return method_name;
|
||||
}
|
||||
|
||||
static void printStats(const std::string& methodName, const std::vector<double>& rvec_diff, const std::vector<double>& tvec_diff)
|
||||
{
|
||||
double max_rvec_diff = *std::max_element(rvec_diff.begin(), rvec_diff.end());
|
||||
double mean_rvec_diff = std::accumulate(rvec_diff.begin(),
|
||||
rvec_diff.end(), 0.0) / rvec_diff.size();
|
||||
double sq_sum_rvec_diff = std::inner_product(rvec_diff.begin(), rvec_diff.end(),
|
||||
rvec_diff.begin(), 0.0);
|
||||
double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / rvec_diff.size() - mean_rvec_diff * mean_rvec_diff);
|
||||
|
||||
double max_tvec_diff = *std::max_element(tvec_diff.begin(), tvec_diff.end());
|
||||
double mean_tvec_diff = std::accumulate(tvec_diff.begin(),
|
||||
tvec_diff.end(), 0.0) / tvec_diff.size();
|
||||
double sq_sum_tvec_diff = std::inner_product(tvec_diff.begin(), tvec_diff.end(),
|
||||
tvec_diff.begin(), 0.0);
|
||||
double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / tvec_diff.size() - mean_tvec_diff * mean_tvec_diff);
|
||||
|
||||
std::cout << "Method " << methodName << ":\n"
|
||||
<< "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff
|
||||
<< ", Std rvec error: " << std_rvec_diff << "\n"
|
||||
<< "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff
|
||||
<< ", Std tvec error: " << std_tvec_diff << std::endl;
|
||||
}
|
||||
|
||||
static void loadDataset(std::vector<Mat>& R_target2cam, std::vector<Mat>& t_target2cam,
|
||||
std::vector<Mat>& R_base2gripper, std::vector<Mat>& t_base2gripper)
|
||||
{
|
||||
const std::string camera_poses_filename = findDataFile("cv/robot_world_hand_eye_calibration/cali.txt");
|
||||
const std::string end_effector_poses = findDataFile("cv/robot_world_hand_eye_calibration/robot_cali.txt");
|
||||
|
||||
// Parse camera poses, the pose of the chessboard in the camera frame
|
||||
{
|
||||
std::ifstream file(camera_poses_filename);
|
||||
ASSERT_TRUE(file.is_open());
|
||||
|
||||
int ndata = 0;
|
||||
@ -418,17 +337,15 @@ TEST(Calib3d_CalibrateHandEye, regression_17986)
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Mat> R_gripper2base;
|
||||
std::vector<Mat> t_gripper2base;
|
||||
// Parse end-effector poses
|
||||
// Parse robot poses, the pose of the robot base in the robot hand frame
|
||||
{
|
||||
std::ifstream file(end_effector_poses.c_str());
|
||||
std::ifstream file(end_effector_poses);
|
||||
ASSERT_TRUE(file.is_open());
|
||||
|
||||
int ndata = 0;
|
||||
file >> ndata;
|
||||
R_gripper2base.reserve(ndata);
|
||||
t_gripper2base.reserve(ndata);
|
||||
R_base2gripper.reserve(ndata);
|
||||
t_base2gripper.reserve(ndata);
|
||||
|
||||
Matx33d R;
|
||||
Matx31d t;
|
||||
@ -438,10 +355,111 @@ TEST(Calib3d_CalibrateHandEye, regression_17986)
|
||||
R(1,0) >> R(1,1) >> R(1,2) >> t(1) >>
|
||||
R(2,0) >> R(2,1) >> R(2,2) >> t(2) >>
|
||||
last_row(0) >> last_row(1) >> last_row(2) >> last_row(3)) {
|
||||
R_gripper2base.push_back(Mat(R));
|
||||
t_gripper2base.push_back(Mat(t));
|
||||
R_base2gripper.push_back(Mat(R));
|
||||
t_base2gripper.push_back(Mat(t));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void loadResults(Matx33d& wRb, Matx31d& wtb, Matx33d& cRg, Matx31d& ctg)
|
||||
{
|
||||
const std::string transformations_filename = findDataFile("cv/robot_world_hand_eye_calibration/rwhe_AA_RPI/transformations.txt");
|
||||
std::ifstream file(transformations_filename);
|
||||
ASSERT_TRUE(file.is_open());
|
||||
|
||||
std::string str;
|
||||
//Parse X
|
||||
file >> str;
|
||||
Matx44d wTb;
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
file >> wTb(i,j);
|
||||
}
|
||||
}
|
||||
|
||||
//Parse Z
|
||||
file >> str;
|
||||
int cam_num = 0;
|
||||
//Parse camera number
|
||||
file >> cam_num;
|
||||
Matx44d cTg;
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
file >> cTg(i,j);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
for (int j = 0; j < 3; j++)
|
||||
{
|
||||
wRb(i,j) = wTb(i,j);
|
||||
cRg(i,j) = cTg(i,j);
|
||||
}
|
||||
wtb(i) = wTb(i,3);
|
||||
ctg(i) = cTg(i,3);
|
||||
}
|
||||
}
|
||||
|
||||
class CV_CalibrateHandEyeTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_CalibrateHandEyeTest(bool eyeToHand) : eyeToHandConfig(eyeToHand) {
|
||||
eps_rvec[CALIB_HAND_EYE_TSAI] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_PARK] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8;
|
||||
eps_rvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8;
|
||||
|
||||
eps_tvec[CALIB_HAND_EYE_TSAI] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_PARK] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8;
|
||||
eps_tvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8;
|
||||
|
||||
eps_rvec_noise[CALIB_HAND_EYE_TSAI] = 2.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_PARK] = 2.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_HORAUD] = 2.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_ANDREFF] = 1.0e-2;
|
||||
eps_rvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-2;
|
||||
|
||||
eps_tvec_noise[CALIB_HAND_EYE_TSAI] = 5.0e-2;
|
||||
eps_tvec_noise[CALIB_HAND_EYE_PARK] = 5.0e-2;
|
||||
eps_tvec_noise[CALIB_HAND_EYE_HORAUD] = 5.0e-2;
|
||||
if (eyeToHandConfig)
|
||||
{
|
||||
eps_tvec_noise[CALIB_HAND_EYE_ANDREFF] = 7.0e-2;
|
||||
}
|
||||
else
|
||||
{
|
||||
eps_tvec_noise[CALIB_HAND_EYE_ANDREFF] = 5.0e-2;
|
||||
}
|
||||
eps_tvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 5.0e-2;
|
||||
}
|
||||
protected:
|
||||
virtual void run(int);
|
||||
|
||||
bool eyeToHandConfig;
|
||||
double eps_rvec[5];
|
||||
double eps_tvec[5];
|
||||
double eps_rvec_noise[5];
|
||||
double eps_tvec_noise[5];
|
||||
};
|
||||
|
||||
void CV_CalibrateHandEyeTest::run(int)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
std::vector<std::vector<double> > vec_rvec_diff(5);
|
||||
std::vector<std::vector<double> > vec_tvec_diff(5);
|
||||
std::vector<std::vector<double> > vec_rvec_diff_noise(5);
|
||||
std::vector<std::vector<double> > vec_tvec_diff_noise(5);
|
||||
|
||||
std::vector<HandEyeCalibrationMethod> methods;
|
||||
methods.push_back(CALIB_HAND_EYE_TSAI);
|
||||
@ -450,15 +468,291 @@ TEST(Calib3d_CalibrateHandEye, regression_17986)
|
||||
methods.push_back(CALIB_HAND_EYE_ANDREFF);
|
||||
methods.push_back(CALIB_HAND_EYE_DANIILIDIS);
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++) {
|
||||
SCOPED_TRACE(cv::format("method=%s", getMethodName(methods[idx]).c_str()));
|
||||
const int nTests = 100;
|
||||
for (int i = 0; i < nTests; i++)
|
||||
{
|
||||
const int nPoses = 10;
|
||||
if (eyeToHandConfig)
|
||||
{
|
||||
{
|
||||
//No noise
|
||||
std::vector<Mat> R_base2gripper, t_base2gripper;
|
||||
std::vector<Mat> R_target2cam, t_target2cam;
|
||||
Mat R_cam2base_true, t_cam2base_true;
|
||||
|
||||
Matx33d R_cam2gripper_est;
|
||||
Matx31d t_cam2gripper_est;
|
||||
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]);
|
||||
const bool noise = false;
|
||||
simulateDataEyeToHand(rng, nPoses, R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, noise,
|
||||
R_cam2base_true, t_cam2base_true);
|
||||
|
||||
EXPECT_TRUE(checkRange(R_cam2gripper_est));
|
||||
EXPECT_TRUE(checkRange(t_cam2gripper_est));
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
Mat rvec_cam2base_true;
|
||||
cv::Rodrigues(R_cam2base_true, rvec_cam2base_true);
|
||||
|
||||
Mat R_cam2base_est, t_cam2base_est;
|
||||
calibrateHandEye(R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, R_cam2base_est, t_cam2base_est, methods[idx]);
|
||||
|
||||
Mat rvec_cam2base_est;
|
||||
cv::Rodrigues(R_cam2base_est, rvec_cam2base_est);
|
||||
|
||||
double rvecDiff = cvtest::norm(rvec_cam2base_true, rvec_cam2base_est, NORM_L2);
|
||||
double tvecDiff = cvtest::norm(t_cam2base_true, t_cam2base_est, NORM_L2);
|
||||
|
||||
vec_rvec_diff[idx].push_back(rvecDiff);
|
||||
vec_tvec_diff[idx].push_back(tvecDiff);
|
||||
|
||||
const double epsilon_rvec = eps_rvec[idx];
|
||||
const double epsilon_tvec = eps_tvec[idx];
|
||||
|
||||
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds?
|
||||
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Invalid accuracy (no noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n",
|
||||
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
//Gaussian noise on transformations between calibration target frame and camera frame and between robot base and gripper frames
|
||||
std::vector<Mat> R_base2gripper, t_base2gripper;
|
||||
std::vector<Mat> R_target2cam, t_target2cam;
|
||||
Mat R_cam2base_true, t_cam2base_true;
|
||||
|
||||
const bool noise = true;
|
||||
simulateDataEyeToHand(rng, nPoses, R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, noise,
|
||||
R_cam2base_true, t_cam2base_true);
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
Mat rvec_cam2base_true;
|
||||
cv::Rodrigues(R_cam2base_true, rvec_cam2base_true);
|
||||
|
||||
Mat R_cam2base_est, t_cam2base_est;
|
||||
calibrateHandEye(R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, R_cam2base_est, t_cam2base_est, methods[idx]);
|
||||
|
||||
Mat rvec_cam2base_est;
|
||||
cv::Rodrigues(R_cam2base_est, rvec_cam2base_est);
|
||||
|
||||
double rvecDiff = cvtest::norm(rvec_cam2base_true, rvec_cam2base_est, NORM_L2);
|
||||
double tvecDiff = cvtest::norm(t_cam2base_true, t_cam2base_est, NORM_L2);
|
||||
|
||||
vec_rvec_diff_noise[idx].push_back(rvecDiff);
|
||||
vec_tvec_diff_noise[idx].push_back(tvecDiff);
|
||||
|
||||
const double epsilon_rvec = eps_rvec_noise[idx];
|
||||
const double epsilon_tvec = eps_tvec_noise[idx];
|
||||
|
||||
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds?
|
||||
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Invalid accuracy (noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n",
|
||||
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
//No noise
|
||||
std::vector<Mat> R_gripper2base, t_gripper2base;
|
||||
std::vector<Mat> R_target2cam, t_target2cam;
|
||||
Mat R_cam2gripper_true, t_cam2gripper_true;
|
||||
|
||||
const bool noise = false;
|
||||
simulateDataEyeInHand(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise,
|
||||
R_cam2gripper_true, t_cam2gripper_true);
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
Mat rvec_cam2gripper_true;
|
||||
cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true);
|
||||
|
||||
Mat R_cam2gripper_est, t_cam2gripper_est;
|
||||
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]);
|
||||
|
||||
Mat rvec_cam2gripper_est;
|
||||
cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est);
|
||||
|
||||
double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2);
|
||||
double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2);
|
||||
|
||||
vec_rvec_diff[idx].push_back(rvecDiff);
|
||||
vec_tvec_diff[idx].push_back(tvecDiff);
|
||||
|
||||
const double epsilon_rvec = eps_rvec[idx];
|
||||
const double epsilon_tvec = eps_tvec[idx];
|
||||
|
||||
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds?
|
||||
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Invalid accuracy (no noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n",
|
||||
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
//Gaussian noise on transformations between calibration target frame and camera frame and between gripper and robot base frames
|
||||
std::vector<Mat> R_gripper2base, t_gripper2base;
|
||||
std::vector<Mat> R_target2cam, t_target2cam;
|
||||
Mat R_cam2gripper_true, t_cam2gripper_true;
|
||||
|
||||
const bool noise = true;
|
||||
simulateDataEyeInHand(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise,
|
||||
R_cam2gripper_true, t_cam2gripper_true);
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
Mat rvec_cam2gripper_true;
|
||||
cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true);
|
||||
|
||||
Mat R_cam2gripper_est, t_cam2gripper_est;
|
||||
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]);
|
||||
|
||||
Mat rvec_cam2gripper_est;
|
||||
cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est);
|
||||
|
||||
double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2);
|
||||
double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2);
|
||||
|
||||
vec_rvec_diff_noise[idx].push_back(rvecDiff);
|
||||
vec_tvec_diff_noise[idx].push_back(tvecDiff);
|
||||
|
||||
const double epsilon_rvec = eps_rvec_noise[idx];
|
||||
const double epsilon_tvec = eps_tvec_noise[idx];
|
||||
|
||||
//Maybe a better accuracy test would be to compare the mean and std errors with some thresholds?
|
||||
if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Invalid accuracy (noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n",
|
||||
getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t idx = 0; idx < methods.size(); idx++)
|
||||
{
|
||||
std::cout << std::endl;
|
||||
printStats(getMethodName(methods[idx]), vec_rvec_diff[idx], vec_tvec_diff[idx]);
|
||||
printStats("(noise) " + getMethodName(methods[idx]), vec_rvec_diff_noise[idx], vec_tvec_diff_noise[idx]);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(Calib3d_CalibrateHandEye, regression_eye_in_hand)
|
||||
{
|
||||
//Eye-in-Hand configuration (camera mounted on the robot end-effector observing a static calibration pattern)
|
||||
const bool eyeToHand = false;
|
||||
CV_CalibrateHandEyeTest test(eyeToHand);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(Calib3d_CalibrateHandEye, regression_eye_to_hand)
|
||||
{
|
||||
//Eye-to-Hand configuration (static camera observing a calibration pattern mounted on the robot end-effector)
|
||||
const bool eyeToHand = true;
|
||||
CV_CalibrateHandEyeTest test(eyeToHand);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(Calib3d_CalibrateHandEye, regression_17986)
|
||||
{
|
||||
std::vector<Mat> R_target2cam, t_target2cam;
|
||||
// Dataset contains transformation from base to gripper frame since it contains data for AX = ZB calibration problem
|
||||
std::vector<Mat> R_base2gripper, t_base2gripper;
|
||||
loadDataset(R_target2cam, t_target2cam, R_base2gripper, t_base2gripper);
|
||||
|
||||
std::vector<HandEyeCalibrationMethod> methods = {CALIB_HAND_EYE_TSAI,
|
||||
CALIB_HAND_EYE_PARK,
|
||||
CALIB_HAND_EYE_HORAUD,
|
||||
CALIB_HAND_EYE_ANDREFF,
|
||||
CALIB_HAND_EYE_DANIILIDIS};
|
||||
|
||||
for (auto method : methods) {
|
||||
SCOPED_TRACE(cv::format("method=%s", getMethodName(method).c_str()));
|
||||
|
||||
Matx33d R_cam2base_est;
|
||||
Matx31d t_cam2base_est;
|
||||
calibrateHandEye(R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, R_cam2base_est, t_cam2base_est, method);
|
||||
|
||||
EXPECT_TRUE(checkRange(R_cam2base_est));
|
||||
EXPECT_TRUE(checkRange(t_cam2base_est));
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Calib3d_CalibrateRobotWorldHandEye, regression)
|
||||
{
|
||||
std::vector<Mat> R_world2cam, t_worldt2cam;
|
||||
std::vector<Mat> R_base2gripper, t_base2gripper;
|
||||
loadDataset(R_world2cam, t_worldt2cam, R_base2gripper, t_base2gripper);
|
||||
|
||||
std::vector<Mat> rvec_R_world2cam;
|
||||
rvec_R_world2cam.reserve(R_world2cam.size());
|
||||
for (size_t i = 0; i < R_world2cam.size(); i++)
|
||||
{
|
||||
Mat rvec;
|
||||
cv::Rodrigues(R_world2cam[i], rvec);
|
||||
rvec_R_world2cam.push_back(rvec);
|
||||
}
|
||||
|
||||
std::vector<RobotWorldHandEyeCalibrationMethod> methods = {CALIB_ROBOT_WORLD_HAND_EYE_SHAH,
|
||||
CALIB_ROBOT_WORLD_HAND_EYE_LI};
|
||||
|
||||
Matx33d wRb, cRg;
|
||||
Matx31d wtb, ctg;
|
||||
loadResults(wRb, wtb, cRg, ctg);
|
||||
|
||||
for (auto method : methods) {
|
||||
SCOPED_TRACE(cv::format("method=%s", getMethodName(method).c_str()));
|
||||
|
||||
Matx33d wRb_est, cRg_est;
|
||||
Matx31d wtb_est, ctg_est;
|
||||
calibrateRobotWorldHandEye(rvec_R_world2cam, t_worldt2cam, R_base2gripper, t_base2gripper,
|
||||
wRb_est, wtb_est, cRg_est, ctg_est, method);
|
||||
|
||||
EXPECT_TRUE(checkRange(wRb_est));
|
||||
EXPECT_TRUE(checkRange(wtb_est));
|
||||
EXPECT_TRUE(checkRange(cRg_est));
|
||||
EXPECT_TRUE(checkRange(ctg_est));
|
||||
|
||||
//Arbitrary thresholds
|
||||
const double rotation_threshold = 1.0; //1deg
|
||||
const double translation_threshold = 50.0; //5cm
|
||||
|
||||
//X
|
||||
//rotation error
|
||||
Matx33d wRw_est = wRb * wRb_est.t();
|
||||
Matx31d rvec_wRw_est;
|
||||
cv::Rodrigues(wRw_est, rvec_wRw_est);
|
||||
double X_rotation_error = cv::norm(rvec_wRw_est)*180/CV_PI;
|
||||
//translation error
|
||||
double X_t_error = cv::norm(wtb_est - wtb);
|
||||
SCOPED_TRACE(cv::format("X rotation error=%f", X_rotation_error));
|
||||
SCOPED_TRACE(cv::format("X translation error=%f", X_t_error));
|
||||
EXPECT_TRUE(X_rotation_error < rotation_threshold);
|
||||
EXPECT_TRUE(X_t_error < translation_threshold);
|
||||
|
||||
//Z
|
||||
//rotation error
|
||||
Matx33d cRc_est = cRg * cRg_est.t();
|
||||
Matx31d rvec_cMc_est;
|
||||
cv::Rodrigues(cRc_est, rvec_cMc_est);
|
||||
double Z_rotation_error = cv::norm(rvec_cMc_est)*180/CV_PI;
|
||||
//translation error
|
||||
double Z_t_error = cv::norm(ctg_est - ctg);
|
||||
SCOPED_TRACE(cv::format("Z rotation error=%f", Z_rotation_error));
|
||||
SCOPED_TRACE(cv::format("Z translation error=%f", Z_t_error));
|
||||
EXPECT_TRUE(Z_rotation_error < rotation_threshold);
|
||||
EXPECT_TRUE(Z_t_error < translation_threshold);
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user