mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 20:09:23 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
43eba3d750
@ -196,6 +196,10 @@
|
||||
# define ITT_ARCH_PPC64 5
|
||||
#endif /* ITT_ARCH_PPC64 */
|
||||
|
||||
#ifndef ITT_ARCH_AARCH64 /* 64-bit ARM */
|
||||
# define ITT_ARCH_AARCH64 6
|
||||
#endif /* ITT_ARCH_AARCH64 */
|
||||
|
||||
#ifndef ITT_ARCH
|
||||
# if defined _M_IX86 || defined __i386__
|
||||
# define ITT_ARCH ITT_ARCH_IA32
|
||||
@ -205,6 +209,8 @@
|
||||
# define ITT_ARCH ITT_ARCH_IA64
|
||||
# elif defined _M_ARM || defined __arm__
|
||||
# define ITT_ARCH ITT_ARCH_ARM
|
||||
# elif defined __aarch64__
|
||||
# define ITT_ARCH ITT_ARCH_AARCH64
|
||||
# elif defined __powerpc64__
|
||||
# define ITT_ARCH ITT_ARCH_PPC64
|
||||
# endif
|
||||
@ -359,7 +365,7 @@ ITT_INLINE long __TBB_machine_fetchadd4(volatile void* ptr, long addend)
|
||||
: "memory");
|
||||
return result;
|
||||
}
|
||||
#elif ITT_ARCH==ITT_ARCH_ARM || ITT_ARCH==ITT_ARCH_PPC64
|
||||
#elif ITT_ARCH==ITT_ARCH_ARM || ITT_ARCH==ITT_ARCH_AARCH64 || ITT_ARCH==ITT_ARCH_PPC64
|
||||
#define __TBB_machine_fetchadd4(addr, val) __sync_fetch_and_add(addr, val)
|
||||
#endif /* ITT_ARCH==ITT_ARCH_IA64 */
|
||||
#ifndef ITT_SIMPLE_INIT
|
||||
|
@ -221,7 +221,10 @@ OCV_OPTION(BUILD_OPENEXR "Build openexr from source" (((WIN3
|
||||
OCV_OPTION(BUILD_WEBP "Build WebP from source" (((WIN32 OR ANDROID OR APPLE) AND NOT WINRT) OR OPENCV_FORCE_3RDPARTY_BUILD) )
|
||||
OCV_OPTION(BUILD_TBB "Download and build TBB from source" (ANDROID OR OPENCV_FORCE_3RDPARTY_BUILD) )
|
||||
OCV_OPTION(BUILD_IPP_IW "Build IPP IW from source" (NOT MINGW OR OPENCV_FORCE_3RDPARTY_BUILD) IF (X86_64 OR X86) AND NOT WINRT )
|
||||
OCV_OPTION(BUILD_ITT "Build Intel ITT from source" (NOT MINGW OR OPENCV_FORCE_3RDPARTY_BUILD) IF (X86_64 OR X86) AND NOT WINRT AND NOT APPLE_FRAMEWORK )
|
||||
OCV_OPTION(BUILD_ITT "Build Intel ITT from source"
|
||||
(NOT MINGW OR OPENCV_FORCE_3RDPARTY_BUILD)
|
||||
IF (X86_64 OR X86 OR ARM OR AARCH64 OR PPC64 OR PPC64LE) AND NOT WINRT AND NOT APPLE_FRAMEWORK
|
||||
)
|
||||
|
||||
# Optional 3rd party components
|
||||
# ===================================================
|
||||
|
@ -124,7 +124,7 @@ int initUndistortRectifyMapLine_AVX(float* m1f, float* m2f, short* m1, ushort* m
|
||||
_mm256_mul_pd(__matTilt_20, __xd), _mm256_mul_pd(__matTilt_21, __yd)), __matTilt_22);
|
||||
#endif
|
||||
__m256d __invProj = _mm256_blendv_pd(
|
||||
__one, _mm256_div_pd(__one, __vecTilt2),
|
||||
_mm256_div_pd(__one, __vecTilt2), __one,
|
||||
_mm256_cmp_pd(__vecTilt2, _mm256_setzero_pd(), _CMP_EQ_OQ));
|
||||
|
||||
#if CV_FMA3
|
||||
|
@ -1469,4 +1469,34 @@ TEST(Calib3d_UndistortPoints, outputShape)
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Calib3d_initUndistortRectifyMap, regression_14467)
|
||||
{
|
||||
Size size_w_h(512 + 3, 512);
|
||||
Matx33f k(
|
||||
6200, 0, size_w_h.width / 2.0f,
|
||||
0, 6200, size_w_h.height / 2.0f,
|
||||
0, 0, 1
|
||||
);
|
||||
|
||||
Mat mesh_uv(size_w_h, CV_32FC2);
|
||||
for (int i = 0; i < size_w_h.height; i++)
|
||||
{
|
||||
for (int j = 0; j < size_w_h.width; j++)
|
||||
{
|
||||
mesh_uv.at<Vec2f>(i, j) = Vec2f((float)j, (float)i);
|
||||
}
|
||||
}
|
||||
|
||||
Matx<double, 1, 14> d(
|
||||
0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0,
|
||||
0.09, 0.0
|
||||
);
|
||||
Mat mapxy, dst;
|
||||
initUndistortRectifyMap(k, d, noArray(), k, size_w_h, CV_32FC2, mapxy, noArray());
|
||||
undistortPoints(mapxy.reshape(2, (int)mapxy.total()), dst, k, d, noArray(), k);
|
||||
dst = dst.reshape(2, mapxy.rows);
|
||||
EXPECT_LE(cvtest::norm(dst, mesh_uv, NORM_INF), 1e-3);
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
@ -43,12 +43,18 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 2);
|
||||
CV_Assert(inputs.size() == 2 || inputs.size() == 3);
|
||||
CV_Assert(total(inputs[0]) == total(inputs[1]));
|
||||
|
||||
MatShape outShape = inputs[0];
|
||||
outShape[2] = (outShape[2] - 1) * poolStride.height + poolKernel.height - 2 * poolPad.height;
|
||||
outShape[3] = (outShape[3] - 1) * poolStride.width + poolKernel.width - 2 * poolPad.width;
|
||||
MatShape outShape;
|
||||
if (inputs.size() == 2)
|
||||
{
|
||||
outShape = inputs[0];
|
||||
outShape[2] = (outShape[2] - 1) * poolStride.height + poolKernel.height - 2 * poolPad.height;
|
||||
outShape[3] = (outShape[3] - 1) * poolStride.width + poolKernel.width - 2 * poolPad.width;
|
||||
}
|
||||
else
|
||||
outShape = inputs[2];
|
||||
|
||||
outputs.clear();
|
||||
outputs.push_back(outShape);
|
||||
@ -71,7 +77,7 @@ public:
|
||||
inputs_arr.getMatVector(inputs);
|
||||
outputs_arr.getMatVector(outputs);
|
||||
|
||||
CV_Assert(inputs.size() == 2);
|
||||
CV_Assert(inputs.size() == 2 || inputs.size() == 3);
|
||||
Mat& input = inputs[0];
|
||||
Mat& indices = inputs[1];
|
||||
|
||||
|
@ -530,6 +530,13 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
layerParams.type = "Power";
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Clip")
|
||||
{
|
||||
layerParams.type = "ReLU6";
|
||||
replaceLayerParam(layerParams, "min", "min_value");
|
||||
replaceLayerParam(layerParams, "max", "max_value");
|
||||
|
||||
}
|
||||
else if (layer_type == "LeakyRelu")
|
||||
{
|
||||
layerParams.type = "ReLU";
|
||||
|
@ -1370,6 +1370,24 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else if (type == "MaxPoolGrad")
|
||||
{
|
||||
CV_Assert(layer.input_size() == 3);
|
||||
|
||||
layerParams.set("pool_k_h", 0);
|
||||
layerParams.set("pool_k_w", 0);
|
||||
layerParams.set("pool_stride_h", 0);
|
||||
layerParams.set("pool_stride_w", 0);
|
||||
layerParams.set("pool_pad_h", 0);
|
||||
layerParams.set("pool_pad_w", 0);
|
||||
|
||||
int id = dstNet.addLayer(name, "MaxUnpool", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connect(layer_id, dstNet, parsePin(layer.input(2)), id, 0);
|
||||
connect(layer_id, dstNet, parsePin(layer.input(1) + ":1"), id, 1);
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 2);
|
||||
}
|
||||
else if (type == "Placeholder")
|
||||
{
|
||||
if (!hasLayerAttr(layer, "dtype") ||
|
||||
|
@ -205,7 +205,7 @@ TEST(Reproducibility_FCN, Accuracy)
|
||||
Net net;
|
||||
{
|
||||
const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt");
|
||||
const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel");
|
||||
const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false);
|
||||
net = readNetFromCaffe(proto, model);
|
||||
ASSERT_FALSE(net.empty());
|
||||
}
|
||||
|
@ -136,6 +136,11 @@ TEST_P(Test_ONNX_layers, ReLU)
|
||||
testONNXModels("ReLU");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Clip)
|
||||
{
|
||||
testONNXModels("clip", npy);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid)
|
||||
{
|
||||
testONNXModels("maxpooling_sigmoid");
|
||||
|
@ -218,6 +218,13 @@ TEST_P(Test_TensorFlow_layers, pooling)
|
||||
runTensorFlowNet("reduce_mean"); // an average pooling over all spatial dimensions.
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, max_pool_grad)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
|
||||
runTensorFlowNet("max_pool_grad");
|
||||
}
|
||||
|
||||
// TODO: fix tests and replace to pooling
|
||||
TEST_P(Test_TensorFlow_layers, ave_pool_same)
|
||||
{
|
||||
|
@ -968,13 +968,15 @@ static std::string findData(const std::string& relative_path, bool required, boo
|
||||
std::string prefix = path_join(datapath, subdir);
|
||||
std::string result_;
|
||||
CHECK_FILE_WITH_PREFIX(prefix, result_);
|
||||
#if 1 // check for misused 'optional' mode
|
||||
if (!required && !result_.empty())
|
||||
{
|
||||
std::cout << "TEST ERROR: Don't use 'optional' findData() for " << relative_path << std::endl;
|
||||
CV_Assert(required || result_.empty());
|
||||
static bool checkOptionalFlag = cv::utils::getConfigurationParameterBool("OPENCV_TEST_CHECK_OPTIONAL_DATA", false);
|
||||
if (checkOptionalFlag)
|
||||
{
|
||||
CV_Assert(required || result_.empty());
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (!result_.empty())
|
||||
return result_;
|
||||
}
|
||||
|
@ -85,6 +85,11 @@ static void handleMessage(GstElement * pipeline);
|
||||
|
||||
namespace {
|
||||
|
||||
#if defined __clang__
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wunused-function"
|
||||
#endif
|
||||
|
||||
template<typename T> static inline void GSafePtr_addref(T* ptr)
|
||||
{
|
||||
if (ptr)
|
||||
@ -109,6 +114,10 @@ template<> inline void GSafePtr_release<GstEncodingContainerProfile>(GstEncoding
|
||||
template<> inline void GSafePtr_addref<char>(char* pPtr); // declaration only. not defined. should not be used
|
||||
template<> inline void GSafePtr_release<char>(char** pPtr) { if (pPtr) { g_free(*pPtr); *pPtr = NULL; } }
|
||||
|
||||
#if defined __clang__
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
template <typename T>
|
||||
class GSafePtr
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user