mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
removed extra cv:: scope qualifiers for better readability
This commit is contained in:
parent
2087d4602b
commit
43e7e6e475
@ -119,7 +119,7 @@ public:
|
||||
|
||||
Extracts the component tree (if needed) and filter the extremal regions (ER's) by using a given classifier.
|
||||
*/
|
||||
class CV_EXPORTS ERFilter : public cv::Algorithm
|
||||
class CV_EXPORTS ERFilter : public Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
@ -138,11 +138,11 @@ public:
|
||||
\param image is the input image
|
||||
\param regions is output for the first stage, input/output for the second one.
|
||||
*/
|
||||
virtual void run( cv::InputArray image, std::vector<ERStat>& regions ) = 0;
|
||||
virtual void run( InputArray image, std::vector<ERStat>& regions ) = 0;
|
||||
|
||||
|
||||
//! set/get methods to set the algorithm properties,
|
||||
virtual void setCallback(const cv::Ptr<ERFilter::Callback>& cb) = 0;
|
||||
virtual void setCallback(const Ptr<ERFilter::Callback>& cb) = 0;
|
||||
virtual void setThresholdDelta(int thresholdDelta) = 0;
|
||||
virtual void setMinArea(float minArea) = 0;
|
||||
virtual void setMaxArea(float maxArea) = 0;
|
||||
@ -176,7 +176,7 @@ public:
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param minProbability The minimum probability difference between local maxima and local minima ERs
|
||||
*/
|
||||
CV_EXPORTS cv::Ptr<ERFilter> createERFilterNM1(const cv::Ptr<ERFilter::Callback>& cb = NULL,
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb = NULL,
|
||||
int thresholdDelta = 1, float minArea = 0.000025,
|
||||
float maxArea = 0.13, float minProbability = 0.2,
|
||||
bool nonMaxSuppression = true,
|
||||
@ -195,7 +195,7 @@ CV_EXPORTS cv::Ptr<ERFilter> createERFilterNM1(const cv::Ptr<ERFilter::Callback>
|
||||
if omitted tries to load a default classifier from file trained_classifierNM2.xml
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
*/
|
||||
CV_EXPORTS cv::Ptr<ERFilter> createERFilterNM2(const cv::Ptr<ERFilter::Callback>& cb = NULL,
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb = NULL,
|
||||
float minProbability = 0.85);
|
||||
|
||||
}
|
||||
|
@ -82,14 +82,14 @@ public:
|
||||
|
||||
// the key method. Takes image on input, vector of ERStat is output for the first stage,
|
||||
// input/output - for the second one.
|
||||
void run( cv::InputArray image, std::vector<ERStat>& regions );
|
||||
void run( InputArray image, std::vector<ERStat>& regions );
|
||||
|
||||
protected:
|
||||
int thresholdDelta;
|
||||
float maxArea;
|
||||
float minArea;
|
||||
|
||||
cv::Ptr<ERFilter::Callback> classifier;
|
||||
Ptr<ERFilter::Callback> classifier;
|
||||
|
||||
// count of the rejected/accepted regions
|
||||
int num_rejected_regions;
|
||||
@ -98,7 +98,7 @@ protected:
|
||||
public:
|
||||
|
||||
// set/get methods to set the algorithm properties,
|
||||
void setCallback(const cv::Ptr<ERFilter::Callback>& cb);
|
||||
void setCallback(const Ptr<ERFilter::Callback>& cb);
|
||||
void setThresholdDelta(int thresholdDelta);
|
||||
void setMinArea(float minArea);
|
||||
void setMaxArea(float maxArea);
|
||||
@ -111,10 +111,10 @@ private:
|
||||
// pointer to the input/output regions vector
|
||||
std::vector<ERStat> *regions;
|
||||
// image mask used for feature calculations
|
||||
cv::Mat region_mask;
|
||||
Mat region_mask;
|
||||
|
||||
// extract the component tree and store all the ER regions
|
||||
void er_tree_extract( cv::InputArray image );
|
||||
void er_tree_extract( InputArray image );
|
||||
// accumulate a pixel into an ER
|
||||
void er_add_pixel( ERStat *parent, int x, int y, int non_boundary_neighbours,
|
||||
int non_boundary_neighbours_horiz,
|
||||
@ -126,7 +126,7 @@ private:
|
||||
// copy extracted regions into the output vector
|
||||
ERStat* er_save( ERStat *er, ERStat *parent, ERStat *prev );
|
||||
// recursively walk the tree and filter (remove) regions using the callback classifier
|
||||
ERStat* er_tree_filter( cv::InputArray image, ERStat *stat, ERStat *parent, ERStat *prev );
|
||||
ERStat* er_tree_filter( InputArray image, ERStat *stat, ERStat *parent, ERStat *prev );
|
||||
// recursively walk the tree selecting only regions with local maxima probability
|
||||
ERStat* er_tree_nonmax_suppression( ERStat *er, ERStat *parent, ERStat *prev );
|
||||
};
|
||||
@ -184,7 +184,7 @@ ERFilterNM::ERFilterNM()
|
||||
|
||||
// the key method. Takes image on input, vector of ERStat is output for the first stage,
|
||||
// input/output for the second one.
|
||||
void ERFilterNM::run( cv::InputArray image, std::vector<ERStat>& _regions )
|
||||
void ERFilterNM::run( InputArray image, std::vector<ERStat>& _regions )
|
||||
{
|
||||
|
||||
// assert correct image type
|
||||
@ -222,7 +222,7 @@ void ERFilterNM::run( cv::InputArray image, std::vector<ERStat>& _regions )
|
||||
// extract the component tree and store all the ER regions
|
||||
// uses the algorithm described in
|
||||
// Linear time maximally stable extremal regions, D Nistér, H Stewénius – ECCV 2008
|
||||
void ERFilterNM::er_tree_extract( cv::InputArray image )
|
||||
void ERFilterNM::er_tree_extract( InputArray image )
|
||||
{
|
||||
|
||||
Mat src = image.getMat();
|
||||
@ -749,7 +749,7 @@ ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev )
|
||||
}
|
||||
|
||||
// recursively walk the tree and filter (remove) regions using the callback classifier
|
||||
ERStat* ERFilterNM::er_tree_filter ( cv::InputArray image, ERStat * stat, ERStat *parent, ERStat *prev )
|
||||
ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *parent, ERStat *prev )
|
||||
{
|
||||
Mat src = image.getMat();
|
||||
// assert correct image type
|
||||
@ -820,7 +820,7 @@ ERStat* ERFilterNM::er_tree_filter ( cv::InputArray image, ERStat * stat, ERStat
|
||||
{
|
||||
|
||||
vector<Point> hull;
|
||||
cv::convexHull(contours[0], hull, false);
|
||||
convexHull(contours[0], hull, false);
|
||||
hull_area = (int)contourArea(hull);
|
||||
}
|
||||
|
||||
@ -1072,7 +1072,7 @@ double ERClassifierNM2::eval(const ERStat& stat)
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param minProbability The minimum probability difference between local maxima and local minima ERs
|
||||
*/
|
||||
Ptr<ERFilter> createERFilterNM1(const cv::Ptr<ERFilter::Callback>& cb, int thresholdDelta,
|
||||
Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int thresholdDelta,
|
||||
float minArea, float maxArea, float minProbability,
|
||||
bool nonMaxSuppression, float minProbabilityDiff)
|
||||
{
|
||||
@ -1111,7 +1111,7 @@ Ptr<ERFilter> createERFilterNM1(const cv::Ptr<ERFilter::Callback>& cb, int thres
|
||||
if omitted tries to load a default classifier from file trained_classifierNM2.xml
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
*/
|
||||
Ptr<ERFilter> createERFilterNM2(const cv::Ptr<ERFilter::Callback>& cb, float minProbability)
|
||||
Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProbability)
|
||||
{
|
||||
|
||||
CV_Assert( (minProbability >= 0.) && (minProbability <= 1.) );
|
||||
|
Loading…
Reference in New Issue
Block a user