mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Enable reshape-as-shape layer from TensorFlow
This commit is contained in:
parent
e0c93bcf6c
commit
449696f1e5
@ -186,15 +186,20 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
outputs.clear();
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
if (inputs.size() == 1 || inputs.size() == requiredOutputs)
|
||||
{
|
||||
outputs.push_back(MatShape());
|
||||
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
||||
outputs.clear();
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
outputs.push_back(MatShape());
|
||||
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(inputs.size() == 2, total(inputs[0]) == total(inputs[1]));
|
||||
outputs.assign(1, inputs[1]);
|
||||
}
|
||||
internals = outputs;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -206,7 +211,7 @@ public:
|
||||
inps.getUMatVector(inputs);
|
||||
outs.getUMatVector(outputs);
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
for (size_t i = 0; i < outputs.size(); i++)
|
||||
{
|
||||
UMat srcBlob = inputs[i];
|
||||
void *src_handle = inputs[i].handle(ACCESS_READ);
|
||||
@ -240,7 +245,7 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
for (size_t i = 0; i < outputs.size(); i++)
|
||||
{
|
||||
Mat srcBlob = *inputs[i];
|
||||
if (outputs[i].data != srcBlob.data)
|
||||
@ -248,7 +253,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
InferenceEngine::LayerParams lp;
|
||||
@ -256,7 +261,15 @@ public:
|
||||
lp.type = "Reshape";
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::ReshapeLayer> ieLayer(new InferenceEngine::ReshapeLayer(lp));
|
||||
ieLayer->shape = newShapeDesc;
|
||||
if (!newShapeDesc.empty())
|
||||
ieLayer->shape = newShapeDesc;
|
||||
else
|
||||
{
|
||||
CV_Assert(inputs.size() == 2);
|
||||
InferenceEngine::DataPtr shapeSrc = infEngineDataNode(inputs[1]);
|
||||
// NOTE: shapeSrc->dims are reversed
|
||||
ieLayer->shape = std::vector<int>(shapeSrc->dims.rbegin(), shapeSrc->dims.rend());
|
||||
}
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
#endif // HAVE_INF_ENGINE
|
||||
return Ptr<BackendNode>();
|
||||
|
@ -524,8 +524,7 @@ Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
|
||||
{
|
||||
// NOTE: Inference Engine sizes are reversed.
|
||||
std::vector<size_t> dims = blob->dims();
|
||||
std::vector<int> size(dims.begin(), dims.end());
|
||||
std::reverse(size.begin(), size.end());
|
||||
std::vector<int> size(dims.rbegin(), dims.rend());
|
||||
return Mat(size, CV_32F, (void*)blob->buffer());
|
||||
}
|
||||
|
||||
@ -540,8 +539,7 @@ bool InfEngineBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
std::vector<MatShape> &internals) const
|
||||
{
|
||||
std::vector<size_t> dims = output->dims;
|
||||
std::vector<int> shape(dims.begin(), dims.end());
|
||||
std::reverse(shape.begin(), shape.end());
|
||||
std::vector<int> shape(dims.rbegin(), dims.rend());
|
||||
outputs.assign(1, shape);
|
||||
return false;
|
||||
}
|
||||
|
@ -615,6 +615,19 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class ReshapeAsShapeSubgraph : public Subgraph
|
||||
{
|
||||
public:
|
||||
ReshapeAsShapeSubgraph()
|
||||
{
|
||||
int input = addNodeToMatch("");
|
||||
int shapeSrc = addNodeToMatch("");
|
||||
int shape = addNodeToMatch("Shape", shapeSrc);
|
||||
addNodeToMatch("Reshape", input, shape);
|
||||
setFusedNode("Reshape", input, shapeSrc);
|
||||
}
|
||||
};
|
||||
|
||||
void simplifySubgraphs(tensorflow::GraphDef& net)
|
||||
{
|
||||
std::vector<Ptr<Subgraph> > subgraphs;
|
||||
@ -630,6 +643,7 @@ void simplifySubgraphs(tensorflow::GraphDef& net)
|
||||
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionSameKerasSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
|
||||
|
||||
int numNodes = net.node_size();
|
||||
std::vector<int> matchedNodesIds;
|
||||
|
@ -1023,37 +1023,50 @@ void TFImporter::populateNet(Net dstNet)
|
||||
else if (type == "Reshape")
|
||||
{
|
||||
Pin inpId = parsePin(layer.input(0));
|
||||
Mat newShape = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
|
||||
int inpLayout = getDataLayout(layer.input(0), data_layouts);
|
||||
if (newShape.total() != 4 && inpLayout == DATA_LAYOUT_NHWC)
|
||||
// There are two possible implementations: reshape an input using
|
||||
// predefined sizes or use a second input blob as a source of new shape.
|
||||
if (value_id.find(layer.input(1)) != value_id.end())
|
||||
{
|
||||
LayerParams permLP;
|
||||
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
||||
permLP.set("order", DictValue::arrayInt<int*>(order, 4));
|
||||
Mat newShape = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
|
||||
std::string permName = name + "/nchw";
|
||||
CV_Assert(layer_id.find(permName) == layer_id.end());
|
||||
int permId = dstNet.addLayer(permName, "Permute", permLP);
|
||||
layer_id[permName] = permId;
|
||||
connect(layer_id, dstNet, inpId, permId, 0);
|
||||
inpId = Pin(permName);
|
||||
inpLayout = DATA_LAYOUT_NCHW;
|
||||
if (newShape.total() != 4 && inpLayout == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
LayerParams permLP;
|
||||
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
||||
permLP.set("order", DictValue::arrayInt<int*>(order, 4));
|
||||
|
||||
std::string permName = name + "/nchw";
|
||||
CV_Assert(layer_id.find(permName) == layer_id.end());
|
||||
int permId = dstNet.addLayer(permName, "Permute", permLP);
|
||||
layer_id[permName] = permId;
|
||||
connect(layer_id, dstNet, inpId, permId, 0);
|
||||
inpId = Pin(permName);
|
||||
inpLayout = DATA_LAYOUT_NCHW;
|
||||
}
|
||||
else if (newShape.total() == 4 && inpLayout == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
// NHWC->NCHW
|
||||
std::swap(*newShape.ptr<int32_t>(0, 2), *newShape.ptr<int32_t>(0, 3));
|
||||
std::swap(*newShape.ptr<int32_t>(0, 1), *newShape.ptr<int32_t>(0, 2));
|
||||
}
|
||||
layerParams.set("dim", DictValue::arrayInt<int*>(newShape.ptr<int>(), newShape.total()));
|
||||
|
||||
int id = dstNet.addLayer(name, "Reshape", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, inpId, id, 0);
|
||||
data_layouts[name] = newShape.total() == 2 ? DATA_LAYOUT_PLANAR : inpLayout;
|
||||
}
|
||||
else if (newShape.total() == 4 && inpLayout == DATA_LAYOUT_NHWC)
|
||||
else
|
||||
{
|
||||
// NHWC->NCHW
|
||||
std::swap(*newShape.ptr<int32_t>(0, 2), *newShape.ptr<int32_t>(0, 3));
|
||||
std::swap(*newShape.ptr<int32_t>(0, 1), *newShape.ptr<int32_t>(0, 2));
|
||||
int id = dstNet.addLayer(name, "Reshape", layerParams);
|
||||
layer_id[name] = id;
|
||||
connect(layer_id, dstNet, inpId, id, 0);
|
||||
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 1);
|
||||
data_layouts[name] = inpLayout;
|
||||
}
|
||||
layerParams.set("dim", DictValue::arrayInt<int*>(newShape.ptr<int>(), newShape.total()));
|
||||
|
||||
int id = dstNet.addLayer(name, "Reshape", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, inpId, id, 0);
|
||||
data_layouts[name] = newShape.total() == 2 ? DATA_LAYOUT_PLANAR : inpLayout;
|
||||
}
|
||||
else if (type == "Flatten" || type == "Squeeze")
|
||||
{
|
||||
|
@ -218,6 +218,7 @@ TEST_P(Test_TensorFlow_layers, reshape)
|
||||
runTensorFlowNet("shift_reshape_no_reorder");
|
||||
runTensorFlowNet("reshape_no_reorder");
|
||||
runTensorFlowNet("reshape_reduce");
|
||||
runTensorFlowNet("reshape_as_shape");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, flatten)
|
||||
|
Loading…
Reference in New Issue
Block a user