mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge pull request #4139 from swook:spatial_gradient
This commit is contained in:
commit
426b3f6198
@ -1369,6 +1369,28 @@ CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
|
||||
double scale = 1, double delta = 0,
|
||||
int borderType = BORDER_DEFAULT );
|
||||
|
||||
/** @brief Calculates the first order image derivative in both x and y using a Sobel operator
|
||||
|
||||
Equivalent to calling:
|
||||
|
||||
@code
|
||||
Sobel( src, dx, CV_16SC1, 1, 0, 3 );
|
||||
Sobel( src, dy, CV_16SC1, 0, 1, 3 );
|
||||
@endcode
|
||||
|
||||
@param src input image.
|
||||
@param dx output image with first-order derivative in x.
|
||||
@param dy output image with first-order derivative in y.
|
||||
@param ksize size of Sobel kernel. It must be 3.
|
||||
@param borderType pixel extrapolation method, see cv::BorderTypes
|
||||
|
||||
@sa Sobel
|
||||
*/
|
||||
|
||||
CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
|
||||
OutputArray dy, int ksize = 3,
|
||||
int borderType = BORDER_DEFAULT );
|
||||
|
||||
/** @brief Calculates the first x- or y- image derivative using Scharr operator.
|
||||
|
||||
The function computes the first x- or y- spatial image derivative using the Scharr operator. The
|
||||
|
35
modules/imgproc/perf/perf_spatialgradient.cpp
Normal file
35
modules/imgproc/perf/perf_spatialgradient.cpp
Normal file
@ -0,0 +1,35 @@
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace perf;
|
||||
using namespace testing;
|
||||
using std::tr1::make_tuple;
|
||||
using std::tr1::get;
|
||||
|
||||
typedef std::tr1::tuple<Size, int, int> Size_Ksize_BorderType_t;
|
||||
typedef perf::TestBaseWithParam<Size_Ksize_BorderType_t> Size_Ksize_BorderType;
|
||||
|
||||
PERF_TEST_P( Size_Ksize_BorderType, spatialGradient,
|
||||
Combine(
|
||||
SZ_ALL_HD,
|
||||
Values( 3 ),
|
||||
Values( BORDER_DEFAULT, BORDER_REPLICATE )
|
||||
)
|
||||
)
|
||||
{
|
||||
Size size = std::tr1::get<0>(GetParam());
|
||||
int ksize = std::tr1::get<1>(GetParam());
|
||||
int borderType = std::tr1::get<2>(GetParam());
|
||||
|
||||
Mat src(size, CV_8UC1);
|
||||
Mat dx(size, CV_16SC1);
|
||||
Mat dy(size, CV_16SC1);
|
||||
|
||||
declare.in(src, WARMUP_RNG).out(dx, dy);
|
||||
|
||||
TEST_CYCLE() spatialGradient(src, dx, dy, ksize, borderType);
|
||||
|
||||
SANITY_CHECK(dx);
|
||||
SANITY_CHECK(dy);
|
||||
}
|
@ -49,6 +49,7 @@
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/core/private.hpp"
|
||||
#include "opencv2/core/ocl.hpp"
|
||||
#include "opencv2/hal.hpp"
|
||||
|
||||
#include <math.h>
|
||||
#include <assert.h>
|
||||
|
329
modules/imgproc/src/spatialgradient.cpp
Normal file
329
modules/imgproc/src/spatialgradient.cpp
Normal file
@ -0,0 +1,329 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/hal/intrin.hpp"
|
||||
|
||||
#include <iostream>
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/* NOTE:
|
||||
*
|
||||
* Sobel-x: -1 0 1
|
||||
* -2 0 2
|
||||
* -1 0 1
|
||||
*
|
||||
* Sobel-y: -1 -2 -1
|
||||
* 0 0 0
|
||||
* 1 2 1
|
||||
*/
|
||||
template <typename T>
|
||||
static inline void spatialGradientKernel( T& vx, T& vy,
|
||||
const T& v00, const T& v01, const T& v02,
|
||||
const T& v10, const T& v12,
|
||||
const T& v20, const T& v21, const T& v22 )
|
||||
{
|
||||
// vx = (v22 - v00) + (v02 - v20) + 2 * (v12 - v10)
|
||||
// vy = (v22 - v00) + (v20 - v02) + 2 * (v21 - v01)
|
||||
|
||||
T tmp_add = v22 - v00,
|
||||
tmp_sub = v02 - v20,
|
||||
tmp_x = v12 - v10,
|
||||
tmp_y = v21 - v01;
|
||||
|
||||
vx = tmp_add + tmp_sub + tmp_x + tmp_x;
|
||||
vy = tmp_add - tmp_sub + tmp_y + tmp_y;
|
||||
}
|
||||
|
||||
void spatialGradient( InputArray _src, OutputArray _dx, OutputArray _dy,
|
||||
int ksize, int borderType )
|
||||
{
|
||||
|
||||
// Prepare InputArray src
|
||||
Mat src = _src.getMat();
|
||||
CV_Assert( !src.empty() );
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( borderType == BORDER_DEFAULT || borderType == BORDER_REPLICATE );
|
||||
|
||||
// Prepare OutputArrays dx, dy
|
||||
_dx.create( src.size(), CV_16SC1 );
|
||||
_dy.create( src.size(), CV_16SC1 );
|
||||
Mat dx = _dx.getMat(),
|
||||
dy = _dy.getMat();
|
||||
|
||||
// TODO: Allow for other kernel sizes
|
||||
CV_Assert(ksize == 3);
|
||||
|
||||
// Get dimensions
|
||||
const int H = src.rows,
|
||||
W = src.cols;
|
||||
|
||||
// Row, column indices
|
||||
int i = 0,
|
||||
j = 0;
|
||||
|
||||
// Handle border types
|
||||
int i_top = 0, // Case for H == 1 && W == 1 && BORDER_REPLICATE
|
||||
i_bottom = H - 1,
|
||||
j_offl = 0, // j offset from 0th pixel to reach -1st pixel
|
||||
j_offr = 0; // j offset from W-1th pixel to reach Wth pixel
|
||||
|
||||
if ( borderType == BORDER_DEFAULT ) // Equiv. to BORDER_REFLECT_101
|
||||
{
|
||||
if ( H > 1 )
|
||||
{
|
||||
i_top = 1;
|
||||
i_bottom = H - 2;
|
||||
}
|
||||
if ( W > 1 )
|
||||
{
|
||||
j_offl = 1;
|
||||
j_offr = -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Pointer to row vectors
|
||||
uchar *p_src, *c_src, *n_src; // previous, current, next row
|
||||
short *c_dx, *c_dy;
|
||||
|
||||
int i_start = 0;
|
||||
int j_start = 0;
|
||||
#if CV_SIMD128 && CV_SSE2
|
||||
uchar *m_src;
|
||||
short *n_dx, *n_dy;
|
||||
|
||||
// Characters in variable names have the following meanings:
|
||||
// u: unsigned char
|
||||
// s: signed int
|
||||
//
|
||||
// [row][column]
|
||||
// m: offset -1
|
||||
// n: offset 0
|
||||
// p: offset 1
|
||||
// Example: umn is offset -1 in row and offset 0 in column
|
||||
for ( i = 0; i < H - 1; i += 2 )
|
||||
{
|
||||
if ( i == 0 ) p_src = src.ptr<uchar>(i_top);
|
||||
else p_src = src.ptr<uchar>(i-1);
|
||||
|
||||
c_src = src.ptr<uchar>(i);
|
||||
n_src = src.ptr<uchar>(i+1);
|
||||
|
||||
if ( i == H - 2 ) m_src = src.ptr<uchar>(i_bottom);
|
||||
else m_src = src.ptr<uchar>(i+2);
|
||||
|
||||
c_dx = dx.ptr<short>(i);
|
||||
c_dy = dy.ptr<short>(i);
|
||||
n_dx = dx.ptr<short>(i+1);
|
||||
n_dy = dy.ptr<short>(i+1);
|
||||
|
||||
v_uint8x16 v_select_m = v_uint8x16(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0xFF);
|
||||
|
||||
// Process rest of columns 16-column chunks at a time
|
||||
for ( j = 1; j < W - 16; j += 16 )
|
||||
{
|
||||
// Load top row for 3x3 Sobel filter
|
||||
v_uint8x16 v_um = v_load(&p_src[j-1]);
|
||||
v_uint8x16 v_up = v_load(&p_src[j+1]);
|
||||
// TODO: Replace _mm_slli_si128 with hal method
|
||||
v_uint8x16 v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
|
||||
v_uint8x16(_mm_srli_si128(v_um.val, 1)));
|
||||
v_uint16x8 v_um1, v_um2, v_un1, v_un2, v_up1, v_up2;
|
||||
v_expand(v_um, v_um1, v_um2);
|
||||
v_expand(v_un, v_un1, v_un2);
|
||||
v_expand(v_up, v_up1, v_up2);
|
||||
v_int16x8 v_s1m1 = v_reinterpret_as_s16(v_um1);
|
||||
v_int16x8 v_s1m2 = v_reinterpret_as_s16(v_um2);
|
||||
v_int16x8 v_s1n1 = v_reinterpret_as_s16(v_un1);
|
||||
v_int16x8 v_s1n2 = v_reinterpret_as_s16(v_un2);
|
||||
v_int16x8 v_s1p1 = v_reinterpret_as_s16(v_up1);
|
||||
v_int16x8 v_s1p2 = v_reinterpret_as_s16(v_up2);
|
||||
|
||||
// Load second row for 3x3 Sobel filter
|
||||
v_um = v_load(&c_src[j-1]);
|
||||
v_up = v_load(&c_src[j+1]);
|
||||
// TODO: Replace _mm_slli_si128 with hal method
|
||||
v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
|
||||
v_uint8x16(_mm_srli_si128(v_um.val, 1)));
|
||||
v_expand(v_um, v_um1, v_um2);
|
||||
v_expand(v_un, v_un1, v_un2);
|
||||
v_expand(v_up, v_up1, v_up2);
|
||||
v_int16x8 v_s2m1 = v_reinterpret_as_s16(v_um1);
|
||||
v_int16x8 v_s2m2 = v_reinterpret_as_s16(v_um2);
|
||||
v_int16x8 v_s2n1 = v_reinterpret_as_s16(v_un1);
|
||||
v_int16x8 v_s2n2 = v_reinterpret_as_s16(v_un2);
|
||||
v_int16x8 v_s2p1 = v_reinterpret_as_s16(v_up1);
|
||||
v_int16x8 v_s2p2 = v_reinterpret_as_s16(v_up2);
|
||||
|
||||
// Load third row for 3x3 Sobel filter
|
||||
v_um = v_load(&n_src[j-1]);
|
||||
v_up = v_load(&n_src[j+1]);
|
||||
// TODO: Replace _mm_slli_si128 with hal method
|
||||
v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
|
||||
v_uint8x16(_mm_srli_si128(v_um.val, 1)));
|
||||
v_expand(v_um, v_um1, v_um2);
|
||||
v_expand(v_un, v_un1, v_un2);
|
||||
v_expand(v_up, v_up1, v_up2);
|
||||
v_int16x8 v_s3m1 = v_reinterpret_as_s16(v_um1);
|
||||
v_int16x8 v_s3m2 = v_reinterpret_as_s16(v_um2);
|
||||
v_int16x8 v_s3n1 = v_reinterpret_as_s16(v_un1);
|
||||
v_int16x8 v_s3n2 = v_reinterpret_as_s16(v_un2);
|
||||
v_int16x8 v_s3p1 = v_reinterpret_as_s16(v_up1);
|
||||
v_int16x8 v_s3p2 = v_reinterpret_as_s16(v_up2);
|
||||
|
||||
// dx & dy for rows 1, 2, 3
|
||||
v_int16x8 v_sdx1, v_sdy1;
|
||||
spatialGradientKernel<v_int16x8>( v_sdx1, v_sdy1,
|
||||
v_s1m1, v_s1n1, v_s1p1,
|
||||
v_s2m1, v_s2p1,
|
||||
v_s3m1, v_s3n1, v_s3p1 );
|
||||
|
||||
v_int16x8 v_sdx2, v_sdy2;
|
||||
spatialGradientKernel<v_int16x8>( v_sdx2, v_sdy2,
|
||||
v_s1m2, v_s1n2, v_s1p2,
|
||||
v_s2m2, v_s2p2,
|
||||
v_s3m2, v_s3n2, v_s3p2 );
|
||||
|
||||
// Store
|
||||
v_store(&c_dx[j], v_sdx1);
|
||||
v_store(&c_dx[j+8], v_sdx2);
|
||||
v_store(&c_dy[j], v_sdy1);
|
||||
v_store(&c_dy[j+8], v_sdy2);
|
||||
|
||||
// Load fourth row for 3x3 Sobel filter
|
||||
v_um = v_load(&m_src[j-1]);
|
||||
v_up = v_load(&m_src[j+1]);
|
||||
// TODO: Replace _mm_slli_si128 with hal method
|
||||
v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
|
||||
v_uint8x16(_mm_srli_si128(v_um.val, 1)));
|
||||
v_expand(v_um, v_um1, v_um2);
|
||||
v_expand(v_un, v_un1, v_un2);
|
||||
v_expand(v_up, v_up1, v_up2);
|
||||
v_int16x8 v_s4m1 = v_reinterpret_as_s16(v_um1);
|
||||
v_int16x8 v_s4m2 = v_reinterpret_as_s16(v_um2);
|
||||
v_int16x8 v_s4n1 = v_reinterpret_as_s16(v_un1);
|
||||
v_int16x8 v_s4n2 = v_reinterpret_as_s16(v_un2);
|
||||
v_int16x8 v_s4p1 = v_reinterpret_as_s16(v_up1);
|
||||
v_int16x8 v_s4p2 = v_reinterpret_as_s16(v_up2);
|
||||
|
||||
// dx & dy for rows 2, 3, 4
|
||||
spatialGradientKernel<v_int16x8>( v_sdx1, v_sdy1,
|
||||
v_s2m1, v_s2n1, v_s2p1,
|
||||
v_s3m1, v_s3p1,
|
||||
v_s4m1, v_s4n1, v_s4p1 );
|
||||
|
||||
spatialGradientKernel<v_int16x8>( v_sdx2, v_sdy2,
|
||||
v_s2m2, v_s2n2, v_s2p2,
|
||||
v_s3m2, v_s3p2,
|
||||
v_s4m2, v_s4n2, v_s4p2 );
|
||||
|
||||
// Store
|
||||
v_store(&n_dx[j], v_sdx1);
|
||||
v_store(&n_dx[j+8], v_sdx2);
|
||||
v_store(&n_dy[j], v_sdy1);
|
||||
v_store(&n_dy[j+8], v_sdy2);
|
||||
}
|
||||
}
|
||||
i_start = i;
|
||||
j_start = j;
|
||||
#endif
|
||||
int j_p, j_n;
|
||||
uchar v00, v01, v02, v10, v11, v12, v20, v21, v22;
|
||||
for ( i = 0; i < H; i++ )
|
||||
{
|
||||
if ( i == 0 ) p_src = src.ptr<uchar>(i_top);
|
||||
else p_src = src.ptr<uchar>(i-1);
|
||||
|
||||
c_src = src.ptr<uchar>(i);
|
||||
|
||||
if ( i == H - 1 ) n_src = src.ptr<uchar>(i_bottom);
|
||||
else n_src = src.ptr<uchar>(i+1);
|
||||
|
||||
c_dx = dx.ptr<short>(i);
|
||||
c_dy = dy.ptr<short>(i);
|
||||
|
||||
// Process left-most column
|
||||
j = 0;
|
||||
j_p = j + j_offl;
|
||||
j_n = 1;
|
||||
if ( j_n >= W ) j_n = j + j_offr;
|
||||
v00 = p_src[j_p]; v01 = p_src[j]; v02 = p_src[j_n];
|
||||
v10 = c_src[j_p]; v11 = c_src[j]; v12 = c_src[j_n];
|
||||
v20 = n_src[j_p]; v21 = n_src[j]; v22 = n_src[j_n];
|
||||
spatialGradientKernel<short>( c_dx[0], c_dy[0], v00, v01, v02, v10,
|
||||
v12, v20, v21, v22 );
|
||||
v00 = v01; v10 = v11; v20 = v21;
|
||||
v01 = v02; v11 = v12; v21 = v22;
|
||||
|
||||
// Process middle columns
|
||||
j = i >= i_start ? 1 : j_start;
|
||||
j_p = j - 1;
|
||||
v00 = p_src[j_p]; v01 = p_src[j];
|
||||
v10 = c_src[j_p]; v11 = c_src[j];
|
||||
v20 = n_src[j_p]; v21 = n_src[j];
|
||||
|
||||
for ( ; j < W - 1; j++ )
|
||||
{
|
||||
// Get values for next column
|
||||
j_n = j + 1; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n];
|
||||
spatialGradientKernel<short>( c_dx[j], c_dy[j], v00, v01, v02, v10,
|
||||
v12, v20, v21, v22 );
|
||||
|
||||
// Move values back one column for next iteration
|
||||
v00 = v01; v10 = v11; v20 = v21;
|
||||
v01 = v02; v11 = v12; v21 = v22;
|
||||
}
|
||||
|
||||
// Process right-most column
|
||||
if ( j < W )
|
||||
{
|
||||
j_n = j + j_offr; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n];
|
||||
spatialGradientKernel<short>( c_dx[j], c_dy[j], v00, v01, v02, v10,
|
||||
v12, v20, v21, v22 );
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -552,6 +552,68 @@ void CV_SobelTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
}
|
||||
|
||||
|
||||
/////////////// spatialGradient ///////////////
|
||||
|
||||
class CV_SpatialGradientTest : public CV_DerivBaseTest
|
||||
{
|
||||
public:
|
||||
CV_SpatialGradientTest();
|
||||
|
||||
protected:
|
||||
void prepare_to_validation( int test_case_idx );
|
||||
void run_func();
|
||||
void get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
int ksize;
|
||||
};
|
||||
|
||||
CV_SpatialGradientTest::CV_SpatialGradientTest() {
|
||||
test_array[OUTPUT].push_back(NULL);
|
||||
test_array[REF_OUTPUT].push_back(NULL);
|
||||
inplace = false;
|
||||
}
|
||||
|
||||
|
||||
void CV_SpatialGradientTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes,
|
||||
vector<vector<int> >& types )
|
||||
{
|
||||
CV_DerivBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
|
||||
sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = sizes[OUTPUT][0];
|
||||
|
||||
// Inputs are only CV_8UC1 for now
|
||||
types[INPUT][0] = CV_8UC1;
|
||||
|
||||
// Outputs are only CV_16SC1 for now
|
||||
types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0]
|
||||
= types[REF_OUTPUT][1] = CV_16SC1;
|
||||
|
||||
ksize = 3;
|
||||
border = BORDER_DEFAULT; // TODO: Add BORDER_REPLICATE
|
||||
}
|
||||
|
||||
|
||||
void CV_SpatialGradientTest::run_func()
|
||||
{
|
||||
spatialGradient( test_mat[INPUT][0], test_mat[OUTPUT][0],
|
||||
test_mat[OUTPUT][1], ksize, border );
|
||||
}
|
||||
|
||||
void CV_SpatialGradientTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
int dx, dy;
|
||||
|
||||
dx = 1; dy = 0;
|
||||
Sobel( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], CV_16SC1, dx, dy, ksize,
|
||||
1, 0, border );
|
||||
|
||||
dx = 0; dy = 1;
|
||||
Sobel( test_mat[INPUT][0], test_mat[REF_OUTPUT][1], CV_16SC1, dx, dy, ksize,
|
||||
1, 0, border );
|
||||
}
|
||||
|
||||
|
||||
/////////////// laplace ///////////////
|
||||
|
||||
class CV_LaplaceTest : public CV_DerivBaseTest
|
||||
@ -1773,6 +1835,7 @@ TEST(Imgproc_Dilate, accuracy) { CV_DilateTest test; test.safe_run(); }
|
||||
TEST(Imgproc_MorphologyEx, accuracy) { CV_MorphExTest test; test.safe_run(); }
|
||||
TEST(Imgproc_Filter2D, accuracy) { CV_FilterTest test; test.safe_run(); }
|
||||
TEST(Imgproc_Sobel, accuracy) { CV_SobelTest test; test.safe_run(); }
|
||||
TEST(Imgproc_SpatialGradient, accuracy) { CV_SpatialGradientTest test; test.safe_run(); }
|
||||
TEST(Imgproc_Laplace, accuracy) { CV_LaplaceTest test; test.safe_run(); }
|
||||
TEST(Imgproc_Blur, accuracy) { CV_BlurTest test; test.safe_run(); }
|
||||
TEST(Imgproc_GaussianBlur, accuracy) { CV_GaussianBlurTest test; test.safe_run(); }
|
||||
|
Loading…
Reference in New Issue
Block a user