mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge pull request #12644 from dkurt:dnn_out_layers_names
This commit is contained in:
commit
43e66e7ff9
@ -535,6 +535,11 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
/** @brief Returns indexes of layers with unconnected outputs.
|
||||
*/
|
||||
CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
|
||||
|
||||
/** @brief Returns names of layers with unconnected outputs.
|
||||
*/
|
||||
CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;
|
||||
|
||||
/** @brief Returns input and output shapes for all layers in loaded model;
|
||||
* preliminary inferencing isn't necessary.
|
||||
* @param netInputShapes shapes for all input blobs in net input layer.
|
||||
|
@ -2789,6 +2789,18 @@ std::vector<int> Net::getUnconnectedOutLayers() const
|
||||
return layersIds;
|
||||
}
|
||||
|
||||
std::vector<String> Net::getUnconnectedOutLayersNames() const
|
||||
{
|
||||
std::vector<int> ids = getUnconnectedOutLayers();
|
||||
const size_t n = ids.size();
|
||||
std::vector<String> names(n);
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
{
|
||||
names[i] = impl->layers[ids[i]].name;
|
||||
}
|
||||
return names;
|
||||
}
|
||||
|
||||
void Net::getLayersShapes(const ShapesVec& netInputShapes,
|
||||
std::vector<int>& layersIds,
|
||||
std::vector<ShapesVec>& inLayersShapes,
|
||||
|
@ -86,6 +86,7 @@ int main(int argc, char** argv)
|
||||
Net net = readNet(parser.get<String>("model"), parser.get<String>("config"), parser.get<String>("framework"));
|
||||
net.setPreferableBackend(parser.get<int>("backend"));
|
||||
net.setPreferableTarget(parser.get<int>("target"));
|
||||
std::vector<String> outNames = net.getUnconnectedOutLayersNames();
|
||||
|
||||
// Create a window
|
||||
static const std::string kWinName = "Deep learning object detection in OpenCV";
|
||||
@ -125,7 +126,7 @@ int main(int argc, char** argv)
|
||||
net.setInput(imInfo, "im_info");
|
||||
}
|
||||
std::vector<Mat> outs;
|
||||
net.forward(outs, getOutputsNames(net));
|
||||
net.forward(outs, outNames);
|
||||
|
||||
postprocess(frame, outs, net);
|
||||
|
||||
@ -265,17 +266,3 @@ void callback(int pos, void*)
|
||||
{
|
||||
confThreshold = pos * 0.01f;
|
||||
}
|
||||
|
||||
std::vector<String> getOutputsNames(const Net& net)
|
||||
{
|
||||
static std::vector<String> names;
|
||||
if (names.empty())
|
||||
{
|
||||
std::vector<int> outLayers = net.getUnconnectedOutLayers();
|
||||
std::vector<String> layersNames = net.getLayerNames();
|
||||
names.resize(outLayers.size());
|
||||
for (size_t i = 0; i < outLayers.size(); ++i)
|
||||
names[i] = layersNames[outLayers[i] - 1];
|
||||
}
|
||||
return names;
|
||||
}
|
||||
|
@ -78,14 +78,11 @@ if args.classes:
|
||||
net = cv.dnn.readNet(args.model, args.config, args.framework)
|
||||
net.setPreferableBackend(args.backend)
|
||||
net.setPreferableTarget(args.target)
|
||||
outNames = net.getUnconnectedOutLayersNames()
|
||||
|
||||
confThreshold = args.thr
|
||||
nmsThreshold = args.nms
|
||||
|
||||
def getOutputsNames(net):
|
||||
layersNames = net.getLayerNames()
|
||||
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
||||
|
||||
def postprocess(frame, outs):
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
@ -213,7 +210,7 @@ while cv.waitKey(1) < 0:
|
||||
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
|
||||
frame = cv.resize(frame, (inpWidth, inpHeight))
|
||||
net.setInput(np.array([[inpHeight, inpWidth, 1.6]], dtype=np.float32), 'im_info')
|
||||
outs = net.forward(getOutputsNames(net))
|
||||
outs = net.forward(outNames)
|
||||
|
||||
postprocess(frame, outs)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user