mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #9524 from dkurt:dnn_torch_openface
This commit is contained in:
commit
41b23fde9f
@ -245,6 +245,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
bool globalPooling;
|
||||
bool computeMaxIdx;
|
||||
String padMode;
|
||||
bool ceilMode;
|
||||
|
||||
static Ptr<PoolingLayer> create(const LayerParams& params);
|
||||
};
|
||||
@ -257,6 +258,14 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
static Ptr<SoftmaxLayer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
class CV_EXPORTS LPNormalizeLayer : public Layer
|
||||
{
|
||||
public:
|
||||
float pnorm, epsilon;
|
||||
|
||||
static Ptr<LPNormalizeLayer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
class CV_EXPORTS InnerProductLayer : public Layer
|
||||
{
|
||||
public:
|
||||
@ -294,6 +303,13 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
{
|
||||
public:
|
||||
int axis;
|
||||
/**
|
||||
* @brief Add zero padding in case of concatenation of blobs with different
|
||||
* spatial sizes.
|
||||
*
|
||||
* Details: https://github.com/torch/nn/blob/master/doc/containers.md#depthconcat
|
||||
*/
|
||||
bool padding;
|
||||
|
||||
static Ptr<ConcatLayer> create(const LayerParams ¶ms);
|
||||
};
|
||||
|
@ -1137,7 +1137,7 @@ struct Net::Impl
|
||||
// (and so we eliminate the concatenation layer, because the channels
|
||||
// are concatenated implicitly).
|
||||
Ptr<ConcatLayer> concatLayer = ld.layerInstance.dynamicCast<ConcatLayer>();
|
||||
if( !concatLayer.empty() && concatLayer->axis == 1 &&
|
||||
if( !concatLayer.empty() && concatLayer->axis == 1 && !concatLayer->padding &&
|
||||
ld.outputBlobs.size() == 1 )
|
||||
{
|
||||
Mat& output = ld.outputBlobs[0];
|
||||
|
@ -91,6 +91,7 @@ void initializeLayerFactory()
|
||||
CV_DNN_REGISTER_LAYER_CLASS(InnerProduct, InnerProductLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Softmax, SoftmaxLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(MVN, MVNLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(LPNormalize, LPNormalizeLayer);
|
||||
|
||||
CV_DNN_REGISTER_LAYER_CLASS(ReLU, ReLULayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(ChannelsPReLU, ChannelsPReLULayer);
|
||||
|
@ -56,6 +56,7 @@ public:
|
||||
{
|
||||
setParamsFrom(params);
|
||||
axis = params.get<int>("axis", 1);
|
||||
padding = params.get<bool>("padding", false);
|
||||
}
|
||||
|
||||
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -64,8 +65,7 @@ public:
|
||||
std::vector<MatShape> &internals) const
|
||||
{
|
||||
CV_Assert(inputs.size() > 0);
|
||||
outputs.clear();
|
||||
outputs.push_back(inputs[0]);
|
||||
outputs.resize(1, inputs[0]);
|
||||
int cAxis = clamp(axis, inputs[0]);
|
||||
|
||||
int axisSum = 0;
|
||||
@ -73,25 +73,33 @@ public:
|
||||
{
|
||||
MatShape curShape = inputs[i];
|
||||
|
||||
CV_Assert(curShape.size() == outputs.back().size());
|
||||
for (int curAxis = 0; curAxis < outputs.back().size(); curAxis++)
|
||||
if (padding)
|
||||
{
|
||||
if (curAxis != cAxis && outputs.back()[curAxis] != curShape[curAxis])
|
||||
CV_Error(Error::StsBadSize, "Inconsitent shape for ConcatLayer");
|
||||
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
|
||||
{
|
||||
outputs[0][curAxis] = std::max(outputs[0][curAxis], curShape[curAxis]);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(curShape.size() == outputs[0].size());
|
||||
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
|
||||
{
|
||||
if (curAxis != cAxis && outputs[0][curAxis] != curShape[curAxis])
|
||||
CV_Error(Error::StsBadSize, "Inconsitent shape for ConcatLayer");
|
||||
}
|
||||
}
|
||||
|
||||
axisSum += curShape[cAxis];
|
||||
}
|
||||
|
||||
outputs.back()[cAxis] = axisSum;
|
||||
|
||||
outputs[0][cAxis] = axisSum;
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId)
|
||||
{
|
||||
return backendId == DNN_BACKEND_DEFAULT ||
|
||||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1; // By channels
|
||||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !padding; // By channels
|
||||
}
|
||||
|
||||
class ChannelConcatInvoker : public ParallelLoopBody
|
||||
@ -174,7 +182,10 @@ public:
|
||||
int cAxis = clamp(axis, inputs[0]->dims);
|
||||
Mat& outMat = outputs[0];
|
||||
|
||||
if( cAxis == 1 && outMat.dims == 4 )
|
||||
if (padding)
|
||||
outMat.setTo(0);
|
||||
|
||||
if( cAxis == 1 && outMat.dims == 4 && !padding)
|
||||
{
|
||||
int nstripes = getNumThreads();
|
||||
ChannelConcatInvoker::run(inputs, outMat, nstripes);
|
||||
@ -187,6 +198,12 @@ public:
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
ranges[cAxis].end = ranges[cAxis].start + inputs[i]->size[cAxis];
|
||||
for (int j = 0; j < outMat.dims; ++j)
|
||||
{
|
||||
if (j == cAxis) continue;
|
||||
ranges[j].start = (outMat.size[j] - inputs[i]->size[j]) / 2;
|
||||
ranges[j].end = ranges[j].start + inputs[i]->size[j];
|
||||
}
|
||||
inputs[i]->copyTo(outMat(&ranges[0]));
|
||||
ranges[cAxis].start = ranges[cAxis].end;
|
||||
}
|
||||
|
@ -187,7 +187,7 @@ public:
|
||||
}
|
||||
|
||||
int ngroups = inpCn / blobs[0].size[1];
|
||||
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
|
||||
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
|
||||
|
||||
int dims[] = {inputs[0][0], outCn, out.height, out.width};
|
||||
outputs.resize(inputs.size(), shape(dims));
|
||||
|
78
modules/dnn/src/layers/lp_normalize_layer.cpp
Normal file
78
modules/dnn/src/layers/lp_normalize_layer.cpp
Normal file
@ -0,0 +1,78 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
#include <iostream>
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
class LPNormalizeLayerImpl : public LPNormalizeLayer
|
||||
{
|
||||
public:
|
||||
|
||||
LPNormalizeLayerImpl(const LayerParams& params)
|
||||
{
|
||||
setParamsFrom(params);
|
||||
pnorm = params.get<float>("p", 2);
|
||||
epsilon = params.get<float>("eps", 1e-10f);
|
||||
CV_Assert(pnorm > 0);
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const
|
||||
{
|
||||
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
||||
if (pnorm != 1 && pnorm != 2)
|
||||
{
|
||||
internals.resize(1, inputs[0]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId)
|
||||
{
|
||||
return backendId == DNN_BACKEND_DEFAULT;
|
||||
}
|
||||
|
||||
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
CV_Assert(inputs[0]->total() == outputs[0].total());
|
||||
float norm;
|
||||
if (pnorm == 1)
|
||||
norm = cv::norm(*inputs[0], NORM_L1);
|
||||
else if (pnorm == 2)
|
||||
norm = cv::norm(*inputs[0], NORM_L2);
|
||||
else
|
||||
{
|
||||
pow(abs(*inputs[0]), pnorm, internals[0]);
|
||||
norm = pow(sum(internals[0])[0], 1.0f / pnorm);
|
||||
}
|
||||
multiply(*inputs[0], 1.0f / (norm + epsilon), outputs[0]);
|
||||
}
|
||||
|
||||
int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
const std::vector<MatShape> &) const
|
||||
{
|
||||
int64 flops = 0;
|
||||
for (int i = 0; i < inputs.size(); i++)
|
||||
flops += 3 * total(inputs[i]);
|
||||
return flops;
|
||||
}
|
||||
};
|
||||
|
||||
Ptr<LPNormalizeLayer> LPNormalizeLayer::create(const LayerParams& params)
|
||||
{
|
||||
return Ptr<LPNormalizeLayer>(new LPNormalizeLayerImpl(params));
|
||||
}
|
||||
|
||||
} // namespace dnn
|
||||
} // namespace cv
|
@ -54,7 +54,6 @@ namespace cv
|
||||
namespace dnn
|
||||
{
|
||||
|
||||
//TODO: add ceil_mode param
|
||||
class PoolingLayerImpl : public PoolingLayer
|
||||
{
|
||||
public:
|
||||
@ -79,6 +78,7 @@ public:
|
||||
getPoolingKernelParams(params, kernel.height, kernel.width, globalPooling,
|
||||
pad.height, pad.width, stride.height, stride.width, padMode);
|
||||
setParamsFrom(params);
|
||||
ceilMode = params.get<bool>("ceil_mode", true);
|
||||
}
|
||||
|
||||
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
|
||||
@ -572,11 +572,10 @@ public:
|
||||
}
|
||||
else if (padMode.empty())
|
||||
{
|
||||
//Yeah, something strange Caffe scheme-)
|
||||
out.height = static_cast<int>(ceil(static_cast<float>(in.height + 2 * pad.height -
|
||||
kernel.height) / stride.height)) + 1;
|
||||
out.width = static_cast<int>(ceil(static_cast<float>(in.width + 2 * pad.width -
|
||||
kernel.width) / stride.width)) + 1;
|
||||
float height = (float)(in.height + 2 * pad.height - kernel.height) / stride.height;
|
||||
float width = (float)(in.width + 2 * pad.width - kernel.width) / stride.width;
|
||||
out.height = 1 + (ceilMode ? ceil(height) : floor(height));
|
||||
out.width = 1 + (ceilMode ? ceil(width) : floor(width));
|
||||
|
||||
if (pad.height || pad.width)
|
||||
{
|
||||
|
@ -75,12 +75,21 @@ static void computeShapeByReshapeMask(const MatShape &srcShape,
|
||||
if (explicitMask)
|
||||
{
|
||||
int maskTotal = total(maskShape);
|
||||
for (int i = srcRange.start + 1; i < srcRange.end; ++i)
|
||||
// Go from the end of mask until we collect required total.
|
||||
bool matched = false;
|
||||
for (int i = srcRange.end - 1; i >= srcRange.start; --i)
|
||||
{
|
||||
if (total(srcShape, i, srcRange.end) != maskTotal)
|
||||
if (matched)
|
||||
{
|
||||
srcRange.start = i - 1;
|
||||
break;
|
||||
if (i == 0 || total(srcShape, i, srcRange.end) != maskTotal)
|
||||
{
|
||||
srcRange.start = i + 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
matched = total(srcShape, i, srcRange.end) == maskTotal;
|
||||
}
|
||||
}
|
||||
CV_Assert(total(srcShape, srcRange.start, srcRange.end) == maskTotal);
|
||||
|
@ -309,6 +309,7 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
if (vtype == TYPE_TORCH)
|
||||
{
|
||||
int index = readInt();
|
||||
int numModules = curModule->modules.size();
|
||||
readTorchObject(index);
|
||||
|
||||
if (tensors.count(index)) //tensor was readed
|
||||
@ -324,6 +325,14 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
DictValue scalar = DictValue::arrayReal(matCasted.ptr<double>(), matCasted.total());
|
||||
scalarParams.set(key, scalar);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Only tensors and scalars are supported for table fields.
|
||||
// i.e. nn.Inception has field `transfer` which is an
|
||||
// activation layer. So we remove added modules as readTorchObject(index).
|
||||
while (curModule->modules.size() > numModules)
|
||||
curModule->modules.pop_back();
|
||||
}
|
||||
}
|
||||
else if (vtype == TYPE_NUMBER)
|
||||
{
|
||||
@ -469,7 +478,8 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
layerParams.set("torch_index", index);
|
||||
|
||||
if (nnName == "Sequential" || nnName == "Parallel" ||
|
||||
nnName == "Concat" || nnName == "ConcatTable" || nnName == "JoinTable")
|
||||
nnName == "Concat" || nnName == "ConcatTable" || nnName == "JoinTable" ||
|
||||
nnName == "DepthConcat" || nnName == "Inception")
|
||||
{
|
||||
Module *parentModule = curModule;
|
||||
curModule->modules.push_back(newModule);
|
||||
@ -490,8 +500,12 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
{
|
||||
layerParams.set("dimension", scalarParams.get<int>("dimension"));
|
||||
}
|
||||
if (nnName == "DepthConcat")
|
||||
{
|
||||
layerParams.set("dimension", scalarParams.get<int>("dimension"));
|
||||
}
|
||||
}
|
||||
else if (nnName == "SpatialConvolution")
|
||||
else if (nnName == "SpatialConvolution" || nnName == "SpatialConvolutionMM")
|
||||
{
|
||||
newModule->apiType = "Convolution";
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
@ -507,8 +521,37 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
layerParams.set("num_output", scalarParams.get<int>("nOutputPlane"));
|
||||
convertTorchKernelsParams(scalarParams, layerParams);
|
||||
|
||||
if (nnName == "SpatialConvolutionMM")
|
||||
{
|
||||
// Split weights from a [ outCh x inCh*kH*kW ] 2D matrix
|
||||
// onto a 4D [ outCh x inCh x kH x kW ] blob.
|
||||
CV_Assert(layerParams.blobs[0].dims == 2);
|
||||
const int kernel = layerParams.blobs[0].size[1]; // inCh * kH * kW
|
||||
MatShape kernelShape(4);
|
||||
kernelShape[0] = layerParams.blobs[0].size[0]; // outCh.
|
||||
kernelShape[2] = layerParams.get<int>("kernel_h");
|
||||
kernelShape[3] = layerParams.get<int>("kernel_w");
|
||||
kernelShape[1] = kernel / (kernelShape[2] * kernelShape[3]); // inCh.
|
||||
layerParams.blobs[0] = layerParams.blobs[0].reshape(1, kernelShape);
|
||||
}
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "SpatialLPPooling")
|
||||
{
|
||||
// nn.Sequential {
|
||||
// [input -> (1) -> (2) -> output]
|
||||
// (1): nn.Sequential {
|
||||
// [input -> (1) -> (2) -> (3) -> (4) -> output]
|
||||
// (1): nn.Power
|
||||
// (2): nn.SpatialAveragePooling(...)
|
||||
// (3): nn.MulConstant
|
||||
// (4): nn.Power
|
||||
// }
|
||||
// (2): nn.Sigmoid
|
||||
// }
|
||||
// nn.SpatialLPPooling is just a table so we skip it.
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
}
|
||||
else if (nnName == "SpatialMaxPooling" || nnName == "SpatialAveragePooling")
|
||||
{
|
||||
newModule->apiType = "Pooling";
|
||||
@ -522,6 +565,9 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
layerParams.set("pool", "AVE");
|
||||
convertTorchKernelsParams(scalarParams, layerParams);
|
||||
|
||||
CV_Assert(scalarParams.has("ceil_mode"));
|
||||
layerParams.set("ceil_mode", scalarParams.get<bool>("ceil_mode"));
|
||||
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "Linear")
|
||||
@ -541,7 +587,7 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
layerParams.set("num_output", weightBlob.size[0]);
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "Reshape")
|
||||
else if (nnName == "Reshape" || nnName == "View")
|
||||
{
|
||||
newModule->apiType = "Reshape";
|
||||
|
||||
@ -576,15 +622,24 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
newModule->apiType = "BatchNorm";
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
|
||||
CV_Assert(tensorParams.count("running_var") &&
|
||||
tensorParams.count("running_mean"));
|
||||
layerParams.blobs.push_back(tensorParams["running_mean"].second);
|
||||
layerParams.blobs.push_back(tensorParams["running_var"].second);
|
||||
|
||||
CV_Assert(scalarParams.has("eps"));
|
||||
float eps = float(scalarParams.get<double>("eps"));
|
||||
layerParams.set("eps", eps);
|
||||
|
||||
CV_Assert((tensorParams.count("running_var") || tensorParams.count("running_std")) &&
|
||||
tensorParams.count("running_mean"));
|
||||
layerParams.blobs.push_back(tensorParams["running_mean"].second);
|
||||
if (tensorParams.count("running_var"))
|
||||
{
|
||||
layerParams.blobs.push_back(tensorParams["running_var"].second);
|
||||
}
|
||||
else
|
||||
{
|
||||
layerParams.blobs.push_back(tensorParams["running_std"].second);
|
||||
pow(layerParams.blobs.back(), -2, layerParams.blobs.back());
|
||||
subtract(layerParams.blobs.back(), eps, layerParams.blobs.back());
|
||||
}
|
||||
|
||||
if (tensorParams.count("weight"))
|
||||
{
|
||||
layerParams.set("has_weight", true);
|
||||
@ -642,6 +697,18 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
newModule->apiType = "Identity";
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "Normalize")
|
||||
{
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
CV_Assert(scalarParams.has("p"));
|
||||
|
||||
layerParams.set("p", scalarParams.get<float>("p"));
|
||||
if (scalarParams.has("eps"))
|
||||
layerParams.set("eps", scalarParams.get<float>("eps"));
|
||||
|
||||
newModule->apiType = "LPNormalize";
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "Padding")
|
||||
{
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
@ -760,6 +827,46 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
layerParams.set("log_softmax", true);
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "SpatialCrossMapLRN")
|
||||
{
|
||||
newModule->apiType = "LRN";
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
|
||||
CV_Assert(scalarParams.has("alpha"));
|
||||
CV_Assert(scalarParams.has("beta"));
|
||||
CV_Assert(scalarParams.has("k"));
|
||||
CV_Assert(scalarParams.has("size"));
|
||||
|
||||
layerParams.set("norm_region", "ACROSS_CHANNELS");
|
||||
layerParams.set("alpha", scalarParams.get<float>("alpha"));
|
||||
layerParams.set("beta", scalarParams.get<float>("beta"));
|
||||
layerParams.set("bias", scalarParams.get<float>("k"));
|
||||
layerParams.set("local_size", scalarParams.get<int>("size"));
|
||||
layerParams.set("norm_by_size", true);
|
||||
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "Square" || nnName == "Sqrt" || nnName == "Power")
|
||||
{
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
|
||||
float power;
|
||||
if (nnName == "Square") power = 2.0f;
|
||||
else if (nnName == "Sqrt") power = 0.5f;
|
||||
else if (nnName == "Power") power = scalarParams.get<float>("pow", 1.0f);
|
||||
|
||||
newModule->apiType = "Power";
|
||||
layerParams.set("power", power);
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else if (nnName == "MulConstant")
|
||||
{
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
CV_Assert(scalarParams.has("constant_scalar"));
|
||||
newModule->apiType = "Power";
|
||||
layerParams.set("scale", scalarParams.get<float>("constant_scalar"));
|
||||
curModule->modules.push_back(newModule);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "Unknown nn class \"" + className + "\"");
|
||||
@ -816,7 +923,7 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
}
|
||||
else
|
||||
{
|
||||
if (module->thName == "Sequential")
|
||||
if (module->thName == "Sequential" || module->thName == "Inception")
|
||||
{
|
||||
for (size_t i = 0; i < module->modules.size(); i++)
|
||||
{
|
||||
@ -851,6 +958,30 @@ struct TorchImporter : public ::cv::dnn::Importer
|
||||
addedModules.push_back(std::make_pair(mergeId, module));
|
||||
return mergeId;
|
||||
}
|
||||
else if (module->thName == "DepthConcat")
|
||||
{
|
||||
int newId, mergeId;
|
||||
LayerParams mergeParams;
|
||||
mergeParams.set("axis", module->params.get<int>("dimension") - 1);
|
||||
mergeParams.set("padding", true);
|
||||
|
||||
std::vector<int> branchIds;
|
||||
for (int i = 0; i < (int)module->modules.size(); i++)
|
||||
{
|
||||
newId = fill(module->modules[i], addedModules, prevLayerId, prevOutNum);
|
||||
branchIds.push_back(newId);
|
||||
}
|
||||
|
||||
mergeId = net.addLayer(generateLayerName("torchMerge"), "Concat", mergeParams);
|
||||
|
||||
for (int i = 0; i < branchIds.size(); i++)
|
||||
{
|
||||
net.connect(branchIds[i], 0, mergeId, i);
|
||||
}
|
||||
|
||||
addedModules.push_back(std::make_pair(mergeId, module));
|
||||
return mergeId;
|
||||
}
|
||||
else if (module->thName == "Parallel")
|
||||
{
|
||||
int newId, splitId, mergeId, reshapeId;
|
||||
|
@ -56,11 +56,11 @@ using namespace cv::dnn;
|
||||
template<typename TStr>
|
||||
static std::string _tf(TStr filename, bool inTorchDir = true)
|
||||
{
|
||||
String path = getOpenCVExtraDir() + "/dnn/";
|
||||
String path = "dnn/";
|
||||
if (inTorchDir)
|
||||
path += "torch/";
|
||||
path += filename;
|
||||
return path;
|
||||
return findDataFile(path, false);
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, simple_read)
|
||||
@ -123,6 +123,7 @@ TEST(Torch_Importer, run_reshape)
|
||||
runTorchNet("net_reshape");
|
||||
runTorchNet("net_reshape_batch");
|
||||
runTorchNet("net_reshape_single_sample");
|
||||
runTorchNet("net_reshape_channels", "", false, true);
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, run_linear)
|
||||
@ -138,6 +139,7 @@ TEST(Torch_Importer, run_paralel)
|
||||
TEST(Torch_Importer, run_concat)
|
||||
{
|
||||
runTorchNet("net_concat", "l5_torchMerge");
|
||||
runTorchNet("net_depth_concat", "", false, true);
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, run_deconv)
|
||||
@ -172,6 +174,27 @@ TEST(Torch_Importer, net_logsoftmax)
|
||||
runTorchNet("net_logsoftmax_spatial");
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, net_lp_pooling)
|
||||
{
|
||||
runTorchNet("net_lp_pooling_square", "", false, true);
|
||||
runTorchNet("net_lp_pooling_power", "", false, true);
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, net_conv_gemm_lrn)
|
||||
{
|
||||
runTorchNet("net_conv_gemm_lrn", "", false, true);
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, net_inception_block)
|
||||
{
|
||||
runTorchNet("net_inception_block", "", false, true);
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, net_normalize)
|
||||
{
|
||||
runTorchNet("net_normalize", "", false, true);
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, ENet_accuracy)
|
||||
{
|
||||
Net net;
|
||||
@ -202,6 +225,26 @@ TEST(Torch_Importer, ENet_accuracy)
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Torch_Importer, OpenFace_accuracy)
|
||||
{
|
||||
const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false);
|
||||
Net net = readNetFromTorch(model);
|
||||
|
||||
Mat sample = imread(findDataFile("cv/shared/lena.png", false));
|
||||
Mat sampleF32(sample.size(), CV_32FC3);
|
||||
sample.convertTo(sampleF32, sampleF32.type());
|
||||
sampleF32 /= 255;
|
||||
resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST);
|
||||
|
||||
Mat inputBlob = blobFromImage(sampleF32);
|
||||
|
||||
net.setInput(inputBlob);
|
||||
Mat out = net.forward();
|
||||
|
||||
Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true);
|
||||
normAssert(out, outRef);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user